

Change in Average Energy

Wave number for small amplitudes: $\Omega = \frac{k_u}{\gamma} \sqrt{K_L K}$

$$\frac{d}{dz}\psi_{+} = \frac{2k_{u}}{\gamma}\Delta\gamma + O^{5}(\frac{1}{\gamma}), \quad \frac{d}{dz}\Delta\gamma = -\frac{K_{L}k_{u}K}{2\gamma}\sin\psi_{+} + O^{3}(\frac{1}{\gamma})$$

$$\frac{d^{2}}{dz^{2}}\Delta\gamma = -\Omega^{2}\Delta\gamma\cos\psi_{+} + O^{3}(\frac{1}{\gamma})$$

$$\frac{d^{3}}{dz^{3}}\Delta\gamma = \Omega^{2}(\frac{2k_{u}}{\gamma}\Delta\gamma^{2}\sin\psi_{+} + \frac{K_{L}k_{u}K}{2\gamma}\sin\psi_{+}\cos\psi_{+}) + O^{3}(\frac{1}{\gamma})$$

$$\left\langle \frac{d^{4}}{dz^{4}}\Delta\gamma \right\rangle_{\psi_{+}} = -\Omega^{4}\Delta\gamma + O^{3}(\frac{1}{\gamma})$$

Energy initially changes very slowly, only with z^4 .

How much energy can maximally be lost is determined by higher derivatives, i.e. by nonlinear terms in $\Delta\gamma$.

The saturation length of the FEL, i.e. when the maximal energy loss occurs, is also determined by nonlinear terms.

126	CHESS & LEPP
1)	Undulators have to be very long (order 100m).
2)	Current within an electron bunch has to be very large to produce enough field for bunching from initial incoherent radiation.
3)	The phase of the initial incoherent radiation from (1) is determined by a statistica fluctuation of the density in the electron bunch. (A DC current would not radiate !) The radiation process therefore start from noise.
4)	The length has to be matched to saturation of the energy loss for maximum power.
5)	The radiation power growth exponentially with length until saturation.
6)	The start from noise lets the intensity fluctuate strongly, except at saturation.
7)	The undulator has to have saturation length, where the power gets very large,
	destroying sample by the radiation from a single electron bunch.
8)	SPRING8 / Japan, SLAC / USA, and DESY / Germany are building SASE FELs
	1 2 Undulator 3 4 Electron bunch

