

Accelerating (S)RF Cavities

Matthias Liepe

• Accelerating cavities

- DC accelerators
- RF cavities
- Examples

• **RF Cavity Fundamentals**

- Pill box cavity
- Figures of merit
- Accelerating mode
- Multicell cavities and circuit models

RF Cavity Design

- NC vs. SC
- Objectives and cell shapes
- RF codes

Accelerating cavities

Accelerating cavities

- DC accelerators
- RF cavities
- Examples

Use high DC voltage to accelerate particles

 $\frac{\mathrm{d}\vec{p}}{\mathrm{d}t} = q\left(\vec{E} + \vec{v} \times \vec{B}\right)$

 No work done by magnetic fields

DC accelerator

Cockroft and Walton's electrostatic accelerator (1932)

Protons were accelerated and slammed into lithium atoms producing helium and energy.

DC Accelerators: Limitations

1) DC (
$$\frac{\partial}{\partial t} \equiv 0$$
): $\nabla \times \vec{E} = 0$ which is solved by $\vec{E} = -\nabla \Phi$
Limit: If you want to gain 1 MeV, you need a potential of 1 MV!

2) Circular machine: DC acceleration impossible since $\oint \vec{E} \cdot d\vec{s} = 0$

⇒ Use time-varying fields!

Maxwell's equation in vacuum (contd.) $\nabla \times \vec{B} - \frac{1}{c^2} \frac{\partial}{\partial t} \vec{E} = 0 \quad \nabla \cdot \vec{B} = 0$ $\nabla \times \vec{E} + \frac{\partial}{\partial t} \vec{B} = 0 \quad \nabla \cdot \vec{E} = 0$

Example of Time Varying Fields: Drift Tube Linac

Drift Tube Linac (DTL) - how it works

Example of Time Varying Fields: Drift Tube Linac

RF Cavities

- For acceleration we require an oscillating RF field
- Simplest form is an LC circuit
- Let L = 0.1 mH, C = 0.01 μ F \rightarrow f = 160 kHz
- To increase the frequency, lower L, eventually only have a single wire
- To reach even lower values must add inductances in parallel
- Eventually have we have a solid wall
- Shorten "wires" even further to reduce inductance
- Pillbox cavity, "simplest form"
- Add beam tubes to let the particles enter and exit
- Magnetic field concentrated in the cavity wall, losses will be here.

RF Cavities

 Time dependent electromagnetic field inside metal box

Introduction to RF Cavities

- The main purpose of using RF cavities in accelerators is to provide energy gain to charged-particle beams e⁻
- The highest achievable gradient, however, is not always optimal for an accelerator. There are other factors (both machine-dependent and technology-dependent) that determine operating gradient of RF cavities and influence the cavity design, such as accelerator cost optimization, maximum power through an input coupler, necessity to extract HOM power, etc.
- In many cases requirements are competing.

Taiwan Light Source cryomodule

CW High-Current Storage Rings (colliders and light sources)

- NC or SC
- Relatively low gradient
 (1...9 MV/m)

CESR cavities

PEP II Cavity

- Strong HOM damping
 (Q ~ 10²)
- High average RF power
 (hundreds of kW)

KEK cavity

Pulsed Linacs (ILC, XFEL, ...)

- High gradients
- Moderate HOM damping reqs.
- High peak RF power

ILC: 21,000 cavities!

ILC / XFEL cavities

Traveling Wave Cavities

Mike.

CW low-current linacs (CEBAF, ELBE)

CEBAF cavities

- SRF cavities
- Moderate to low gradient
 (8...20 MV/m)
- Relaxed HOM damping requirements
- Low average RF power (5...13 kW)

CW High-Current ERLs

- SRF cavities
- Moderate gradient (15...20 MV/m)
- Strong HOM damping $(Q = 10^2...10^4)$
- Low average RF power (few kW)

BNL ERL cavity

RF Cavity Fundamentals

• RF Cavity Fundamentals (Standing wave cavities)

- Cavity eigenmodes
- Figures of merit
- Accelerating mode
- Multicell cavities and circuit model

RF Cavities and their Eigenmodes I

Cavity≡ an arbitrary volume, partially closed by the metal wall, capable to store the E-H energy

~ 3.95 GHz is the lowest frequency

First assumption:

1. Stored E-H fields are harmonic in time.

Maxwell equations for the harmonic, lossless case with no free charge in the volume

$$\nabla \times H = i\omega\varepsilon E$$
$$\nabla \times E = -i\omega\mu H$$
$$\nabla \cdot E = 0$$
$$\nabla \cdot H = 0$$

Second assumption (good approximation for the elliptical cavities):

2. The volume is cylindrically symmetric. We commonly use the (r, ϕ , z) coordinates.

z is conventional direction of the acceleration and symmetry axis

$$\begin{cases} \nabla_{c} \times H = i\omega\varepsilon E \\ \nabla_{c} \times E = -i\omega\mu H \\ \nabla_{c} \cdot E = 0 \\ \nabla_{c} \cdot H = 0 \end{cases}$$

$$\nabla_{c} \times A = \vec{i}_{r} \left(\frac{1}{r} \frac{\partial A_{z}}{\partial \varphi} - \frac{\partial A_{\varphi}}{\partial z} \right) + \vec{i}_{\varphi} \left(\frac{\partial A_{r}}{\partial z} - \frac{\partial A_{z}}{\partial r} \right) + \vec{i}_{z} \left(\frac{1}{r} \frac{\partial (rA_{\varphi})}{\partial r} - \frac{1}{r} \frac{\partial A_{r}}{\partial \varphi} \right)$$
$$\nabla_{c} \cdot A = \frac{1}{r} \frac{\partial (rA_{r})}{\partial r} + \frac{1}{r} \frac{\partial A_{\varphi}}{\partial \varphi} + \frac{\partial A_{z}}{\partial z}$$

For the acceleration are suitable field patterns with strong E along the beam trajectory. This ensures, by the proper phasing, maximal energy exchange between the cavity and beam.

TM0xx-like monopole modes have "very strong" E_z component on the symmetry axis.

Fields of the monopole modes are independent on φ .

$$\frac{\partial \mathsf{E}}{\partial \varphi} = 0 \qquad \frac{\partial \mathsf{H}}{\partial \varphi} = 0$$

<u>Non monopole (HOM)</u> modes have component $E_z = 0$ on the symmetry axis.

Their fields dependent on φ.

Maxwell equations + boundary conditions for E and H fields lead to the <u>Helmholtz</u> equation, which is an eigenvalue problem.

For H(r,z) field of a monopole mode the equation is:

There is infinity number of TM0xx solutions (modes) to the Helmholtz equation. All modes are determine by:

 $H_n(r,z) = [0, H_{\varphi,n}(r,z), 0],$ $E_n(r,z) = [E_{r,n}(r,z), 0, E_{z,n}(r,z)]$ and frequency ω_n .

Accelerating Mode

 Time dependent electromagnetic field inside metal box

Figures of Merit - 1 Accelerating Voltage & Accelerating Field (v = c for Particles)

- Frequency
- For maximum acceleration we need

$$T_{\rm cav} = \frac{d}{c} = \frac{T_{\rm RF}}{2}$$

so that the field always points in the same direction as the bunch traverses the cavity •Accelerating voltage then is

$$V_{cav} = \operatorname{Re}\left[\int_{0}^{d} E_{z}\left(\rho=0,z\right)e^{i\omega_{0}z/c}dz\right] = d \cdot E_{0}\frac{\sin\frac{\omega_{0}d}{c}}{\frac{\omega_{0}d}{c}} = d \cdot E_{0}T$$

•Accelerating field is $E_{acc} = \frac{V_{cav}}{d} = 2E_{0}/\pi$

is flight time factor (for pill-box with this length *d* only, other shapes can have a different value of *T*).

Figures of Merit - 2 Dissipated Power, Stored Energy, Cavity Quality (Q)

•Surface currents ($\propto H$) result in dissipation proportional to the surface resistance (R_s):

•Dissipation in the cavity wall given by surface integral:

$$\frac{dP_{\rm c}}{ds} = \frac{1}{2}R_{\rm s}|\mathbf{H}|^2$$
$$P_{\rm c} = \frac{1}{2}R_{\rm s}\int_{\rm S}|\mathbf{H}|^2 ds$$

•Stored energy is:
$$U = \frac{1}{2}\mu_0 \int_V |\mathbf{H}|^2 dv$$

•Define Quality (Q) as
$$Q_0 = \frac{\omega_0 U}{P_c} = 2 \pi \frac{U}{T_{rf} P_c}$$

which is ~ 2 π number of cycles it takes to dissipate the energy stored in the cavity \rightarrow Easy way to measure Q

•
$$Qnc \approx 10^4$$
, $Qsc \approx 10^{10}$

Since the time averaged energy in the electric field equals that in magnetic field, the total energy in the cavity is given by

$$U = \frac{1}{2} \mu_0 \int_{\mathcal{V}} |\mathbf{H}|^2 \, dv = \frac{1}{2} \epsilon_0 \int_{\mathcal{V}} |\mathbf{E}|^2 \, dv,$$

where the integral is taken over the volume of the cavity.

Power dissipated in the cavity walls is $P_{c} = \frac{1}{2}R_{s}\int_{S} |\mathbf{H}|^{2} ds$,

where the integration is taken over the interior cavity surface.

$$Q_0 = \frac{\omega_0 U}{P_c}, \qquad \qquad Q_0 = \frac{\omega_0 \mu_0 \int_{\mathbf{V}} |\mathbf{H}|^2 \, dv}{R_s \int_{\mathbf{S}} |\mathbf{H}|^2 \, ds}.$$

The Q_0 is frequently written as $Q_0 = \frac{G}{R_0}$,

where $G = \frac{\omega_0 \mu_0 \int_V |\mathbf{H}|^2 dv}{\int_S |\mathbf{H}|^2 ds}$. *G* is known as the geometry

constant. From the last eq. we can see that it depends on the cavity shape but not its size.

Figures of Merit for Cavity Design - 4 Shunt Impedance (R_a)

Accelerating π -mode:

Accelerating voltage:

• Shunt impedance (R_a) determines how much acceleration one gets for a given dissipation (analogous to Ohm's Law)

$$R_{\rm a} = \frac{V_{\rm c}^2}{P_{\rm c}}$$

 \rightarrow To maximize acceleration (*P*_c given), must maximize shunt impedance.

Another important figure of merit is

$$\frac{R_{\rm a}}{Q_0} = \frac{V_{\rm c}^2}{\omega_0 U},$$

•*Ra/Q* only depends on the cavity geometry \rightarrow This quantity is also used for determining the level of mode excitation by charges passing through the cavity.

→ To minimize losses (P_c) in the cavity, we must maximize G^*R_a/Q_0 :

$$P_{c} = \frac{V_{c}^{2}}{R_{a}} = \frac{V_{c}^{2}}{Q_{0} \cdot (R_{a} / Q_{0})} = \frac{V_{c}^{2}}{(R_{s} \cdot Q_{0})(R_{a} / Q_{0}) / R_{s}} = \frac{V_{c}^{2} \cdot R_{s}}{G \cdot (R_{a} / Q_{0})}$$

Typical Values for Single Cells

Quantity	Cornell SC 500 MHz	Pillbox
G	270 Ω	257Ω
$R_{ m a}/Q_0$	88 Ω/cell	$196 \ \Omega/\mathrm{cell}$
$E_{\rm pk}/E_{\rm acc}$	2.5	1.6
$H_{\rm pk}/E_{\rm acc}$	52 Oe/MV/m	$30.5 \ \mathrm{Oe}/(\mathrm{MV/m})$

Current is high, it excites a lot of Higher Order Modes, so the hole is made big to propagate HOMs, and this is why *Hpk* and *Epk* grew, and *R/Q* drops.

Diff. applications – diff. trade-offs.

Matthias Liepe; 03/24/2008

Example: 500 GeV Linear Collider

21,024 9-cell cavities: 27.8 km (17.3 miles)

189,216 1-cell cavities: 75.4 km (46.8 miles)

The last parameter, relevant for multi-cell accelerating structures, is the coupling k_{cc} between cells for the accelerating mode passband (Fundamental Mode passband).

Single-cell structures are attractive from the RFpoint of view:

- Easier to manage HOM damping
- No field flatness problem.
- Input coupler transfers less power
- Easy for cleaning and preparation
- But it is expensive to base even a small linear accelerator on the single cell. We do it only for very high beam current machines.

Multi-cell structures are less expensive and offers higher real-estate gradient but:

- Field flatness (stored energy) in cells becomes sensitive to frequency errors of individual cells
- Other problems arise: HOM trapping...

Two Coupled Cells: TM010 Modes

Two Coupled Cells: TM010 Modes

Cell-to-Cell Coupling

$$\widehat{\mathbf{e}}^{(m)}(\vec{r}) = \sqrt{\frac{\varepsilon_0}{2U^{(m)}}} \widehat{\mathbf{E}}^{(m)}(\vec{r}) dv = \delta_{mn}} \sum_{k=1}^{\infty} \widehat{\mathbf{h}}^{(m)}(\vec{r}) \widehat{\mathbf{h}}^{(m)}(\vec{r}) dv = \delta_{mn}$$

With Maxwell's equations in vacuum: $\vec{\nabla} \times \vec{H} = \varepsilon_0 \frac{\partial \vec{E}}{\partial t}$ $\vec{\nabla} \times \vec{E} = -\mu_0 \frac{\partial \vec{H}}{\partial t}$ and the eigenmodes $\vec{E}^{(m)}(\vec{r},t) = \vec{E}^{(m)}(\vec{r})e^{i\omega^{(m)}t}$ $\vec{H}^{(m)}(\vec{r},t) = \vec{H}^{(m)}(\vec{r})e^{i\omega^{(m)}t + i\pi/2}$ and the normalized eigenfunctions $\vec{h}^{(m)}(\vec{r}) = \sqrt{\frac{\mu_0}{2U^{(m)}}} \vec{H}^{(m)}(\vec{r}) \qquad \vec{e}^{(m)}(\vec{r}) = \sqrt{\frac{\epsilon_0}{2U^{(m)}}} \vec{E}^{(m)}(\vec{r})$ we get the relations $\vec{\nabla} \times \vec{h}^{(m)} = \frac{\omega^{(m)}}{c} \vec{e}^{(m)} \qquad \vec{\nabla} \times \vec{e}^{(m)} = \frac{\omega^{(m)}}{c} \vec{h}^{(m)}$

A Circuit Model: Step 1 Eigenmodes: Example: Pillbox-Cavity

A Circuit Model: Step 1 Eigenmodes: Example: Single Cell TESLA Cavity

Accelerating mode:

 $f_0 = 1.3$ GHz für TESLA

Matthias Liepe; 03.

Circuit Model Step 2: Expansion in Eigenmodes

Each *time dependent field* in a cavity can be written as a *sum of the cavity eigenfunctions* with *time dependent amplitudes*:

Circuit Model: Step 3.1

Insert expansion of fields into Maxwell's equations in vacuum:

$$\vec{\nabla} \times \vec{H} = \varepsilon_0 \frac{\partial \vec{E}}{\partial t}$$

insert eigenmode-
expansion of fields... \Downarrow ...and the equations
from page 37

$$\sum_m \hat{H}^{(m)}(t) \frac{\omega^{(m)}}{c} \vec{e}^{(m)}(\vec{r}) = \sum_m \varepsilon_0 \frac{d\hat{E}^{(m)}(t)}{dt} \vec{e}^{(m)}(\vec{r})$$

use orthogonality of
eigenmodes: \Downarrow multiply by $e^{(m)}$ and
integrate over cavity
volume

$$\frac{\omega^{(m)}}{c} \hat{H}^{(m)}(t) - \varepsilon_0 \frac{d}{dt} \hat{E}^{(m)}(t) = 0 , m = 1, 2...$$

Circuit Model: Step 3.2

Insert expansion of fields into Maxwell's equations:

$$\vec{\nabla} \times \vec{E} = -\mu_0 \frac{\partial \vec{H}}{\partial t}$$

 \downarrow

insert eigenmodeexpansion of fields... ...and the equations from page 37

$$\sum_{m} \hat{E}^{(m)}(t) \frac{\omega^{(m)}}{c} \vec{h}^{(m)}(\vec{r}) = -\sum_{m} \mu_0 \frac{d\hat{H}^{(m)}(t)}{dt} \vec{h}^{(m)}(\vec{r})$$

use orthogonality of eigenmodes:

multiply by h^(m) and integrate over cavity volume

$$\frac{\omega^{(m)}}{c}\hat{E}^{(m)}(t) + \mu_0 \frac{d}{dt}\hat{H}^{(m)}(t) = 0 \quad , m = 1,2...$$

Circuit Model: Step 3.3 Differential Equation for the Eigenmode Amplitudes

Circuit Model: Step 4 Coupled Cells

TM010 modes in couples cells:

N coupled cells \Rightarrow N coupled oscillators

 \Rightarrow N coupled differential equations:

$$\frac{d^2}{dt^2}\hat{E}_n + \omega_n^2\hat{E}_n + \omega_n^2\frac{K}{2}(\hat{E}_n - \hat{E}_{n-1}) + \omega_n^2\frac{K}{2}(\hat{E}_n - \hat{E}_{n+1}) = 0 \quad , n = 1, 2..., N$$

 ω_n^2 -

substitute:

Matthias L

$\frac{d^2}{dt^2}\hat{E}_n + \omega_0^2\hat{E}_n + \omega_0^2\frac{K}{2}(\hat{E}_n - \hat{E}_{n-1}) + \omega_0^2\frac{K}{2}(\hat{E}_n - \hat{E}_{n+1}) = 0 , n = 1, 2, N$			
steady state ansa	ıtz		
$\begin{bmatrix} 1+k_{1,2} & -k_{1,2} \\ -k_{1,2} & 1+k_{1,2}+k_{2,3} & -k_{2,3} \\ & \ddots & \\ & & k_{N-2,N-1} & 1-k_{N-2,N-1} \end{bmatrix}$	$ \begin{bmatrix} A_1 \\ \vdots \\ A_N \end{bmatrix}^{(j)} = \left(\frac{\boldsymbol{\omega}^{(j)}}{\boldsymbol{\omega}_0} \right)^2 \begin{bmatrix} A_1 \\ \vdots \\ A_N \end{bmatrix}^{(j)} \\ \begin{bmatrix} k_1 \\ \vdots \\ A_N \end{bmatrix}^{(j)} $		
Eigenvector: TM_{010} cell amplitudes of a TM_{010} eigenmode of a multicell cavity.eigenvector #jeigenfrequency of mode #j			

TM010 Eigenmodes Example: 9-Cell Cavity (1)

TM010 Eigenmodes Example: 9-Cell Cavity (2)

to-cell phase advance

Circuit Model: Step 7 Add Losses and a Generator

Simulation Example: TM010 Eigenmode-Spectrum of a 9-Cell Cavity

Dispersion Relation

Mode Beating during Cavity Filling

Modeling of the transient state (mode beating)
 Example: 7-cells, k_{cc}=1.85%, Q_L=3.4 10⁶

