EXAMPLE 1
First-Order Dispersion

$$x''+(k_{1} + \kappa^{2})x = 0$$
First order in x, x'

$$x''+K \cdot x = f_{1}$$

$$f_{1}(\delta) = \kappa\delta$$
First order in x, x', δ

$$x''+K \cdot x = \kappa\delta + f_{2}(x, x', \delta)$$
Second order in x, x', δ

$$x_{\delta}(\delta) = D\delta + D_{2}\delta^{2} + O^{3}(\delta)$$
Trajectory of a particle that starts as designed, but has relative energy deviation δ .

$$(D''+K \cdot D)\delta + (D_{2}''+K \cdot D_{2})\delta^{2} = \kappa\delta + f_{2}(D, D', 1)\delta^{2}$$
First-order dispersion:

$$D''+K \cdot D = \kappa \implies D = \int_{0}^{s} \hat{\kappa}\sqrt{\beta}\hat{\beta}\sin(\psi - \hat{\psi})d\hat{s}$$

234
x''+(
$$k_1 + \kappa^2$$
) $x = 0$
x''+($k_1 + \kappa^2$) $x = 0$
a First order in x, x'
x''+ $K \cdot x = f_1$
*f*₁(δ) = $\kappa\delta$
b First order in x, x', δ
a *x*''+ $K \cdot x = \kappa\delta + f_2(x, x', \delta)$
b Second order in x, x', δ
x _{δ} (δ) = $D\delta + D_2\delta^2 + O^3(\delta)$
b Trajectory of a particle that starts as designed, but has relative energy deviation δ .
b *L* ($D''+K \cdot D$) $\delta + (D_2''+K \cdot D_2)\delta^2 = \kappa\delta + f_2(D, D', 1)\delta^2$
b First-order dispersion:
 $D_2''+K \cdot D_2 = f_2(D, D', 1) \Rightarrow D_2 = \int_0^s \hat{f}_2(\hat{D}, \hat{D}', 1)\sqrt{\beta\beta} \sin(\psi - \hat{\psi})d\hat{s}$

 $x''+K \cdot x = \kappa \delta + f_2(x, x', \delta)$ Second order in x, x', δ $f_2 = -\kappa(\delta^2 - \frac{1}{2}x'^2 - 2\kappa x \delta + \kappa^2 x^2) + k_1 x(\delta - 2\kappa x) - \frac{1}{2}k_2 x^2 = f_2(x, x', \delta)$ **Dominant parts:** $KD \le 10^{-3}$, $D' \le 10^{-1}$ $f_2(D, D', 1) \approx -\kappa + k_1 D \delta - \frac{1}{2} k_2 D^2$ First and second-order dispersion: $D = \int \hat{\kappa} \sqrt{\beta} \hat{\beta} \sin(\psi - \hat{\psi}) d\hat{s}$ $D_2 = \int \hat{f}_2(\hat{D}, \hat{D}', 1) \sqrt{\beta \hat{\beta}} \sin(\psi - \hat{\psi}) d\hat{s}$ In the first and last dipole of an achromat: $D_2 = -D$

In the first and last quadrupole:

In sextupoles:

 $D_2'' + 2k_1 D_2 \approx 0$ $\Delta D_2' \approx -\frac{1}{2}k_2 L_2 D^2$

$$\Delta \boldsymbol{\psi} = \Delta k l(\hat{s}) \hat{\boldsymbol{\beta}} \sin^2(\boldsymbol{\psi} - \hat{\boldsymbol{\psi}})$$

 ξ = energy dependence of betatron phase often called chromaticity

$$\upsilon(\delta) = \upsilon + \frac{\partial \upsilon}{\partial \delta} \delta + \dots$$
$$\xi = \frac{\partial \upsilon}{\partial \delta} \quad \text{with} \quad \upsilon = \frac{\psi}{2\pi}$$

Natural chromaticity ξ_0 = energy dependence of phase advance due to k1 only

$$f_{2} = -\kappa(\delta^{2} - \frac{1}{2}x'^{2} - 2\kappa x \delta + \kappa^{2}x^{2}) + k_{1}x(\delta - 2\kappa x) - \frac{1}{2}k_{2}x^{2} \approx k_{1}x\delta - k_{2}Dx\delta$$

$$\xi_{x0} = -\frac{1}{2\pi} \oint \beta_{x}(\hat{s})k_{1}(\hat{s})\sin^{2}(\psi - \hat{\psi})d\hat{s}$$

Particles with energy difference oscillate around the periodic dispersion leading to a quadrupole effect in sextupoles that also shifts the tune:

$$\xi_x = \frac{1}{2\pi} \oint \hat{\beta}_x (-k_1 + D_x k_2) \sin^2(\psi - \hat{\psi}) d\hat{s}$$

$$\frac{\Delta\beta}{\beta} = -\Delta k l(\hat{s})\hat{\beta}\sin 2(\psi - \hat{\psi})$$

$$\beta_x(\delta) = \beta_x + \frac{\partial \beta_x}{\partial \delta} \delta + \dots$$

The energy dependent part of the beta function is often called the chromatic beta beat.

$$f_2 = -\kappa(\delta^2 - \frac{1}{2}x'^2 - 2\kappa x\delta + \kappa^2 x^2) + k_1 x(\delta - 2\kappa x) - \frac{1}{2}k_2 x^2 \approx k_1 x\delta - k_2 D x\delta$$

Chromatic beta beat:

$$\frac{1}{\beta_x}\frac{\partial\beta_x}{\partial\delta} = \oint \hat{\beta}_x (k_1 - D_x k_2) \sin 2(\psi - \hat{\psi}) d\hat{s}$$

Georg.Hoffstaetter@Cornell.edu Class Phys 488/688 Cornell University 04/30/2008

Assembly of the injector accelerator

Georg.Hoffstaetter@Cornell.edu Class Phys 488/688 Cornell University 04/30/2008

Key: 1) injector, 2) north linac, 3)turn-around arc, 4) south linac, 5) south x-ray beamlines, 6) CESR turn-around, 7) north x-ray beamlines, 8) 1st beam dump, 9) 2nd beam dump and 10)distributed cryoplant. Tunnel cross-section of 12' ID shown on lower right.