Short Pulses in Rings
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The time varying fields in a transverse mode cavity kick the front of a bunch

A betatron phase advance of mtlater, the bunch radiates in an undulator
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Short Pulses in Rings
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The time varying fields in a transverse mode cavity kick the front of a bunch
up, and the back of the bunch down.

A betatron phase advance of mtlater, the bunch radiates in an undulator
The vertical photon angles are correlated with the source point

A slit, selecting only a short range of vertical angles, selects photons from a
small range of source points along the bunch.

A second crab cavity, a betatron phase advance of 2p after the first, kicks the
tail up and the front down, compensating the vertical oscilations.

The bunch is typically about 100ps long, selecting 1ps reduces the intensity
to approximately 1%.
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Short Pulses in Rings
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Instead of a slit, one can use an x-ray
bunch compressor. It produces a time of flight
that depends on the vertical angle to eliminate
the correlation between vertical angle and

X-ray compression in

source point location. asymmetric-cut crystals

Realistically: transmits up to 5% of beam due to collimation and losses.
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HERA Tunnel
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Optics 2: Real Quadrupoles

lose-up of'the water cooling tubes
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The coils show that this is an

upright quadrupole not a rotated
or skew quadrupole.
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ETRA Tunnel
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< Main field o N ’
1 Fringe field 1

Only the fringe field region has terms with Gilﬂ Z0

Main fields in accelerator physics: ailﬂ =0
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W =XxX+ily , W =X-1y
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lteration equation: @, =0forA=1 , a,=¥,

The functions W, determine the complete field inside a magnet.
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Fringe Fields and Main Fields

Only the fringe field region has terms with 65(// Z0

Main fields in accelerator physics: oW =0
Y = |m{z W w'} Nice way to derive multipole fields
=1

Y(r,@)= er‘wv‘ Im{e""?*)}  Relation between radial power

v=l and azimuthal symmetry !
The index v describes C,, Symmetry @ @
around the z-axis €, .
due to a sign change after A¢ = — @ ®

g @@ V=3
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v=1: Dipoles

Crless &
~ ~ Equipotential
Y=¥,Im{x-iy} =-W Iy = B=-0Oy=W 3§, y =cons.
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C, Symmetry ?
+ (S,N)inB

Dipole magnets are used for steering the beams direction

@:qVXE = @:quD = p= d __vdt __p
at at dg¢ dp/p @B

Bending radius: 0 =——
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Multipoles in Accelerators v=2: Quadrupoles

W=V, Im{(x-iy)} =-W,2xy = B=-(y=W, 2(3']

C, Symmetry

ty

In a quadrupole particles are focused in one plane and defocused in the
other plane. Other modes of strong focusing are not possible.

Georg.Hoffstaetter@Cornell.edu Class Phys 488/688 Cornell University 04/21/2008



Nonlinear Optics - Sextupoles
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C; Symmetry
Sextupole fields hardly influence the
@ @ @ particles close to the center, where one

can linearize in x andy.
®» . ®
®

In linear approximation a by Ax shifted
sextupole has a quadrupole field.

. = Xy
B=-Uyg =4, 3( 5 2) When Ax depends on the energy, one can
X =Yy build an energy dependent quadrupole.
X+ AX+ X
- 2 K, =3V, = k, = k,Ax
B=W33£ , XyZ]+6LIJ3A><£y)+O(Ax2) & = k=k
X -y X
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&)} Second-Order Dispersion
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X'+(k, +4°)x=0 First order in x, X’

X"'+(k, + Kz)x = f, f (0)=kd  Firstorderinx, x, 3

D"d+KI[DJd=1f,(0) = D'+KID=«
D = j R+ BB sin@ —)ds
0

X"+ (K, +K2)X = f,+1, Second order in x, X, 6

f, = =K (0% =1 X2 =2kx0 + K*X*) + Kk X(J — 2kX) =1 k,X* = f,(X, X', D)

The energy dependent disperion: ~ D,"+K [D, = f,(D,D"])

AD =~ [, BB sin@ - @8
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