July 30, 2000
Experiment X3

Be sure to read the notes “Exposure to Ionizing Radiation” before starting. Nick will check you out on
the use of the x-ray equipment prior to use. You are responsible for monitoring the radiation to make sure
you have proper shielding and for filling out the log each time you use the x-rays. If you have no previous
experience with x-rays, you might also read the notes for experiment X-1 for introductory references on
x-ray production, absorption and safe dose. Cullity and Warren(see references) also discuss some of the

basic material.

Transmission and Back-reflection Laue Photographs

1. Take a Laue transmission photograph of one of the alkali halide single crystals provided using 34 KV
molybdenum radiation, 10 ma and 4 cm crystal to film distance. With such a crystal, a principal
crystallographic axis is normal to a cleavage plane. Your photograph should be taken with the beam
aligned as close as possible to this axis (see remarks on alignment below). You will probably need to

take at least two photographs to get the alignment reasonably precise.

Plot the gnomonic projection of each photograph, using the D= 4 cm projection ruler provided *. Index
the spots (Miller indices), and use the short wave length limit, the intensity information and the missing
spots to estimate the upper and lower bounds on the lattice constant, assuming the crystal is cubic.
Show that the symmetry of the picture agrees with the assumption the crystal is in fact a cubic one .

From the missing spots, is the crystal fcc or bcc? What are the possible alkali halides?

2. Take a back-reflection Laue photograph of a silicon single crystal with a film to crystal distance of 3
cm. Use the Greninger chart provided and plot a stereographic projection of the principal reflections.
From this projection, find the orientation of the vertical (i.e. the line of the x-ray beam through the
specimen) and the unit triangle formed by the zones [001],[011],[111]. Identify the other principal zones,
and assign Miller indices to the principal spots. This can be done by using the table of angles between
crystallographic planes or by rotating the stereographic projection into the standard [100] chart provided
(see also Cullity). Finally, give the orientation of the crystal relative to its holder (assumed to be parallel

with the film). State your precision.

* See the notes for how to use the ruler
! Is there any other possibility? See reference 6
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Some perhaps useful notes on the X3 apparatus from a non-expert

In this experiment, both transmission [.aue and back-reflection Laue photographs are made. The trans-
mission photograph is made with the X-ray beam normal to the crystal face—a cleavage plane. To set
this up, you first align the crystal as well as possible by eye using the goniometer to make the adjustment.
Rotation about a vertical axis is usually aligned already, it is only the horizontal axis you need to worry
about. Take one exposure for 2 hours. If the crystal is perfectly aligned, the spots will be symmetrically
placed around the central beam spot. If it is misaligned, you have a projection onto a tilted plane. It is just
a matter of geometry to calculate the additional tilt needed to bring the crystal into alignment. You can
use the goniometer scale to make the necessary adjustment. Be sure you keep track of the sign as well as
the magnitude of the change, otherwise another picture will be required to correct your mistake. With care,

your second picture will show perfectly aligned spots in both directions.

Previously, a 4° misaligned crystal was also photographed. (See the L.G.P. notes) This is no longer

necessary. We found the old laser alignment difficult to use, and not really necessary, so have abandoned it.

The film cassette needs to be handled a bit carefully. The front is simply black paper to let X-radiation
through to the film set down against it and backed with a plate to hold it flat. Loading is done in the dark.
(Ask Nick for instructions about loading and developing. Be sure that the developer and fixer are fresh— we
have had trouble and wasted time in the past with outdated developer.) The lower edge of the cassette has a
groove in it which fits on a rail to position it 4 cm from the crystal. A little lever at the top edge swings down
into a slot to clamp it there. Exposure will be about two hours at 34 KV and 10 ma with the Mo tube. The
assembly sits on a three-legged aluminum stand which in turn is placed on a ‘11—” plywood sheet to get it high
enough. The X-ray beam comes out of the tube ports inclined downward by about 20° . The spring-loaded
shield is pulled down from the port opening and the snout on the front of the collimator is poked into the
aperture at the tube window. The three leveling screws in the base of the assembly enable one to make the
adjustment. (Again, ask Nick to help with this if necessary.) The back end of the base is practically down
on the aluminum support stand. In any event, collimation will be checked after the X-rays are turned on.
The main switch on the wall is thrown up; the line button is pressed, energizing the power supply rack. The
water circulating pump must be turned on before this is done. (Listen for the “click”.) Turn the voltage
control to zero, the current control switch to A(which will hold stable a current up to 10 ma; other positions
control higher levels) and press the high voltage button. Current should come to 10 ma. Then raise the
voltage with the Variac on up to its maximum value of 34 KV. It does not hurt to have the lead shields
disposed around the tube windows to intercept any leakage from the tube. Be sure the small lead shield is
also in place around the beam itself—this greatly reduces background radiation. To check collimation (the
photographic plate is not yet in place) a strip of fluorescent material on a stick is used. Behind the first
pin hole a bright spot should show on the strip. If alignment is correct, a spot will also be seen behind the

second pin hole; it may be necessary to swing the apparatus back and forth a bit on the table to maximize
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this second collimation. A much weakened spot should be visible behind the crystal. Turn off the voltage(it
is not a bad idea to turn down the control Variac as well), put the loaded cassette in position, turn the little
cup to intercept the direct transmitted beam and then proceed to energize the X-ray tube as before. At the
end of the two hour exposure, turn the little interceptor cup out of the beam for a few seconds to index the

position of the zero order diffraction in the exposure.

For the back reflection picture, the tube current control is turned to position B, where the current will
be held at 15 ma for the 34 KV, one hour exposure. The goniometer arrangement and plate positioning
are different than for the transmission pictures. The goniometer was built by Mr. Szabo and because of
some uncertainty at the time of construction, it was made for both a 30 mm and a 50 mm plate-to-crystal
distance, for each of which distances a Greninger net is available in the laboratory. We generally use the 30
mm net and distance but have not modified the apparatus to make the 50 mm distance unavailable. Just
be careful into which the plate holder is put. Two long screws, hand tightened only, are used with the 30

mm position, and two shorter thumb screws for the 50 mm spot. Use the long screws generally, therefore.

Since in back-reflection, the X-rays come through the film to the crystal and then are diffracted back
to the film, the film is perforated with a central hole to allow a collimator to be screwed in place after the
film is loaded. Again a black paper cover to thecassette, faces the crystal, the back side of the cassette being
metal to shield the film from direct radiation from the tube. To load the cassette, the collimator is first
unscrewed (threaded end projecting through the cassette away from the crystal) and removed. The several
thumb nuts around the rim removed and the aluminum frame and paper cover lifted off. Note two dowel
pins at the rim for positioning the frame onto the back. With lights out a film is dropped onto the back
centered within the feld seal on the edge. The cover is put on and thumb nuts screwed on. We now have
to punch a hole through the film for the collimator. A jig, properly doweled for accurate positioning is laid
across the front of the now sealed cassette and the assembly placed on the base of the bench hand press.
The jig carries a small punch which matches the central hole of the cassette. This is spring loaded to be in
the up position. Travel of no more than a quarter of an inch carries the punch through the film. Do not
lean on the press handle as though your life depended on it. It would be well to practice on an old
film with the lights on to see how it all goes. Take it easy, anyway. After the hole is punched the collimator
is put through the hole (threaded end away from the crystal again) and the securing nut screwed on to it.

You're now ready to mount things up at the X-ray tube window.

It will be noted that the goniometer and plate mount slides back and forth on the pedestal, collimator
end rising as it moves toward the X-ray tube. For ease in alignment and to reduce radiation at the sides,
the screwed end of the collimator is fitted with an extension tube which just slides nicely over the threaded
end. The long extension is used for the 30 mm plate to crystal distance and the short one for the 50 mm
distance. These extensions are in the plastic box on the base of the pedestal. Put on the proper extension,

slide the goniometer forward on the pedestal until it is at window height (spring loaded X-ray shield drawn
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down) and then move the whole business, pedestal et al, forward until the collimator extension fits inside
the recess at the window. Actually, before this is done it is easier if the plate is positioned and clamped first
in the proper slot (30 or 50 mm, 30 for most of our work here). The paper side of the cassette faces the
crystal. Along one edge of the back metal side of the cassette is a milled recess and two dimples. This edge
goes down and the two clamping screws fit into the dimples to hold the film cassette in place. Hand tighten
is enough. Now move the whole works with the collimator extension poking into the window recess. Now
take your picture. From symmetry, the Greninger net, and the readings on the divided circles, along with
a copy of Elizabeth A. Wood’s “Crystal Orientation Manual” ' you can turn the crystal so as to get what
orientation is sought. (Note that the clamped stem of the crystal mount has a circle divided in 60° intervals

clamped to the end of the stem where it protrudes from its clamp.)

Also be aware that X-ray film is sensitive on both sides(double coated) so you don’t have to worry
about which side is up in the cassette. Note also: On the developed film, X-ray shadows of four accurately
positioned aluminum pointers on the paper front of the cassette, will serve to locate the “center” of the

picture.

! This book was lost, so you will have to do without it, but I retained the reference to it here in the original
notes.



Using the Special Ruler for obtaining Miller Indices of a Laue Spot

The spot on the film can be converted directly to a graph from which Miller indices can be read off.
This is called a “gnomonic projection”. The mathematical equations are given in the body of these notes,
and in the appendix at the end. There is also an example in the notes. Here we discuss practical use of the
special ruler, which is a brass strip 1 1/4” wide by 35 1/2” long. About 3” from one end is a small “bump”
on the side with a hole which is used to center this point on the center of the film after the film has been
placed in the rectangular hole in the light box. Pivot the ruler on the center point until the edge intersects
the center of a spot on the x-ray film. Read as the number on the ruler scale (short side), which is a scale
from 1 to 5, with equally spaced markings. Let’s say you read 3.2. Now take a pencil, and find 3.2 on the
other, larger scale on the left side of the ruler. Make a mark on the drawing paper at this point. This is
proportional to ,ﬁ, Y= l,l times a scale factor on the paper. Call this scale factor “p”. You should mark off

a grid spaced by p.
The ruler assumes that the crystal to film distance D was 4 cm *

3.2 on the film scale corresponds to a distance of S=3.2 cm from the film center to the spot. Since D=4

cm , and the x-ray is deflected through an angle 26:

3.2
e 0.8

S
tan (26) = — ~
(26) = =
Knowing the tangent of twice 6, we can calculate the cotangent of §. The easiest way to do this is via

the trig relation

1+ +/1+ (tan26)?

ey ~ 2.85

cotf =

Why do we want to find the cotangent of theta? Because it gives the projection of the normal to the
scattering plane in the crystal, projected onto the film plane. In the example, the cotangent =2.85, and the
projection onto the film would be D times this. On the ruler, there is a scale factor “p”. We measure on
the left scale that 3.2 corresponds to 15.7 cm, approximately. This means that p is about 5.5 cm - not very
precise. Trying another point,we let S=5.0 cm. 5.0 on the right hand scale corresponds to 10.4 cm at on the

left scale. Solving for p, we get 5.00 cm.

So we can safely consider that the ruler converts S, read in the units of the right hand scale to a distance

p cot @, read at the corresponding number on the left hand scale. p = 5 cm.

The direction cosines of the normal are

This is marked on the bridge between the two halves of the ruler. Do not use the other ruler, marked D=5
cm. These rulers cannot be used with any other value of D except the one marked on the ruler.
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So the projection of this normal onto the paper, assuming the z axis is perpendicular to the paper is:

bk
Pl,Pl

which are just the coordinates of the point you plot on your paper. In this way, you can directly plot
the Miller indices. With careful plotting, you can identify most of your Laue spots this way with certain

definite reflecting plane normals.



Analysis of X-3 Data

Part I: Transmission Laue Photographs

We assume that you have a well-aligned crystal for this analysis. Alignment is critical for the trans-
mission photograph, and may not be good enough if you just read the scales on the goniometer— read the
section on alignment! If the crystal is aligned, you should observe a high degree of symmetry in the x-ray
picture. There should be symmetrical elliptical zones visible, as in the figure below. Try again if the picture
shows misalignment. (In the actual picture, the most intense spots are elliptical. Intensities are only roughly

estimated here. Some of the spots at the bottom were blocked by the crystal goniometer.)

Transmission Laue Picture
T

T T T T T T




Demystifying the Gnomonic Projection

A “gnomon” is “an object, such as the style of an sundial that projects a shadow used as an indicator”.
The word comes originally from the Greek root gnomon: one who knows, indicator, interpreter. This
transformation is used in cartography. Unlike the stereographic projection used for the Wulff net (see
Cullity, Chapter 2), the gnomonic transformation does not preserve angles. But it does turn ellipses into

straight lines, and render the reciprocal lattice directly from the Laue diffraction pattern.

The Laue formula for diffraction is:

§=35 + AB (1)

§is a unit vector along the direction of the scattered beam, §; a unit vector along the incident beam

~direction, A the x-ray wavelength, and B = (2, % L) is the reciprocal lattice vector, in this case for a cubic

a’a’a

crystal of lattice constant a. h,k,! are three integers which define the normal to a plane of atoms in the

lattice.
Squaring both sides, and solving for the wavelength, we obtain the formula:
25, - B

A= ————
B-B

Formulas (1,2) are equivalent to the Bragg formula:

2sin Opp; iy 1

= — 9
A dhki 3)

f is % the x-ray scattering angle. dp; is the distance between planes with the same hkl normal. For a

cubic crystal,

a

dpr = —m—— 4
ks h2 + k21 12 (4)

For a “centered” crystal, it can be shown that h4+k must be an even number.

The Bragg formula, (3), is not as useful as (1,2) for the Laue experiment, because the scattering does
not take place in a single plane, and there is not a single wavelength, but a range of wavelengths above a

minimum wavelength determined by the voltage on the x-ray tube.

12.398
A Amin = T (5)
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The units of wavelength in (5) are angstroms: A (1 A = 10~® cm). The units of voltage V are kilovolts
(KV).

The figure below, on the left, shows the geometry of an x-ray reflection from a crystal plane, making a

spot on the film. The x-ray beam is deviated by an angle 26. From the drawing, it is evident that
D
tan20 = —
an 5

The drawing on the right shows a geometrical construction which enables us to obtain cot §. An arc of radius
L is swung to the left until the radius is parallel to the section of length D- parallel to the undeviated x-ray
beam. By comparing right triangles, the angle at the upper left is seen to be 90 — 8 degrees, so the angle on

the right with the pointer label is 8. From this it is straightforward to see that

S5
cotf = ——
L—-D
90-9
o
S
film L-D
L 1 T i =
S
D L

crystal

crystal plane

All of the “magical” properties of the gnomonic projection follow from these geometric relationships.

The student should check the formulas in the column on the right below. Of course, we have only proved
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the usefulness of the gnomonic projection for cubic crystals with an x-ray beam perfectly aligned with one

of the crystal axes.

Table 1
hkl 312 hkl
h? + k2 + 12 14 h?+ k2412
A 2 2l
a 7 _h2+k2+l2
§=5+AB (0,0,1) — (3,1,2)2 = (-¢,-2, %) 5:%(—11,—&11%“@‘2 —-1?)
distance crystal to film 4 cm D ks
distance crystal to diffracted spot 2—3§ cm L= %D
x position of spot z;=-2L=-8cm ;= Té_—&%FT)D
y position of spot Y1 = —%L = —% cm = p—_(%é—’;mD
S = +/z? + y}=distance spot from center 82+ (£)2=%/10 cm St= %T——r 'kh:flk;D
Jh2 2
tan2f = 2 £V/10 %;41%
cotd = 7p . Sign[h? + k? — 1?]EHES
cos (m+¢) = % 75 T
anir+6)= -4 f g
zGg = pcotfcos (7 + @) %p p%Sign[h2 + k% -1
ye = pcotfsin (7 + @) ip pﬁSz’gn[h2 + k% - 1%
(22,12 1) (2,4,1) (f, 1)

Reducing the fractions in the second column in the last row to whole numbers by multiplying through
by 2, we establish that the hkl=312. (There is no difference between this and -3,-1, and -2, since they both

define the same normal to a definite plane in the crystal.)

Notice that the gnomonic projection gives us the last three lines in Table I directly from the measure-
ments on the paper construction, hence we can determine hkl for a particular spot. From this result, we

deduce that

From what we know about tube voltage and the resultant cutoff on the x-ray spectrum, we can then deduce
a lower limit on the lattice constant. If we examine more Laue diffraction spots, we can sharpen the limit

on the lattice constant.

11




12
The gnomonic projection constructs the projected points g, yg from the points z;,y; by the rules
z1 = Dtan 20 cos ¢
y1 = Dtan20sin¢
zG = pcotfcos (7 + @)
Yy = pcotésinm + @)

The proof that we can deduce the reciprocal lattice point for an arbitrary hkl is shown in the table above,

at least for an x-ray beam down the z axis.

It would be a good idea to work through some of the numbers in the Table I, in order to get a better

feeling for the theory.

Example Of Transmission Laue Spots

The figure below shows the simulation of an elliptical collection of spots of varying intensity on the
film. The hollow circle, labelled “-1-1-2” does not actually represent anything visible on the film, but is the
projection of the “zone”, a direction which lies in all of the planes represented by the visible hkl, and is
therefore normal to them. If you choose such a direction in the lattice, all of the atoms will lie on a line
ma(u, v, w), with m,u,v,w integers and a the lattice constant. ( The direction is equivalent to 112.) Any
plane containing the zone can diffract the x-ray beam, so the diffracted beams consist of circular cone of
beams, one beam whenever hkl satisfies the condition of normality (hu+kv+{w = 0) and the Laue conditions
for diffraction—in this case, whenever a wavelength exists to satisfy (1,2). If the film plane intersects this
cone at an angle less than 45 degrees, an elliptical pattern of spots is generated, with the center of the film
being on the ellipse. Think of a plane through a line (the zone). Rotate this plane around the line and

record a spot whenever diffraction is possible.

Of course the film actually produced in this experiment will have a more complicated pattern of spots,
since there are many zones and therefore many ellipses (and straight lines and hyperbolae, depending on the
angle of the zone direction from the film). Most zones will contribute only a few spots, however. Analysis

should concentrate on the most intense spots.
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fcc or becec cubic crystal, lattice constant 3.3 angstroms
Mo spectrum, triangle approximation, 35.

.
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The gnomonic projection of this set of spots appears below.

13
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GNOMONIC PROJECTION y
fcc or bcc cubic crystal, lattice constant 3.3 angstroms

Mo spectrum, triangle approximation, 35. KV

The spacing of the grid p is arbitrary. We see a point in the upper left side of the pattern at zg =
—3,yc = 1. This must correspond to hkl= 311, which is normal to 112, as it must be. In the lower right side
of the graph a point appears at zg = 1, yg = —3. For this point, hkl = 131. The wavelength for diffraction
1s, assuming the crystal is cubic

2a
A= — /\mz'n
0

Therefore, a > 5Amin = 1.75 A.

To see if we can get a better limit on the lattice constant, we look at some other points. The more
intense points are apt to diffract with the most common wavelength in the spectrum, i.e. the shortest. Take

the pair of points g = —2.5, yg = 0.5 and zg = 0.5, yg = —2.5. This gives hkl = 512 and 152 respectively.
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In both cases
4da

A:%

So

15
_)‘min
a> 2

For 35 KV, using (5) above, Apnin = 0.354 A. Hence the limit we obtain from these points is a > 2.66 A.

Less intense points will not give a better limit, since fewer harmonics are present in the spectrum.

15
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16
Gnomonic Projection Of Transmission Photograph

We can apply a gnomonic projection to the real data presented in the figure on page 1. From the picture,
with a bit of allowance for residual effects of misalignment, we can classify the lines by hkl and intensity .

Some lines were shadowed by the crystal mount or goniometer.

GNOMONIC PROJECTION OF DATA ON PAGE 1

° °
(o] D G o
- P N =N o
D) W
° °
B
3 O (:}b o7 —*° .
D g
O D
i \_/ \V
D q
o f-\n nf\ e o
N AN %
- I ») /?\o
o o) f\nf\n p
T -

s
ol
—O

! Based on subjective guesses.
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Table II: Results of Gnomonic Projection

it

Intensity

Miller Indices

Comments

Very Strong

Strong

Medium
Weak

121,211,201, 211,121,021, 121,211, 201, 211, 121
221,412,412,221, 142, 121,221,412, 412,221,
311,301,311, 311,301, 311, 131,031, 131
231, 231,321,231, 321, 321, 331, 331, 3, 331
511,5,11,511,51,1,151,151,1,51, 151
332,332, 332,332

021 in shadow

So we have the sets {201}, {121} for the strongest reflections and {122}, {013}, {113}, {124} for the next
strongest. “Medium” includes {223},{133},{123}. Weak reflections include {115} and {233}. The very

lowest orders: {001}, {111} are not visible on the film. They would be at large distances from the center.

The perfect four-fold symmetry suggests that the crystal is cubic, with a £ ratio of one. Assuming that

1s true, we can use (2) to solve for the ratio of x-ray wavelength to lattice constant a:

A
a h24+Ek2412

From the list of observed (and absent) reflections above in Table II, we can construct Table III below.

Remember that all harmonics of the x-ray which are allowed, down to the shortest wavelength present here,

0.354 A. The more harmonics, the stronger the reflection.

17



18

Table III: Ratios Of Wavelength To Lattice Constant

Generic Miller Index Observed Example % Comment
012 \ 201 2/5=0.4 very strong
112 : 211 1/3 = 0.33 n
122 221 2/9 = 0.22 strong
013 301 1/5 =0.2 7
13 " 311 2/11 = 0.19 .

124 ANV 412 4/21 = 0.19 *
123 321 1/7 = 0.14 medium
223 322 4/17 = 0.24 v
133 331 2/19 = 0.11 "
15 4~ { 151 2/27 = 0.07 weak
(3D x MW s 2/11 = 0.18 g
<y (411) 1/9= 11 not seen
(421) 2/21 = .095 .
(521) 1/15 = .067 s
134 (431) 1/13 = .077 »

In the table above, the reflections are grouped according to decreasing order of (subjective) intensity. A
very strong line implies that many harmonics are possible, while a weak line implies that the lowest harmonic
is already close to the minimum wavelength.

With only two exceptions, 233 and 223, our subjective assignment of intensities follows the decreasing

354

order of 2 exactly. If the lattice constant had been smaller than 354 — 4.8 A, the {151} lines and three

others like it would not have been seen. We need to have a < 2m3= 50 A0z > 1.9 A, which is reasonable.
0.4

Other lines do not shed much light on the maximum value of the lattice constant. We can get a rough
estimate from the rapid decrease in intensity going from the “very strong” group to the “strong” group. This
means that, for example, 0.2a < .354 4, s0 a < 1.8 A This contradicts our limit of 4.8 A, so a selection rule

for the structure factor could be instead the reason for the decrease in _i_ntensityf

The lines not seen also could be due to the structure factor, so it is hard to get an upper limit on
the lattice constant. If we assume the 521 line was excluded by the minimum wavelength cutoff, we get an

estimate amqr < fg% =53 A.
More about the crystal could perhaps be learned from the relative intensities, including the absence of
some lines with otherwise observable % ratios, like 411.

One word of warning: all of Table III was based on the assumption that the crystal is a cubic lattice.
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All bets are off if it is not, since the ratio % will depend on the £ ratio. We assume that four-fold symmetry

means the lattice is cubic.

Part II: Back Reflection Photograph

Analysis Of Back Reflection X-ray Data

In this experiment, you observe the back reflected x-rays from a silicon crystal placed 3 cm from the
film. The goal is to identify the hkl values for the most intense spots on the film, and find out the crystal
orientation. This method is commonly used in the Snee Hall X-ray Diffraction Facility to orient crystals

precisely.

There are two references, at least one of which must be read before this part of the experiment can be
understood and analyzed. The best reference is the book by B.D. Cullity, “Elements of X-ray Diffraction”.
Another discussion of back reflection Laue photographs appears in B.E. Warren’s book X-ray Diffraction,

pages 77-83. We will keep the discussion brief here 1.

Chapter 8 in Cullity’s book has the key information. This part is reprinted in the Physics 410-510 X-3
writeup. (The first edition was in 1956 and the second in 1978, but little change occurred in the part of
interest here.) The key figures to study and understand are figures 8-1 and 8-2. In figure 8-1, imagine a
family of crystal planes all of which are orthogonal to a line of atoms in the crystal. The line of atoms is called
a “zone axis” (abbr. “Z.A.”). Zone axes are denoted by square brackets. For example, the line of atoms
along the z axis is [001], along the x axis is [100], etc. In general, each such zone axis is uniquely described
by a set of integers u,v,w: [uvw]. Crystal planes described by Miller indices (hk!) which are orthogonal must
obey the relation hu + kv 4 lw = 0. In figure 8-1, the lines with arrows are the reflections by these planes.
The reflections describe a space cone, and the projection on the film is a hyperbola of spots, each of which
satifies the Laue conditions for reflection. So what you observe on the film are collections (“zones”) of spots
which form one branch of a hyperbola. Usually, between 6-10 such hyperbolae can be traced out from the

film.

Consider the diagram below (taken from Warren’s book, page 79):

! These books are available in the P410/510 Library.
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Shown on film is the Greninger chart

O sO

south Q\\)j\

H is the bisector of the angle between
S and the origin. It is equal to half
AB

Fig 6.7, page 79 in book by B.E.Warren

The Greninger chart simply gives a way to get the spherical polar coordinates of AB (normal to the
reflecting plane from the xy position of the back-reflected spot S on the film. The angle y(z, y) is “longitude”
or azimuth and the angle é(z, y) is the “latitude” or 90° minus the polar angle in spherical polar coordinates.
The geometry of these angles is illustrated in Cullity’s figure 8-2. By rotating the film against the Greninger
chart (see page 78, Warren), you can get the spatial angle between the reciprocal lattice vectors of any two
spots on the film. Warren advises using the three most intense spots (these will be the lowest hkl vectors),
obtaining the angles between them, and then making the identification using the table for crystal with the
diamond structure, which we have reproduced below. This method may not work well, however, so it is
probably more useful to proceed more methodically (unless you are lucky with the 3 spot method). 7,4 are
measured as accurately as possible, within 0.5°. These values, for each reflection point, are to be plotted
on a stereographic projection (Wulff chart). Xerox copies of Wulff charts are available for this. Accuracy is
essential here. In the general case, all points on a specific zone will give a great circle on the Wulff chart.
(Read up on stereographic projections in Chapter 2 of Cullity.) Then, rotate the transparent Wulff chart
until the points line up on a line of constant 5. If they can’t be made to do this by a simple rotation of the

Waulff chart, they do not belong on a great circle, hence not to the same zone. Trace all the great circles and
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mark out the point which would be the “North Pole” if the great circle were rotated to lie on the equator
(on a 3D sphere). You can use the rotated Wulff chart, along the line § = 0 to find the unique point 90°
away from zone points, i.e. with a latitude vz 4 = v + 90°. This is the zone axis. Finally, measure the
angles between a point common to two zones and the zone axes to find a 90° spherical triangle (in 3D on

the sphere, this is the projection of it.) In one measurement, we found two such triangles.

Now refer to the standard (001) projection of a cubic crystal (figure 2-37 in Cullity or available in
transparent form in the lab. From this you can identify candidates for the 001 point and hence determine
the misalignment of the crystal. After doing this, you can determine the Miller indices of most of the spots

in your picture, by looking at the angles.

All this can be done manually, as was intended before computers were available, or in the computer.
Either way leads to satisfactory results. See the Appendix I for the formulas for the various transformations

you will need if you write a program.

Selection Rules on hkl for silicon

Silicon has the diamond structure—two interpenetrating face-centered cubic lattices. This is discussed in

“Sold State Physics”, by N. Ashcroft and N.D. Mermin, page 79. The selection rules ' are: (n;nsns = hkl):

Crystal Type Selection Rule
face-centered cubic h k.l either all even or all odd
diamond ” plus either h+k+l=odd or else 4 n,n=integer

The table of angles for allowed hkl requires an explanation. (001) is forbidden for an fcc lattice, (002)
is allowed for fcc (all even), but forbidden for the diamond structure, which is silicon. However, (004) is
allowed, provided that the necessary wavelength is present in the continous spectrum of the Laue experiment.
The program which calculated the angles in the page below considers the selection rules, but divides out the

greatest common multiple of the hkl. So (004) becomes (001) and is listed as such.

Also, if we mean the family of all Miller indices equivalent by symmetry to, say (111), we write {111}.
This would be the set of planes with Miller indices (111),(111),(111),(111). (I11) is exactly the same

direction as (111),s0 we dont consider this as separate.)

This explains why the table below says that the (111) normals can make angles of 0°,70.5° with each
other. The unit vectors of two members of this group are -(1—;}-:;—1), ﬁ%l The cosine of the space angle

between them is given by the scalar product of the two unit vectors:

Il
¢ = -
COos 3

! See Ashcroft and Mermin, page 106.
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From a table of arc-cosines, we can see that & = 1.23096 radians i.e. $ = 70.529°.

The reduction of the order by division out of the greatest common divisor in the hkl makes looking
up things rather difficult in the table. We found it easiest to ignore the common factor and treat (400) as
if it were (100), keeping in mind that only the (400) (and higher multiples of it) can actually occur in the

photograph.

22



Possible Angles Between Planar Normals For Diamond Lattice

23

“533 " indicates the angles between all members of the {533} group and all members of the groups

listed with colons below it. For example, the possible angles between a 533-type plane and a 111-type plane

are 14.4°,63.9°,84.9°. Angles greater than 90° are not listed.

131

111: 0. 70.5
110: 35.3 90.
100 : 54.7
JRpE=

110: 0. 60. 90.
100 : 45. 90.

311 =

111: 129.57(58.5) 80.
110 : 315 64890
311: 0. ¢35.1°50.5 63. 84.8
100: 252 725
211: 10. 424 QOj 75.7  90.

f ] [
111: 22. 48.5 824

110: 13.3 49.5 71.1 90.

311: 25.9 405 51.5 (61, 69.8 78.
331: 0. 265 37.9 BT 80.9 8.

100: 465 76.7
211: 205 415/ 68. 79.2

100——
100: 0. 90.

Ml o~
111: 195 61.9) 90.

110: 30. 54.7 73.2 90.
100: 353 65.9

211: 0. 336 48.2 60. 70.5 80.4
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511

111:
110 ¢
SR
331 :
100 :
200
HIlMES

38.9
35.3
9.45
33.

15.8
19.5

5931

LIk
110 :
311 :
33l
100 :
511 :
531 :

7

145 (30
142

/

56.3
-
29.5

dl.4

78.9
38.2
22.2

46.9
449

26.9

323 59.5

19.4
0.

533 ——

k]S
R0
3T
331k
100 :
2010015
HYRDE:
531 :
5335

14.4
30.4

15.1

28.6
19.5

63.9
49.7
38.6
36.4

42.8
31.7
249

9.4

N, V.

84.4
76.2
48.5
48.8

204

46.9
34.

90.
59.6
62.9

60.1
56.1
41.6
60.8

61.9) (7% 1.
)

55.9
54.4

15)
51.8
44.4

65.6
71.6

75.6
60.1
45.9
77.9

Possible Angles (continued)

87.9

75.2
64.8
34.1
65.
48.9

71.2
79.9

82.8
67.6
60.7
80.6

86.7

81.2 87.1

69.6 74.2 78.8 87.8

464 56.5 65.5 T74. 82.1
69. 73. 76.8 84.4

57.1 60.9 64.6 68.2 75.1

87.4
84.

781
70.4 73.5 85.6 88.5
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Summary Of Steps In Back Reflection Analysis

Trace film spots on tracing paper. Sketch possible hyperbolae on this paper and number the points.

Follow the instructions in Cullity for maintaining the orientation of the film using the cut corner.

Using the Greninger chart, find 4, § for each point. Both angles can range from —7 up to 5. If you are
using the computer, digitize the x,y points, transform to Cullity’s xy coordinates, and compute 7, d for

the planar normals from the formulas in the appendix.

Plot these points on the Wulff chart. Label with the numbers and trace possible great circles, which
you check by superimposing a rotated transparent Wulff chart. (This can be done in the computer too,

if you wish, but it would take too long to describe the procedure here. Ask your instructor.)

Find the corresponding zone axes. It is traditional to mark these with open circles, and label them with

letters: “A”,“B”, etc.

. Find at least one spherical right triangle (three 90° angles) which contains two zone axes and one pole

(planar normal).

Try out the hypothesis that the pole is (001). (We are saying that we do know the silicon crystal is
aligned not too far from that axis.) If that is not confirmed by consistency of angles between other

points and the 001 point, find another spherical right triangle. If necessary, add more points.

. After confirming which point is the 001 point, try to identify hkl for as many points as you can, using

the standard projection(001) chart as your guide.
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Appendix I
Mathematical Formulas For Transformations

Greninger Chart (X,Y,D in centimeters)

=13
S=vX24+Y2
L=+/5%+D2
L-D
_ =
f = tan [—S ]

sind = — (%) sin 8

4 =tan~! (tanv)

§ =sin~! (siné)
Spherical Polar Coordinates For Unit Sphere

To agree with Cullity, the coordinate system is unusual: +z is horizontal, to the right, +y is vertical on
paper, +z is out of paper.
s
epolar = 5 - 4
z = cos Byolar
y=sinvy sinbpolar

z =cosv sinfpolar

Stereographic Projection Onto Wulff Chart From «v,J

Xw refers to the horizontal direction on the plane of the Wulff chart, Yj to the vertical direction.

Varying 7,4 over the allowed region from —7 to 7 gives a stereographic projection of the hemisphere

corresponding to positive x in spherical polar coordinates. The sphere has unit radius.

sin §
Xy = —/—/—
B /14 cosé cos v
e cos é sin 7y

/14 cosdcosy

Notice that the formulas are not symmetric in v,d. This is correct.
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