: 1o what might happen—even though the really honest way to study this subject
ould be to learn quantum mechanics first and then to understand the magnelism
| terms of guantum mechanics.
the other hand, we don't want to wait until we learn quantum mechanics
& wt to understand a simple thing like diamagnetism. We will have to
1 the classical mechanics as kind of half showing what happens, realizing.
owever, that the arguments are really not correct. We therefore make a series of
eorems about classical magnetism that will confuse you because they will prove
ilferent things. Except for the last theorem, every oné of them will be wrong.
‘urthermaore, they will all be wrong as a description of the physical world, because
wanlum mechanics is Jefl oul.

34-2 Muapnetic momenis and angular mnm%

The first theorem we want to prove from classical mechanics is the fallowing:
[ an electron is moving in a circular orbit (for example, revolving around a nucleas
wnder the influence of a central force), there is a definite ratio between the magaetic
noment and the angular momentum. Let’s call J the angular momentum and
. the magnetic moment of the eleetron in the orbit, The magnitude of the angular
pomentum s the mass of the clectran times the velagity times the radios. (Sce
7ig. 34-2.) It is directed perpendicular 1o the plane of the orbit.

J = mur. 34.1)

“This is, of course, a nonrelativistic formula, but it it 3 good approximation lor
\toms, because for the electrons involved b/c is generally of the order of efhe =
1 /137, or about 1 percent.)

The magnetic moment of the same orbit is the current times the area. (See
Sect* =« 14-5.) The current is the charge per unit time which passes any point on
the t, namely, the charge g times the frequency of rotation. The frequency is the
v ty divided by the ciccumference of the orhit; so

The area is wr°, so the magnetic moment is

= 'i;', (34.2)

It is also directed perpendicular to the plane of the orbil. So Jand u are in the
same direction:

o %ﬂ 7 (orbit), (34.3)

Their ratio depends neither on the velocity nor on the radius. For any particle
moving in a circular orbit the magnetic moment is equal to g/2m times the angular
momentumi. For an electron, the charge is negative—we can call it —g.; 50 for
an electron

G :
o 3 J (electron orbit). [34.4)

That's what we would expect classically and, mirnculously enough, it is also
true quantum-mechanically. 1ts one of these things. However, il you keep gaing
with the classical physics, you find other places where it gives the wrong answers,
a* 'jlisa great game to try to- remember wiiich things are right and which things
«  wong. We might as well give you immediately what is true in general in
[ i mechanics. Fiest, Eq. (34.4) is true [or arhiral potion, but thet’s not the

magnelism thit exists, The eleciron also has a spin rotalion about ils own
w  (something like the earth rotating on its axis), sand as a result of that spin it
has both an angular momentum and a magnetic moment. Bul for reasons that are
purely quantum-mechanical—there is no classical explanation—the fatio of u
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Fig. 34-2, For any circular orbil the
magnefic moment p is gf2m fimes the
angular momentem J.
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to J for the electron spin is {wice as large as it is for orbital motion of the spinning
electron:
" - _%; I {electron spin). (34.5)

In any atom there are, Egngr;'[l-_.r speaking, several electrons and some combina-
tion of spin and orbit rotations which builds up a total angular momentum and a
total magnetic moment. Although there is no classical reason why it should be so,
it is always true in quantem mechanics that {Tor an isolated atom) the direction of
the magnetic moment is cractly opposite Lo the direction of the angular momenium.
The ratio of the two is not necessarily either —g,./m or —g,/2m, but somewhere in
between, because there is a mixture of the contributions from the orbits and the
spins. We can write

o (;_m} 4, (34.6)

where p is a factor which is characteristic of the statc of the atom. 1t would be |
for a pure orbital moment, or 2 for a pure spin moment, or seme other number
in between for a complicated system like an atom. This formula does nol, of course,
tell us very much. 1t says that the magnetic moment is paralfel to the angular mo-
mentum, but can have any magnitude. The form of Eq. (34.6) is convenicat, how-
ever, because g—called the “Landé g-factor™—is a dimensionless constant whose
magnitude is of the order of one. It is one of the jobs of quantum mechanics to
predict the g-factor for any particular alomic state.

You might also be interested in what happens in nuclei. In nucler there are
protons and neutrons which may move around in some kind of orbit and at the
same time, like an electron, have an intrinsic spin. Again the magnelic moment
is paraflel to the angular momentum. Only now the order of magnitude of the
ratio of the two is what youn would expect for a profan going around in a circle,
with i in Eq. (34.3) equal to the proton mass. Therelore il is usual to wrile for
nuclei

w=g(5e) (34.7)

where my,, is the mass of the proton, and g—called the nuclear g-factor—is a number
necar one, to be determined for each nucleus.

Another important difference lor a nucleus 15 that the gpin magnelis moment
of the proton doss not have a g-factor of 2, as the clectron docs. For o prolon,
g = (2.79). Surprisingly enough, the newfron also has & spin magnetic moment,
and its magnetic moment relative to its angular momentum is 2(—1.93). The
neutron, in other words, is not exactly “neutral™ in the magnetic sense. I is hike
a little magnet, and it has the kind of magnetic moment thal a rotating negalive
charge would have.

343 The precession of alomic magnets

One of the consequences of having the magnetic moment proportional to the
apgular momentum is that an atomic magnet placed in a magnetic ficld will precess
First we will argue clussically, Suppose that we have the magnetic moment »
suspended freely in a uniform magnetic field. It will feel a torque », equal &
X B, which tries to bring it in line with the feld direction. But the atomis
magnet is a gyroscope—it has the angular momentum J. Therefore the torgu
due 1o the magnetic field will not cause the magnet to line up. Instead, the magne
will precess, as we saw when we analyzed o gyroscope in Chapter 20 of Volume |
The angular momentum—and with it the magnetic moment—precesses aboul as
axis parallel 1o the mapnetic field. We can find the rate of precession by the sam
method we used in Chapter 20 of the first volume.

Suppose that in-a small time Af the angular momentum changes from Jio J'
as drawn in Fig. 34-1, staying always at the same angle # with respect (o the direc
tion of the mapnetic field B. Let's call w, the angular velocity of the precessior
go that in the time As the angle of precession is w, &f. From the geometry of th
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figure, we see that the change of apgular momentum in the time Af is
AJ = (Jsin B)(w, Al).
. ihe rate of change of the angular momentum is
%—-: = pd 5inf, (34.8)

which must be equal to the torque:

v o= ulsin b (34.9)
The angular velocity of precession is then
W, = _’TI B. (34.10)

Substituting p/f from Eq. (34.6), we see that for an atomic system
delf

(34.11)

Wy = Ezm

the precession [requency is proportional to B. It js handy to remember that
for 2o atom (o electron)

= :;-'-]]—: = (1.4 megacycles/gauss)g B, 04.12)
and that for a nucleus
fp = ;’—; = (076 kilocycles/gauss)g B. (34.13)

The [ormulas for atoms and nuckei are different only because of the: different
sentions for g for the two cases.)
Accordinge ta the classical theory, then, the electron orbits—and spins—in
atom should precess in a magoetic feld. Ts it also true quantum-mechanically?
It is essentially true, but the meaning of the *'precession” 15 different. In quantum
mechanics one cannot talk about the direction of the angular momentum in the
same sense as one docs classically; nevertheless, there is a very close analogy—so
close that we continue to call it “precession.” We will discuss it later when we talk
about the quantum-mechanical point of view,

&

34 Dinmagnetism

Mext we want to look at diamagnetism from the classical point of view. It
can be worked out in several ways, bul one of the nice ways 75 the following.
Suppose that we slowly turn on a magnetic field in the vicinity of an alom. As
the magnetic ficld changes an eleciric field is generated by magnetic induction.
From Faraday's law, the line integral of E sround mny closed path is the rate of
change of the magnetic Nux through the path. Suppose we pick a path I' which is
& circle of radius r concentric with the center of the atom, as shown in Fig. 34-4.
The averass tangential electric field £ sround this path is given by

Elxr = —% (Brr®),

and there is a circulating electric field whose strength is

r di}
) Em —255.
The induced electric ficld acting on an eléctron in the atom produces a torque
aal to —g,Er, which must equal the rate of change of the angular momentum

dld:
dl g0 di
R S (34.14)

&7

Fig. 34-3. An ohject with ongular
momentum J ond o porollel mognefic
moment p ploced in o magnetic fizld B
precesses with the angulor velocity w,.

Flg. 34-4, The induced cledlre
forces on the electrons in an alom.




Integrating with respect to time from zero field, we find that the change in angular
momentum due to turning on the field is

AF = 1'%': B. (34.15)

This is the extra angular momentum from the twist given to the electrons as the
field is turned on. '

This added angular momentum makes an extra magnetic moment which,
because it is an orbital motion, 15 just —q./2m times the angular momentum. The
induced diamagnetic moment 15

s i
b = — e AT = "EE B (34.16)
The minus sign {as you can sec is right by using Lenz's law) means that the added
mament is opposite 1o the magnetic field.

We would like to write Eq. (34.16) a little differently. The r* which appears
is the radius from an axis through the atom parallel to B, so il Bis along the z-direc-
tion, itis x* 4 y*. Il we consider spherically symmetric atoms (ar average over
atoms with their natural axes in all directions) the average of x¥ 4 y?is 2/3 of
the average of the square of the true radial distance from the ceater poinf of the
atom. 1t is therefore ususlly more convenicot 10 write Eq. (34.16) as

PRERE N (@4.17)

In any case, we have found an induced atomic moment proportional to the
magnetic field £and opposingit. This is diamagnetism of matter. Itis this magnetic
cffect that is responsible for the small force on a picee of bismuth in 2 nonuniform
magnetic field. (You could compule the force by working out the energy af the
induced moments in the field and seeing how the energy changes as the material
i< moved into or out of the high-field region.)

We are still left with the problem: What is the mean square radius, {r* Ju?
Classical mechanics cannot supply an answer. We must go back and start over
with quantum mechanics. In an atom we cannot really say where an electron is,
but only know the probability that it will be at some place. 17 we interprel (e T
to mean the average of the square of the distance from the center for the probability
distribution, the diamagnetic moment given by guantum mechanics is just the
same as formula (34.17), This equation, of course, is the moment for one electran.
The total moment is given by the sum over all the electrons in the atoni. The
surprising thing is that the classical arpument and quantum mechanics give the
same answer, although, as we shall sec, the classical arpument that gives Eq. (34.17)
is not really valid in classical mechanics.

The same diamagnefic effect occuts even when an atom already has a perma-
nent moment. Then the system will precess in the magnetic ficld. As the whole
atom precesses, it takes up an additional small angular velocity, and that slow
terning gives 4 small corrent which represents a correction Lo the magnetic moment.
This is just the diamagnetic effect represented in another way. But we don’t
really have to worry about that when we talk about paramagnetism. I the dia-
magnoetic effect is first computed, as we have done here, we don't have Lo worry
ahout the fact that there is an extra litle current frum the precession. That has
already been included in the dizmagnetic lerm.

M-5 Larmor's theorem

We can already conclude something from our results so far. First of all, in
the classical theory the moment g was always proportional ta J, with a given con-
stant of proportionality for a particular atom. There wasn't any spin ol the
clectrons, and the constant of proportionality was always —g./2m; thol is to say,
in Eq. {34.6) we should set g = 1. The ratio of ju to J was independent of the in-
ternal motion of the electrons. Thus, according to the classical theory, all systems

Ji=f |'::;| g‘



of electrons would precess with the same angular velocity. (This is et true in
quaatum mechanics.} This result is related to a theorem in classical mechanics
that we would now like to prove. Suppose we have a group of clectrons which are

id together by attraction toward a central point—as the clectrons are attracted
e nucleus. The electrons will also be interacting with cuch other, and can, in

ral, have complicated motions. Suppese you have solved for the motions
with ne maanetic field and then want to know what the motions would be with &
weak magoetic field. The theorem says that the motion with a weak mugnetic
Feld is always one of the no-field solutions with an added rotation, about the axis
of the field, with the angular velocity wy = g B/2m. (This 15 the same as uiy,
ifg = 1.) There are, of course, many possible motions. The point is that for
every motion without the magnetic field there is a corresponding motion in the
field, which is the original motion plus a uniform rotation. This is called Larmor’s
theorem, and ey is called the Larmor frequency.

We would like to show how the theorem can be proved, but we will lzt you
wotk out the details. Take, first, one electron in a central force field. The force on
it iz just F(r), directed toward the center. If we now turn on a uniform magnetic
field, there is an additional force, gv X H; so the total force is

:"(r] + qu ® B (34.18)

Now let's look at the same system from a coordinate system rotating with angular
velocity w about an axis through the center of force and parallel to B. This is no
longer an inertial system, so we have to put in the proper pseudoforces—the cen-
trifugal and Coriolis forces we tulked about in Chapter 19 of Volume I. We found
there that in a frame rotating with angular velocity w, thers is an apparent rangeniial
force proportional to ¢, the radial component of velocity:

Fy = —2muip,. (34.19)
_ there is-an apparent radial force which 1s given by
Fr = ma¥r - Tine,, (34,20}

where v, is the tangential component of the velocity, measured in the rotating
frame. (The radial component v, for rotating and inertial frames is the same )

Now [or small enough angular velocities (that is, if wr < &), we can neglect
the first term {centrifugal) in Eq. {34.20) in comparison with the second (Coriolis),
Then Egs. (34.19) and (34.20) can be writlen together as

Eow =2ma X v, (34.21)

If we now combine a rotation and a moagnetic ficld, we must add the force n
Eq. (34.21) to that in Eq. (14.13). The total force is

Fir) <+ gu % B + dmy X ow (34.312)

[we reverse the cross product and the sign of Eq. (34.21) to get the last term].
Looking at our result, we see that if

Imw = —qi

the twa lerms on the right cancel, and in the moving frame the only foree is Fir).
The motion of the electron s just the same as with no magnetic field—and, of
course, no rotation. We have proved Larmor’s theorem for one electron. Since
- prool assumes a small w, it also means that the theorem is true only [or weak
}wﬁe fields. The only thing we could ask you to improve on is to lake the case
any electrons mutually interacting with each other, but all in the same central
d, and prove the same theorem. So no matter how complex an atom is, if it has
& central field the theorem is teue. But that's the end of the classical mechanics,
because it isn't true in fact that the motions precess in that way. The precession
Treqirency w, of Eq. (34.11) is only equal to ey if g happens to be equal to L.
-7




14-6 Classical physics gives neither dinmagnetism nor paramagnetism

Now we would like to demonstrate that according to classical mechanics
there can be no diamagnetism and no pa ramagnetism at all. Tt sounds crazy—first,
we have proved that there are paramagnetism, diamagnelism, precessing orbits,
and so on, and now we are going to prove that it is all wrong. Yes'—We are going
to prove that if you follow the classical mechanics far enough, there are no such
magnetic effects—ithey all cancel out. 1 you start a classical argument in a certain
place and don't go far enough, you can gel any answer you want. But the only
legitimate and correct proof shows that there is no magnetic effect whalever.

It is 2 consequence of classical mechanics that il you have any kind of system—
a gas with electrons, protons, and whatever—kept in a box so that the whole thing
can't Lurn, there will be no magnetic effect. It is possible to have a magnetic effect
if you have an isolated system, like a star held together by itsell, which can start
rotating when you put on the magnetic ficld. But if you have a picce of material
that is held in place so that it can't start spinning, then there will be no magnetic
effects. What we mean by holding down the spin is summarized this way: Al a
given temperature we suppose that there is only one state of thermal equilibrium.
The theorem then says that il you furn on & magnetic field and wait for the system
to get into thermal equilibrium, there will be no paramagnetism or diamagoctism—
there will be oo induced magnetic momeat. Proof: According Lo statistical me-
chanics, the probability that a system will have any given state of molion is pro-
portional to &~ %!, where U is the cocrgy of that motion. Now what is the energy
of motion? For a particle moving in & constant magnetic field, the energy is the
ordinary poteatial energy plus mi?/2, with nothing additional for the magnelic
field. [You know that the forces from electromagnetic ficlds are ¢(E + v X B),
and that the rate of work F- v is just gE - v, which is not affected by the magnelic
ficld.] So the energy of a system, whether it is in @ magnetic field or not, is always
given by the kinetic energy plus the potential energy. Sioce the probability of any
motion depends only on the energy—that is, on the velocity and position—it is
the same whether or not there is 2 magnetic field. For thermal equilibrium, there-
fore, the magnetic field has no effect. 1Twe have one system in a box, and then have
another system in a second box, this time with a magnetic ficld, the probability
of any particular velacity at any point in the first box is the same as in the second.
If the first box has no average circulating current (which it will not have il it is in
equilibrium with the stationary walls), there is no average magnetic momeat.
Sincs in the second box all the motions are the same, there is no average magnelic
moment there either. Hence, if the temperature is kept constant and thermal
equilibrium is re-established after the field is turned on, there can be no magnetic
moment induced by the field—according to classical mechanics. We can only get &
satisfactory undersianding of magnetic phenomena from quantum mecharnics.

Unfortunately, we cannot assume that you have & thorough understanding of
quantum mechanics, so this is hardly the place to discuss the matter. Un the other
hand, we don't always have to learn something first by learning the exact rules and
then by learning how they are applied in differcat cases. Almost every subject
that we have taken up in this course has been treated i a different way. In the
case of electricity, we wrote the. Maxwell equations on “Papge One" and then de-
duced all the consequences. That's one way. But we will nof now Lry 1o begin a new
“Page One,” writing the equations of quantum mechanics and deducing everything
from them, We will just have to tell you some of the consequences of guantum
mechanics, before you learn where they come from. So here we go.

34-7 Angular momentum in quanium mechanict

We have already given you a relation between the magnetic moment and the
angular momentum. That's pleasant. But what do the magnetic moment and the
engular momentum mean in quantum mechanics? In quantum mechanics it turns
out 1o be best to define things like magnetic momenis in terms of the other con-
cepts such as encrgy, in order to make sure that one knows what it mzans. Now
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it is casy to define a magnetic moment in terms of energy, becauss the energy of
a moment in a magnetic field is, in the classical theory, u - 8. Therefore, the follow-
ing definition has been taken in quantum mechanics: If we calculate the energy of a

1 in n magnetic field and we find that it is proportional to the field strength
(. .mall field), the cocificicat is called the component of magnetic moment in

Yirection of the field. (We don’t have to get so elegant for our work now; we
« il think of the magoetic moment in the ordinary, o some extent classical,
SCNSE. )

Maw we would like to discuss the idea of anpulsr momentum in gquanfum
mechanics—or rather, the characteristics of what, in quantum mechanics, is called
angular momentum. You see, when you go to new kinds of laws, you can't just
assume that each word i3 going to mean exactly the same thing. You may think,
say, “Oh, I know what angular momentum is. It's that thing that is changed by a
worque.” Dol what's a torgue? In guantum mechanics we have 1o have new
definitions of old gquantitics. It would, thercfore, be legally best to call it by some
other mame such as “quantangular momentum,” or something like that, becauss
it is the angular momentum as defined in quantum mechanics. But if we can find 2
quantity in guantum mechanics which is identical to our old idea of angular
momenlum whea the system becomes farge enough, there is no use in inventing
an extra word. We might as well just call it angular momentum. With that under-
standing, this odd thing that we are about to describe iy angular momentum. It
is the thing which in a large system we recognize as angular momentum in classical
mechanics, :

First, we take a system in which angular momentum is eonserved, such as an
gtom all by itsell in empty space. Now such 4 thing (like the earth spinning on 115
axis) could, in the ordinary sense, be spinning around any axis one wished to choose.
And for a given spin, there could be many different “states,” all of the same
encrgy, cach “state” corresponding to a particular direction of the axis of the
a-  ar momentum, S0 in the claisical theory, with 3 given angular momentum,
t is an infinite number of possible states, all of the same cnargy.

It turns out in quantum mechanics, however, that several strange things

=n. First, the number of siates in which such a system con exist is limited—
there 15 only a finite number. [F the system is small, the finite number 15 very small,
and if the system is large, the finitc number gets very, very large. Second, we
cannnd desctibe a “state™ by giving the direciion of its angular momentum, but
only by giving the component of the angular momentum along some direction—say
in the =-direction. Classically, an object with a given total angular momentum
4 could have, far its zcomponent, any value from +JF to —JS. Bul guantum-
mechanically, the z-camponent of angular momentum can have only cerlain discrete
values. Any given system—a particular atom, or a nucleus, or anything—with a
givan energy, has a churacteristic number j, and its zcomponent of angular mo-
mentum can only be one of the following set of values:

i
=1k
U—2)4

: (34.23)
—U—2Dh
={J = 1)

T ‘largest z-component is f times A&; the next smaller is one unit of & less, and so
L wn to —fh. The number ; is called “'the spin of the system.” (Some people
¢ lthe "1otal angular momentum guantum number”; but we'll call it the “spin.")

You may be worried that what we are saying can only be true [or some “spe-

z-axis. But that is not s0. For a system whaose spin is j, the component of
angular momenlum along any axis can have only one of the values in (34.23).
Althaugh it is goite mysterious, we ask you just to accepl it for the moment. We

H-9
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will come back and discuss the point later. You may at least be pleased to hear that
the zcomponent goes from some number to minus the same number, so that we
at least don't have to decide which is the plus direction of the z-axis. (Certainly, if
we said that it went from +/ to minus a different amount, that would be infinitely
mysterious, because we wouldn't have been able to define the z-axis, pointing the
other way.) . :

Mow il the z-component of angular momentum must go down by integers
from +j to —j, then j must be an integer. No! Not quite; twice j must be
an integer. Itis only the difference between +j and —j that must be an integer. So,
in general, the spin j is either an integer or a half-integer, depending on whether
2j is even or odd. Take, for instance, 2 nucleus like lithium, which has a spin of
three-halves, j = 3/2. Then the angular momentum around the z-axis, in units
of &, is one of the following:

43,2
+1/2
=12
-3/

There are four possible states, cach of the same energy, if the nucleus is in emply
space with no external fields, If we have a system whose spin is two, then the
r-component of angular momentum has only the values, in units of f,

2

1

o
—1
-2

If you count how many states there are for a given /, there are (4f + 1) possibilities.
In other words, il you tell me the energy and also the spin j, it turns out that
there are exactly (27 + 1) states with that energy, each state corresponding io one
of the different possible values of the z-component of the angular momentum.

We would like to add one other fact. I you pick out any atom of known f
al random and measure the z-component of the angular momentum, then you may
get any one of the possible values, and each of the values is equally likely. All of
the states are in fact single states, and each is just as good as any other. Each one
has the same “weight" in the world. (We are assuming that nothing has been done
to sort out a special sumple.) This fact has, incidentally, a simple classical analog.
If you ask the same question classically: What is the likelihood of a particular
z-component of angular momeatum if you take a random sample of systems, all
with the same total anzular momentum ?—the answer is that zll values from the
maximum to the minimum are equally likely. (You can easily work that out)
The classical result corresponds to the equal probability of the (27 + I} possi-
bilities in quantum mechanics.

From what we have so Fir, we can pel another inléresting and somewhal
surprising conclusion. In certain classical calculations the quantity that appears
in the final result is the square of the magnitude of the angular momentum J—in
other words, J- J. It turns out that it is often possible to guess at the correct
quantum-mechanical formula by using the classical calculation and the following
simple rule: Replace J* = J- J by j(j + 1)A% This rule is commonly used, and
usually gives the correct result, but e always. We can give the following argument
to show why you might expect this rule to work.

The scalar product J - J can be writlen as

Jol= B4 5+ 5

Since it is a scalar, it should be the same for any orientation of the spin. Suppose
we pick samples of any given atomic system at random and make measurements of
J2 or J?, or J3, the average value should be the same for each. (There is no special
distinction for any one of the directions.) Therefore, the average of J- Jis just
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equal to three times the average of any component squared, suy of J;;

11 J'hi - J‘{J:}'

since 7+ J is the same for all orientalions, ils average is, of course, just its
constant value; we have '
Jo = MiDiw (34.24)

If we now say that we will use the same equation for quantum mechanics, we
can easily find {J Jur. We just have Lo take the sum of the (2f + 1) possible values
of J?, and divide by the total number;

e b ] il i ] — n2
{_,3}“,1'+U 1y + 1;1‘1 PR Y ol G ) PV TN

For a system with a spin of 3/2, it goes like this:

iy =GP O+ AR (30 S

We copclude that
FJoJ =30 )y = 350" = 30§ + 1AL

We will leave it for you to show that Eq. (34.25), together with Eq. (34.24), gives
the general result
T J = jli+ DAL (34.26)

Although we would think classically that the largest possible value af the z-com-
ponent of J is just the magnitude of J—-namely, I - J—quantum mechanically
waximum of J, is always a little less than that, because jh s always less than

of + 1A The zngular momentum is never “completely along the z«lirection.™

A4-8 The magnelic enerpy of atoms

Now we want to talk again about the magnetic moment, We have said that in
quantum mechanics the magnetic moment of a particular atomie system can be
written in terms of the angular momentum by Eq. (34.6);

P B L T (34.27)

Xm

where —g, and m are the charge and mass of the electron.

An atomic magnet placed in an external magnetic figld will have an extra
magnetic energy which depends on the component of its magnetic moment along
the field direction. We know that

Uiey = =n-B. (34.28)
Choosing our z-axis along the direction of B,
Ve = —iaB. (34.29)
Using Eq. (34.27), we have that
Upeg = £ (F;' I
J.ntum mechanics says that J, can have only certain values: jh, (F— Dk, ..y

-jh. Therefore, the magnetic energy of an atomic sysiem is not arbitrary; it can
have only certain values. Its maximum value, for instance, s

g (ﬁ) hjb.
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Fig. 34=5. The posuible magnefic en-
ergies of on otomic sysiem with a spin of
32 in o maognefic field B,
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Fig. 3d=4. The bvo possible energy
stotes of an eleciron in o mognefic field B.
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The quantity g.A/2m is usually given the name “the Bohr magneton™ and written
Bt
gl

i, 5

Ao = 5

The possible values of the magnetic energy are
Iy
Uinug = gpall x"

where J./A takes on the possible values j, (j — 1L (j — 2), ... (—F + 1), =4

In other words, the energy of &n atomic system is changed when it is put in a
magnetic field by an amount that is proportional to the field, and proportional Lo
J,. We say that the energy of an atomic system is “split into 2/ -+ 1 levels™ by
a magnetic field. For instanes, an alom whose energy 15 Uy oulside a magoetic
field and whose § is 3/2, will have four possible energies when placed in a field.
We can show these energies by an energy-level diagram like that drawn in Fig.
34-5. Any particular atom can have only one of the four possible energics in any
given field B. That is what quanturn mechanics says about the behavior of an
atomic system in & magoetic field.

The simplest “atomic™ system is a single electron. The spin of an electron is
1/2, so there are two possible states: J, = A/2 apd J, = —&/2. For an electron
at rest (no orbital motion), the spin magnetic moment has a g-value of 2, so the
magnetic encrgy can be cither *pgB. The possible coergics in a magnelie hield are
shown in Fig. 34-6, Speaking loosely we say that the eleciron either has its spin
“up™ (along the ficld) or “down™ {epposite the field).

For systems with higher spins, there are more states. We can think that the
spin is *up" or “down" or cocked at some “angle” in between, depending on the
value of J,.

We will use these quantum mechanical results to discuss the magnetic prop-
erties of materials io the next chapter,



