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1.1  General Remuarks

according to frequency, or what amounts 10 lhr same thmﬂ- an uth:rrng*"

by wavelength. The complete spectrum of a given source comprises.s "ii:" : wnder high resal
all the frequencies that the source emits. Since no single ui:u'-'c'rﬂ]. oY spaced lines. _
frequency-resolving instrument exists, the various regions DFIh: electro--T2=mes When white
magoetic spectrum must be investigated by different methods. The "Ii-'lﬁ-f"-“ - generally found
main regions have already been mentlioned in Secction LA, *-_'.'.-'-_%:E sorb jusi those
The so-called optical region extends over o wide range from the far :};;:_ result is that th
infrared on the one end, 10 the far uliraviolet on the other. It includes _,_,; : L‘ﬂlluﬂh'l nssing
the visible region as o relatively small portion, Figure 7.1, Basically, = === This effect 35 pr

the optical region is distinguished by R Pears &s numern
(1) the fact that the radiation is focused, directed, and controlled by The dark lin
mirrors and lenses, and made enrly qua
(2) the use of prisms and gratings for dispersing the radiation into - of a r'ﬂ_l-"':ﬁ'*"_:f_'l" ‘
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12 - ELEMENTARY THEORY OF ATOMIC SFECTRA

characteristic of the particular kinds of atoms or molecules involved.
The term “linc™ spectrum is commonly used when refeming to such
radiation. This terminology originates from the Fact that a shr 15 gen-
erally the type of entrance aperture for Spectroscopic instruments nsed

in the optical region, 50 a separate line image of the slit is formed at_

the focal plane for each different wavelength comprising the radiation,
Sources of line spectra include such things as arcs, sparks, and elec-
trical discharges through gases,

The optical spectra of most aloms are quite complex, and the line
patterns are seemingly random in appearance. A few elements, notably
hydrogen and the alkali metals, exhibit relatively simple spectra that
are characterized by sasily recognized series of lines converging towards
a limit. i

The optical spectra of many molecules, particularly diatomic mole-
cules, appear as more or less regularly spaced "bands” when examined
with a specirascopic instrument of low resolving power. However,
under high resolution, these bands are found to be sequences of closely
spaced lines,

When white light is sent through an unexited EAS Or ¥apar, it 1%
genecally found that the aroms or molecules comprising the vapor ab-
sorb just those same [requencies that they would emit if excited. The
result is that those particular frequencies are either weakened or are
enticely missing from the light thae is transmitted through the vapor,
This cffect is present in ordinary sualight, the spectrum of which ap-
pears as numesous dark lines on a bright continuous backpround.

The dack lines are called Fraunhofler lines after J. Fraunhoffer who
mads early quantitative measurements, These lines reveal the présence

of a relatively cool luyer of gas in the sun's upper atmosphere, The
aloms in this layer absorb their own characteristic wavelengths from
the light coming from the hot, dense surface of the sun below, which
emits thermal radiation corresponding to a tempeciture of about
I3 K

Selective absorption is also exhibited by salids. Virtually all trans-
pareal solids show broad absorption bands in the infrared and ultra-
violet. In most colored substances these absorption bands extend into
the visible region. However, relatively sharp absorption bands may
Gocur in certain cases such as crystals and pglasses that contain race
carth atoms as impuritics.

1.2 Elementary Theary of Atamic Spectra

Ihe mathematical theery of atomic spectra had its beginning in 1913
when Niels Bohr, a Danish physicist, announced his now famous work.
He was concerned mainly with a theoretical explanation of the speclrum
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216  OFTICAL SPECTRA
of hydroeen, although his basic ideas ars applicable to other systems
as well g L
In order to explain the fact that atoms emit only certain character- ¥
istic frequencies, Bohr introduced two fundamental assumptions. These . S

Bre: f_'_‘._ o

* (1) The electrons of an alom can occupy enly certain discrete quan tized 35
states or orbits. These states have different energies, and the one.
of lowest energy is the normal state of the atom, also Known ar s

the ground siate. -
(1) When an electron undergoes a transition from one siate fo another; D
it can do so by emitting or absorbing radiation. The frequency <75
of this radiation is given by 3

AE 15
— BE EA

Mewtonian concept of the atom. The first is suggestive of the quanfiza--
tion of eavity radiation introduced earlier by Planck. The second iden -
amounts to saying that an atom emits, or absorbs, a single pholon upen
changing from one quantized state 10 another, the energy of the photon
being equal to the energy difference belween the two states, Figure 7.2
The frequency spectrum of an atom or molecule is given by taking
the various possible energy differences | By E.| and dividing by h
In order to calculate the actual spectrum of a given atom, one must
first know the energies of the vanous quantum states of the atom in
quiestion. Conversely, the energies of the quantum states can be inferred
from the measured frequencies of the various spectrum lines. '

T E, S
VAYAVAY = WAVAVAV S,
Phatan Pholon
— E, .

Abaorplinn Emizsiom

Fipure 7.2. Diagram showing the proteises of absorption and emission

The Bolr Atom and the Hydrogen Spectrum  In his study of the hydro===
gen atom, Bohr was able to obtain the correct formula for the cnergy =
Jevels by introducing a fundamental postulate concerning angular
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combining the above equation with the Bohr frequency condition,

momentum. According to this postulate, the angular momentum af an
electron is always an integral multiple of the quantity h/ 2z, where h is
Planck's constant

An electron of mass m traveling with speed ¢ in a circular orbit of
radius r has angular momentum muor. Hence the relation

- nh

mr =

= h=1,23-) (r.2)

cxpreises the quantization of the orhital angular momentum of the
electron. The integer n is known as the prindpal quanium number.
The classical force equation for an electron of charge —e revolving

in a circular orbit or radius r, centered on a proton of charge +c¢,is
AR o 7.3}
dre 2 r

By elimination of v between the fwo equalions, one oblains the follow-
ing formula for the radii of the quantized orbits:

e Ji¥ ne (7.4}

i —
el

The radius of the smallest orbit (n = 1) is called the firsé Bohr radius
and is denoted by ay. [is numerical value is

iy =2 _ 6539 A 1.5

-

wETe -

The vanous orbits ace thea given by the sequence ay, day, Yay, - - -
and so forth.

The total energy of a given orbit is given by the sum of the kinetic
aful the polential energies, namely,

l

E =:—l.r.l|u3 —

|:_.'-'
s
A r 4

Eliminating v, by means of Equation (7.3), one finds

el
LS e By

This is the classical value for the energy of a bound electron. I all values
of r were allowed, then any (negative) value of energy would be pos-
sible. But the orbits are quantized according to Equation (7.5). The
resuliant gquantized energies are piven by

(7.7

4
£ = _Emﬁ;;i (,:z) (n=123,--) (%)
B

The formula for the hydrogen spectrum follows immediately by
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Lajuation (7 ). Calling £, und Easthe energes of the arbits my apng ,p,.. t@‘
reSpectively, we have e St
I'!l.E Lz- — !‘.‘J ] I
e e =
/ h h (ﬂl! ".'!:)
where R, the Rydberg constant, iy siven by
= SREN
T Be i
lis value in frequency units is 3.29 x 10 Hz i
A transition diagram of the hydrogen atom is shown in Figure 7.3« -3
The energics of the various allowed orbits are plotted as horizontal i‘
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T.2 - ELEMENTAKY THEQRY OF ATOMIC SPECTRA

lines, and the transitions, comresponding to the various spectral lines,
ire shown as vertical armows. Variows combinations of the integers
ny and ma give the observed spectral series. These ars as follows:

g =1 hy = 2, 3, 4, - -+ Lyman Secies (far ultravialet)

=1 my = 3, 4, 5, - -~ Balmer Senes (visible and near ultraviolet)
ny =3 ny =4 35, 6, -~ Faschen Series (near infrared)

o= 4 ng = 5, 6, 7,- -+ Brackeit Series (infrared)

=3 nz = 6, 1, 8, -+ Pfund Sertes (infrared)

ll-l”

Some of the zeries are shown in Fizure 7.4 oo o logarithmic wavelength
scale

Fizure T4,  The first three senzs of atomic hydiegen on o logarithmic wavelength
seali

The ficst three lines of the Balmer series, nnimnely Jf, at a wavelenzth
of 6563 A, H, at 4861 A, and M, at 4340 A, are easily seen by viewing
a simple hydrogen discharge tube through a small spectroscope. The
members of the series up to 4 = 22 have been recorded by photog-
raphy. The intensities of the lines of a given serics diminish with in-
creasing values of my, Furthermore, the intensitizs of the various series
decrease markedly as my increases. Observations using ordinary labo-
ratory sources have extended as far as the line at 12.3 pm in the infrared,
corresponding toay = &, 0y = 7.

The I1}-1:Imgcn spectrum is of particular astronomical impm't'mcc.
Since hydrogen is the most abundant element in the universe, the
spectra of most stars show the Balmer series as prominent absorplion
lines. The seres also appears as bright emission lines in the specira
of many luminous nebulae. Recent radiotelescope observations [26]
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Spectra of the Alkali Metals An empirical formula similar o that for

ata J'n.-q uency of 1651 MHz has been received,

Effect of a Finite Nuclear Mass  The value of the Rydberg Dun_'-'.tan
given by Equation (7.10) is for a nucleus of infinite mass. Since rhf.-_
nucleus actually has a finite mass, the electron does not revolve about 22
the nucleus as a ceater, rather, both particles revolve about their com- 'H"_
mon center of mass. This requm:s that m1, the mass of the electron; begd :.-.
replaced by the reduced mass in order to obtain the correct value fu
the Rydberg constant Thus the Rydberg constant for hydrogen is mo
accurately given by the formiula

Ry = Er:!"_;:-* i'-"—":l.__
where
rre i .
e o EERE s A b
EeErSE T .13}

is the reduced mass, M is the mass of the atomic nucleus, and # is the - by
maass of the electron %ﬁ_‘f:
In the case of ordinary hydrogen the nucleus is a single proton and =

the inass ratio M mis equal to 1836, For the heavy isotope of hydrogen, ;Fg_,
deuterium, the mass ratio is about twice as much. The Bydberg con- s
stant for deaterium is, therefore, slightly different from that for hydro- - ==

gen. The result is that a small difference exists between the frequencizs
of corresponding spectrum lines of the two isotopes. This effect, called
ivofope shiT, can be seen as a “doubling”™ of the lings from a discharse
tube containing a mixture of hydrogen and deuterium.

The Bohr model of the hydrogen atom, although 2iving essentially
correct numerncal resulis, 15 unable (o account for the fact that the
electron does not radiate while traveling in its circular orbit in the
ground state, as required by classical electromagnetic theory. Further,
the theory is difficult to apply to more complicated atoms and is com-

pletely inapplicable to molecules. Early attempls were made by vanous
theorsts to modify Bohr's theory in order to account for such things
a5 the fine structurs of spectrum lines, and so forth on (Section 7.7
below), These attempts met with varying degrees of success. Howewver,
the Bohr theory has mow been superseded by the modzrn guantum
theary of the atom, which will be discussed in the following sections.

hydrogen gives fairly accurate results for the spectra of the alkali metals
lithium, sodium, and so forth. This formula is
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73 - QUANTUM MECHANICS

9% 1 1

e = Ee
The Rydberg constant R js approximately the same as Ry. It has a
slightly different value for each elemeat. The quantum numbers rg and
nz are integers, and the associated guantities §; and 85 are known as
quantum defects.

In a given spectral series, specified by a fixed value of ny and a
sequence of increasing values of ny, the quantum defects are very nearly
constant. The most prominent series for the alkalis are designated as
sharp, principal, diffuse, and fundamental, respectively. As a typical
example, the quantum numbers and quantum defects for the series in
sodium are listed in Table 7.1.

Talle T.1. SEWES M SODIUM

SERIES " ny & '
Sharp 3 # 56 = 087 1.35
Principal 3 3,4,5 .35 087
Diffuse 3 3,4, 5,--- (.47 0.1
Fundomesntal 3 4. 85 6 - .0 R

The sharp and the diffuse series are so-named because of the ap-
pearance of the speciral lines.

The principal series is the most intense in emission and is also the
one giving Lhe strongest absorption lines when white light is passed
through the vapor of the metal.

In the case of the fundamental series, the quantum defects are very
small. As o consequence, the frequencies of the lines of this series are
very nearly the same as those of the carresponding series in hydrogen.
This is the reason for the name fundamental.

73 Quantum Mechanics

Maodern quantum theory was pioneered by Schrédinger, Heisenbers,
Born, and others in the 19205, Onginally there were two apparently
dilferent quantum theories called wove mechanics and matrix mechanics.
These two formulations of quantum theory were later shown to be
completely equivalent. Quantum mechanics, as it is known today, in-
cludes bath, We shall not attempt a rigorous development of quantum
mechanics here, but we shall merely state some of the essential resulis
that apply to atomic theory.

The gquantum mechanical description of an atom or alomic system
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is made in terms of a wave function or stale function. The commonly
used symbol for this function is ¥. Ordinarily ¥ is a complex number
and is considered to be a function of all of the configurational coordi-
nates ol the system in question wncluding the time.

According to the basic postulates of quantum mechanics, the state
function ¥ has the property that the square of its absolute value, [¥]?
or ¥*¥, is a measure of the probability that the system in question is
located at the configuration corresponding to particular values of the
coordinates. ¥*W¥ is sometimes referred 1o as the probabilicy distribution
Junetion or the probability density.

If the system is a single electron, for example, with coordinates
x, ¥, 8and z, then the probability that the electron is located betwesn
xand x 4+ Ax, yand y + Ay, z and z 4+ Az is given by the expression

Ty Fx A xhphs (7143

It iz evident from the abowve interpretation of the state function
that one can never be certain that the electron is located at any given
place. Only the chance of its being there within cerlain limits can be
known. This is entirely consistent with the Heisenberg uncertainty prin-
ciple discussed earlier in Section 6.1 L

Mow the toral probability that the eleciron is located somewhere
i space 15 mecessarily nnity. It follows that the integral, over all space,
of the probability density is finite and has, in fact, the value 1, namely,

fff‘i“‘*lfrf: aydz =1 {1.15)

Functions satisfying the above equation are said to be quadratically
integrable, normalized functions.

Stationary States A characteristic stale or eigenstate is one that cor-
responds to a perfectly defined energy. A given system may have many
eigenstates, each possessing, in general, a different energy. IT E, denotes
the paclicular energy of a system when it is in one of its chiracteristic
states, then the lime dependence of the state function is given by the
complex exponential factor exp( —(E, 1/h) where

i
A=
2w
Consequently the complete state function is expressible as

¥ 20) = Yalx.p,2) e840 (716

Here 1, i5 4

not invalve
Consider

istic states

We sec thai
probability
acteristic sk
stationary s
are teking
In the p
an atom, oo
whility distri
densily al a
charge cloud
5 constant i
the atom dc

Coherent 5
[ram one el
function is

involved, n:

Here oy ani
COMT PACLSan
lype 15 kno
coherenl st
stale 15 not

The pro
Eguation (=

wher=

or, eauivale




T - QUANTLM SMECAAMICS

Here a i5 a function of the configurational coordinates only. It does
not involve the time.

Consider the probability density of a system in one of its charicler-
islic states. We have

" W= H“'ﬂl!m' tR o, g N = g -1y

We see that the exponential factors cancel oul This means that the
probability distribution is constant in time, or stationary. Thus char-
acteristic states are also called stationary states. A system that is in a
statiopary state is a static sysiem in the sensé that no changes al all
are taking place with respect o the external surroundings.

In the particular case in which the quaatum mechanical system 15
an atom, consisting of a nucleus with surrounding electrons, the prob-
ability distribution function is actu ally 2 measure of the mean clectron
density at a given point in space. One somelimes refers to this as i
charge cloud. When an atom iz ina stationary state, the electron density

is constant in time. The surrounding lectromugnetic field is static, and
the atom does not radiate.

Coherent States Consider a system that is in the process of changing
from one eigenstate ¥y to another ¥a. During the transition the state
function is given by o hnear combination of the two state functions
involved, namely

W o= l,'.':|17'.'|_ g iE Y paalig 8 {E 1R (7. 13}

Here ¢, and ez arc parameters whose variation with time is slow 10
comparison with that of the exponential fuctors. A state of the above
type is known as a coherent siale, Dne esseatlal difference belween a
colierent state and @ stationary siate is that the cnergy ol & coherent
state is not well defined, whereas that of a stationary state s

The probability distribution of the cohereat stale represented by
Equation (7.18) is given by the following expression:

Yl = ey ton " + cateapr v

4 ep*eathy e e 4 cxculn e
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The above result shows that che probability density of a coherent
state undergoes a sintisoidal oxcillation with time. The frequency of this
ascillation iz precisely that given by the Bohr frequency condition.

The guantum-mechanical description of a radiating atom may be
stated as follows. During the change from one quaatum state lo an-
other, the probability distribution of the electron becomes coherent
and oscillates siousoidally. This sinusoidal oscillation is accompanied
by an oscillating electromagnetic field that constitutes the radiation.

74 The Schridinger Equation

Thus far we have not discussed the question of just how one geesabout
finding the state functions of a particular physical system. This is one
of the basic tasks of quantum theory, and the performance of this task
involves the solution of a differential equation known as the Schré-
dinger equation. A simple derivation of this important equation for
the casc of a single particle proceeds as [ollows.

Consider any wave function ‘¥ whose time dependence has the usual
sinusnidal variation. Let A be the wavelength. Then we know that the
spitial part & of the wave function must obey the standard time-
independent wave equation

Vi 4 (?TI)R"!' =0

Mow nccording to de Broglie’s hypothesis, Section 6.10, a particle
having momentum p has an associated wavelength Afp. Thus a pariicle
would be expected to obey a wave equation of the lorm

But a particle of mass m has energy E given by £ = {_!.-‘.-jme:-‘-! + in
which ¥ is the potential energy and ¢ is the speed. Since the linear
momenium p = mu, then

pt = 2m(E — V)
The wave equation of the particle can, therefore, be writlen as

[7.21)

vy + S E vy =0

‘I'his is the famous equation first announced by Erwin Schridinger

in 1926, It is a linear partial differeatial equation of the second order.
The physics involved in the application of the equation :ﬁscntifﬂly
amounts to the selection of a potential function V(x.y.z) appropnate
to the particular physical system in question. Given the potential func-
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T35 - QUANTUM MECHANICS OF THE HYDROGEN ATOM

tion Mix.y.z), the mathematical problem is that of finding the function
{or functions) J, which satisfy the equation.

Mot all mathematical solutions of the Schrédinger equation are
physically meaningful. In order o represent a real system, the function
¥ must tend to zero for infinite values of the coordinates in such a way
as to be quadratically integrable. This has already been implied by
Equation (7.15). ;

The details of solving partial differential equations of the Schrd-
dinger type are often very involved and complicated, but the results
are easily understood. Tt turns out that the requirement that the solu-
tions be quadratically integrable leads to the result that acceptable
solutions can exist only if the energy E has certain definite values. These
allowed values of E, called eigenvalues, are, in fact, just the character-
istic energy levels of the system. The corresponding solutions are called
cigenfunctions. They are the state functions of the system.

The Schridinger equation thus leads to the determination of the
energy states of the system as well as the associated state [unctions.
In the next section it is shown how the Schrddinger equation is applied
10 the problem of calculating the enerzy levels and state funciions of
the hydrogen atom.

1.5 Ouantem Mechaolcs of the Hydroeen Atom

The quantum theory of a single elecron moving in a central field,
briefty outlined here, Forms the busis of modern atomic theory. In the
mathematical treatmeat of the one-eleciron atom il is convenienl Lo
employ polar coordinates r, f, and $, owing to spherical symmetry of
the feld in which the electron moves. The Laplace operator in these
coordinates is

1§ d o | @ ; d | a2
e v e = ]+ —— = 722
im [ar(" F:l‘.r) & gip f 28 (5:.:1 EFI'J) % sint d fied \ '

The coresponding Schrodinger equation is

1l (.2 LS ) L8|,
Z | (’ E‘.‘r) b sind 3 (5“"'9 E!l.‘r) " Sinto 2e2|"

Blp o -
t =V =4

{(1.15)

Here jo is the reduced mass of the elsctron. [n the case of the hydropen
dtom, the potential Fis gived by
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Ground Stale of the H Atom  We shall first obtain a simple salution
of the Schrodinger equation by the trial method. Substituting a simple
exponential trial solution of the form

&= 715

where o 15 an underdetermined constant, we find that the Schrbdinger
equation reduces to

E T et T
(uf.-h- = )r"' + _r_".,h"_ = EH)T = _ﬂ'—iﬁl

This equation can hold for all values of - only if each expression
enclosed by parentheses vamshes, namely,

g4 BwtpE ape?
a+=—=% @

The second equation gives the value of a. We find that it turns out 1o
be just the reciprocal of the first Bohr radius:

- 2a-=10 (727}

e |
:,JIH - L]

Substituting this value of « into the first equation and solving for E,
we oblain -

(7.2%)

pet

i Eir_Jr“-

This is identical with the value of the energy of the hrst Bohr orbit,
obtained in Section 7.3. It is the energy of the ground state of the hydro-
gen atom.

MNow the solution given by Equation (7.23), in which o is given by
Equatien (7.28), does not yel represent a completely accepiable state
function, for it is not normalized. But one can always multiply any
solution by on arbitrary constant and still have a solution of the dif-
ferential equation. Thus, by introducing a normalizing constant C, we
i write

Ei= (720

= Ce=or {730

This does not alfect the value of the energy E. The normalizmg condi-
tion Equation {7.23), reduces o

{731}
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from which € may be found If one is interested only in the spatial
variation of the state function, it is not necessary to include the normal-
izing constant.

According to the above resulis, the ground state of the hydrogen
atom is such that the probability density of the eleciron is sphencally
symmetric and decreases exponentially with the radial distance r. The
density is greatest al the center and diminishes by the factor e* ina dis-
tance of one Bohr radius. A plot of the density function is shown in
Figure 7.5

S S

Fipure 7.5. Probability density of the ground state (ix) of the hydrozen atom.

fxcited States  In order 1o find the siate functions and the energies
of the excited states of the hydrogen atom, it is necessary to solve the
Sohrodinger equation completely, To do this, the method of separauon
ol variables is used

The state function ¢ is expressed as a product of three functions, a
radial function and two angular functions, namely

Hrdap) = R(r)- O(8) - Dlp) (732)
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The Schridinger equation (7.23) can then be wrilten as

lad*d sinf d/f. .48 sn® § o ai
dag “erw—(“”m—) * Tr:r(’“ E)
(733

2
+;iu=e§1};§f¢£_ ) =0

MNow in order that our assumed solution satisfy the differential
equation for all values of the independent variables r, 8 and ¢, the
first term (1/9) (d2®/d$?) must necessarily be equal to a constant.
Otherwise r and & would be dependent on ¢ We denote this constant
by —m¥ The remaining equation can then be split into two parts, a
radial part and a part dependent only on . Setiing each part equal to
a s¢cond constant, deaoted by I/ + 1), one obtains the following sepa-
rated differential equations:

1ae

S L
mT | df . 6
= e — = | T35
sin? @ Exinﬂdﬂfsmﬂdﬁ‘) K+ 1) =
L df . dR Sxturt A
S e R i AR T = i
i n"r'(r fsr) o = E=-Rlae) i

where, in the case of the hydrogen atom,

=
A
e r

A solution of the differential equation (7.34) involving & is clearly
-[1: — plmd {737

In order for this 1o be a physically acceptabie solution, it is necessary
that #® assumes the same value for ¢, ¢ + 2=, & + 4w, and so forth:
otherwise, the state function wounld nol be uniquely defined at a given
point in space. This requirement restricts the allowed values of mr to
iitepers; naomely

mo=, 2] Hd R e {738)

The number m is called the magnetic quantum number.

The #-depeadent equation (7.35) and the radial equation (7.36) are
more difficult to solve. We shall not go into the details of their solution
here, but shall merely give the results as given in any standard text on
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7.6 - RADIATIVE TRANSITIONS AND SELECTION RULES

associated electromagnetic field has a directional distribution that is
the same as that of a simple dipole antenna lying along the z axis.
Thus, the radiation is maximum in the xy plane and zero along the z
axis. The radiation figld, in this case, is linearly polanzed with its plant
of polarization parallel to the dipale axis.

A different case is shown in Figure 7.9 Here the coherent siale is

I 2
e af"m
| Sy T .- r 4y # iy i W

=0 T :1— faE = % hinE P ?‘ ik r=hf8E

Fipure 7.9. Charge distribution in the coherent stale 15 + 2pyas a function of
time. The atom is a rotating dipole.

ihe combination 15 4 2p(m = +1). The centréid of the electronic
charse now moves in a circular path around the 2 uxts. The angular
frequency of the metion is also that given by the Bohr fregquency
formula w = AES

Instead of an oscillaling dipole, the atom is now & rofiing dipole
The associated radiation field is such that the polarization is circular
for radiation traveling in the direction of the axis and linear for radia-
tion traveling in a direction perpendicular to the = axis, Far inter-
mediate directions, the polarization is elliptical. The cases are illtstratex
in Eigure 7.10, The coherent state 15 + 2p(m = — 1) is just the same
as the state 1s 4 2p(m = 4 1) except that the direction of rotation of
the electronic charze is reversed. Consequently, the sense of rotation
of the associated circularly polarized radiation is also reversed.

In an ardinary spectral-light source, the radiating aloms ase ran-
domly oriented in space and thew vibrations are mutually incohereal.
The total radiation is thus an incoherent mixture of all types of polar-
ization. Tn otlier words, the radiation is unpolarized. However, il the
source is placed in a magnetic ficld, the field provides a preferred direc-
tion in space—the £ axis in the above discussions, Fizure 7.11(a). In
addition, the interaction between the radiating clectron and the mag-
netic field causes cach energy level to become split into several sub-
levels—one for each value of the magnetic quantum number nr. Asa
result, each spectrum line is split into several components. Thissplitting
is known as the Zeeman effect. By means of the Zeeman effect, it is
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Figure 710, Polarization of the assuciated elcctromngnetic radiation (E veoior)
for (&) an oscillating dipole and (b) a rotating dipale

possible to observe the polanzation clecls mantioned above

Mlustrated in Figure 7.11(b).
The general theory of atomic ¢mission and absorption involves the _ )

caleulation of certain integrals known as malrx elenents, The matnx
element involved in electric dipole radiation is the guantity Man de- (b}

fimed as
Figure T.11

. Man = fff dat e r o dy dy d: (1.44)

wherer = bx 4 jp + Ko and e is the electric charge. The dipole matrix
clement is a measufe of the amplitude of the oscillating dipole moment
of the coherent state formed by the Lo -stationary states § and Jm
i : In the case of hydrogen, it turns out that Mg is zero for all pairs
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for the light emitted parallel o the ficld, and these are circularly

polarized as indicated. The fundamental Zeeman splitting i

Af = eH fdopm where H is the magaetic field, e is the electronic

chasge, and m is the mass of the electron [33]
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of states except those for which the azimuthal quanium numbers £y
and [ differ by exactly one. In other wards, electric dipole transitions
are "allowed"™ il

= (0.45)

This is known as the I-selection rule. It implies that the angular momen-
lum of the atom changes by an amount A during a dipole transition
This angular momentum is taken up by the photon involved in the
tramsifiomn
There is also an m-selection rule, which 15
Am = Dor + | (146)

Transitions for which Am = 0 are of the simple linear-chpale type,
whereas those for which Am = =1 are associated with a rotating dipole.
The twa types of transition are, in fact, those just discussed for hydrogen
and illustrated in Figure 7,11,

Transition Rates and Lifetimes of States The classical expressian for
the total power P emitted by an oscillating electrc dipole, al momeal
M = Mg cos wi, 15

p L ut Mt (147

The same formula applies to atomic emission, provided My is used
Tor Mg We must, however, inlerpret the Formuita somewhat diffecenily
it this case. Since for each tramsition, an atom emits & quantum of
encigy Af, the number N of quanla per second per atom is equal to

Fihf. Thus

2 P Ir\"ihalﬂ
N ST e— {Tﬂﬂ"
3 ket

is the number of transitions per second for cach atom. This is known
as the fransitian probability. The reciprocal, 1/, of the transition prab-
ability has the dimension of time. 1t is known a5 the lifetime and isa
measure of the time an cxcited atom takes to emit & light quantum.
Typically, atomic lifetimes are of the order of 10-% 5

Fligher-Order Transitions  Although electne dipele transitions gen-
crally give rise to the strongest spectral lines, such transilions are not
the ualy ones that occur. It is possible for an atom ta radiale or ahsorb
eleciromagsnetic radiation when it has an oscillating elec tric quadrupole
moment, but no dipole momeat. Such transitions are called eleciric
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1.7 - FINE STRUCTUHE OF SPECTRUM LINES. CLECTRON SFIN
i griadrupole transitions. The selection rule for quadrupole transition is
LY
s A = 2
1t 15 easily shown that the charge distobution for a colierent state such
i7.45% as 15 4 dd{m = 0) consists of an oscillating electric quadrupole. Tran-
- sition probabilities for quadrupole radistion are usually several orders
'._]::.II:I_ of magnitude smaller than those for eleciric dipole radiation. Lifetimes
s against quadrupole radiation are typically of the order of | 5. Higher-
order transitions such as octupole transitions, Al = 3, and so forth,
can also occur. Such transitions are seldom observed fa connection
with optical spectra, but they frequently occur in processes involving
VL35) the atomic nucleus.
npe, :
e 7.7 Fine Structure of Spectrum Lines. Electron Spin '
L Pt b |
: If the spectrum of hydrogen is examined with an instrument of high i
resolving power, it is found that the lines are nol single, but consist {i
afor of several closely spaced components. The line Ha, for example, ap-
“ent pears as lwo lines having a separation of about 0.14 A (This is not I
the same as the hydrogen-deuierium splitting discussed earlizr.) This 3]
splitting of spectrum lines into several is known as fine structure. The l
i+ lines of other elements besides hydrogen also possess a fine structure. ]
These are designated ss singlets, doublets, triplets, and so forth, de- 4
. pending on the number of components. [j‘ !
satly The theoretical explanation of fine structure was first made by Pauli § Il; i
7 of who postulated that the electron, in addition to its orbital angula e
af to - Inoment, possesses an intrinsic angular mementun. This angular mo- j :
mentum is known as spen. All electrons have the same amount of spin, ; r i
regardless of their molion, binding to atoms, and so forth. Theory Al
(748} shows that the component of this spin, in a given direction, mest always _; !.
he one or the other ol the two values; i
i (B H ar — (%) A ]-i b
roh- bl
iiga The total angular momentum of an electron in an atom then con- | ; ;’
L sts15 0f the vector sum of its orbital angular momentum | and its spin 5. e fi
The total angulir momentum of a single clectron, denoted by the sym- -EI H:
bol j. 15 then given by i
dcrn- i
._'ﬂ{,_r =145 {740 ! I[
rorh It 15 customary to express the various angular momenta in units |
tpals= ol ft. The angular momenta in these units are then essentially quantum
CCEFTC numbers, For a given value of the azimuthal quantum number [, there
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are two valuss of the guantum number for the toka] ansulor momentum
of 2 single electron, namely,

i=l+1/2andj=1=1/2

Thus, for [ = 1,/ = 3/2or 1/, forf = 2,§ = 5/20r3/2, and 50 forth.
For the case { = 0 there is oaly one vilue because the two states J =
4+ 1/2 and j = —1/2 are actually the same.

Now it was stated earlier that those states of bydrogen with a given
value of the principal quantum number , all have the same energy.
This is not strictly true, since the electron spin was not tzken into
accounl. Actually, as the electron undergoes its orbital motion around
the positively charged nucleus, it expericnces a magnetic field arising
from this motion. The magsaetic moment associated with the spin inter-
acts with the magnetic field. This is called spin-orbit interaction.! The
result of the spin-orbit interaction is that the two states j=1+ sand
i — | — g have slightly different energies. This, in turn, produces a split-
ting of the spectrum lines. A simplified diagram illusirating the splitting
for the case of @ p — & transition is shown in Figure T.12

(7.50)

A
=
-
i

LR

i
E JTTT I ] I
— | 17 32
R | 1/ o1ee
|'
"Tl 5
nu:n_ﬂ._—n 1z 12

P

Figire .12, Fine strocture (spin splitting) of n gpecinum Tine for a p — 5 Lenn-
silion

|

L]
tin hydeoges, in adidition to the spin-orbil splitting, there i3 & splitung of Lhg ensrmy
levels due 1o rebativistic effects, Thin telotivity splitling is also very small, and cauies the
encigies of states with fhe same 8 bt different § 1o be gighdy different [24]
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7.8 » MULTIPLICITY TN THE SPECTRA OF MANY-ELECTRON ATOMS

7.8 Mulhiplicity in the Spectra of Many-Electron Atoms.

Speciroscopic Notalion

For atoms containing more than one electron, the total angular momen-
turn J is given by the vector sum of all the individual orbital momenta
Iy, Ia, ==+, oo SpIDS Sy, Sa. """ and so forth

Ia the usual case, the orbital angular momenta couple together to
produce a resultant orbital angular momeatum L=L+h+"".
Similarly the spins couple to form an overall resultant spin 5 = 5 +
53 + » -+ . The total angular momentum is thea given by the coupling
of L and 5,

J=L4+5 (7.51)

This type of coupling is known as LS coupling. Other types of coupling
can also oceur, such as jf coupling in which the individual j's add to-
gether to produce a resultant J. In general, LY coupling occuts in the
lighter clements and jf coupling in the heavy elements.

In L5 coupling, all three quantities L, 5, and J are quantized. Their
magznitades are givén by

L =aVEEED S =t VSE+ D P =17+ T)

where L, 5, and J are quantum numbers with the following properties.

The quantum number L is always a pasitive integer, or zero. The
spin quantum number § is either integral or half integral, depending
ani whether the number of electrons is evan or odd, respectively. Con-
sequently, the total angular-momentum guanium number J is integral,
ot half integral, depending on whether there is an even o1 odd number
of electrons, respectively.

The total energy of a given siate depends on the way the Varous
angular momenta add together to produce the resultant total angular
momentum. Hence, for given values of L and &, the various valees
of ! correspond to different energies. This, in turn, results in the fine
structure of the spectral lines.

The spectroscopic designation of a state having given values of
L, 5. and J is the following:

a4 Lf,

Here the quantity 25 4 | is known as the rraltipliciey. 1t is the number
of dilFereat values that J can assume for a given value of L, provided
[ = X nomely,

L4 X LaS—LLyS=2r-L—5
If L < S, then there arc oaly 2L + | dificrent J values, namely
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LyS,E+5—1L+S—2-|L=5]
This is known as incomplele multiphicity.

If S — 0, the multiplicity is unity. The state is then smd to be a
sinolet. Similarly, for & = 1/2, the multiplicity 15 two, and the state
is a doubler. Table 7.3 lists the spin, multiplicity, and names of the first
few types of stales:

Table 7.3, MULTIFLICITIES OF STATES

£ - surtrLicry (28 + 1) - HAME —
0 1 Singlet
1/2 2 Doublet
1 3 Trplet
32 4 Cluartet
2 5 Cmabni=t
572 f Sexici

S

Ear one-electron atims, only one value of 5 is possible, pamely 1,2
Hence all states of one-clectran aloms are doublet states. In the cass
of two ¢lectrons, S can have gither of the two yalues 1/2 4+ 1/2=1
orl/2 = /L= 0, Thus, for two-cleciron athms, there are two seis of
states, triplets and singlets.

T addition to the numing of stales aceordiag to mulliplicity, u letter
& nsed to designate the value of the total orbital angular meamentum L,
This desiznation is given i Table 7.4 below.

Tahle 74, DESIGNATION OF STATES
Accounmo 1o ORprral Acounan MosEsTUM

L 0 1 z o4 3 6 1 B oo

Designation g p oo F o K1 R

The letter 5, designating stalés for L = 0, is not the spin quaniuim
nember, although it is the same leter. This is confusing, but it is

accepled convention.
Let us consider, as an example,

The possible values of Lare ly + Fa

the combination of a p and a d electron is the following:

the case of (wa electrons. l.cl one
clectron be a p electron (h = 1) il tha other be a d electran (f = 2).
1, — o}, and all integral values
between. Thus L = 1,2, or 3, which means that we have P states, D
states, and F states. Since 5 can ke O or 1, then there are both singlets
and triplets for each L value. The complete list of passible states for

PR

AT

Ak
i

il

il .-I-u'|dl"'-:.-,! ST

T L i

13

Selection B
povern allo

In all cases
ing uanil

Parity Tc
portint n
atomic st8
Lyalues ol
is gven (i
Il sne ele
|:|'2 - ]], i
all 1 sa;
rule hald
siates;

Tn oilier
parity of

Itis g
i Lramnsil
giale iss
pelurm i
dipole 1
reiurm v

7.9 MU

Malecu!
when aj
CRETEY !
or abso




[

o

s o TR o
i o e e

T8 « MOLECTILAR SPECTHRA

S[WGLETS TWIFLETS
P, ap, 3P, p,
1Dy af, P, 3f3,
LFs VFy 1 b

Selection Rules In the case of LS coupling, the sclection rules that
govern allowed transition for dipole radiation are the following:

AL =0, %=1
AS =1
Af=0,%1(J=0=S=10 forbidden)

Tn all cases, the symbol A means the dilference between the correspond-
ing quantum numbers of the initial and final states of the transition.

Parity In addition 1o the above selection rules, there is another im-
portaat tule involving a concepl known as parity. The parity of an
atomic state can be even or odd. This is determined by the sum of the
Lvaluss of the individual electrons. If the sum is even (pdd), the pasity
is even (odd). For example, consider the states of a two-electron Alom.
If ane electron is an s-electroa (y = ) and the other is a p cleclron
{ls = 1), then fy + f = 1, hence all sp states arc of odd parity. Similasdy,
a1l sef states are of even parily, and so forth. The following selection
rile holds for electric dipole radiation from transitions between bwo
slatas;

odid — odd

even == odd (allowed)
gven — Lven

} {forbidden)
In pther words the parity of the final state must be different from the
parity of the initial state

It is possible for an excited stale o be such that it caanol wndergo
a transition, by dipole radiation, to any lower siale. In this case, the
state is said lo be metastable, I an atom is in @ metasiable siate, it musl
cetuen to the ground state either by emission of radiation other than
chipale rudiation, for example, quadrupole, and so forth, or il may
retirn via collisions with other atoms.

7.9  flalecuiur Spectra

Malecules, like atoms, arc found to exhibit discrete frequency specira
when appropriately excited in the vapor state. This indicates that the
energy states of molecules are quantized and thata molecule may emit

or absorb & photon upon changing from one energy state to another.
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7.5 = QUANTUM MECHANICS OF THE HYDROGEN ATOM

quantum mechanics. It happens that both differential cquations were
well known long before the time of Schriédinger. Their solutions had
been worked oul in coanection with other problems in mathematical
physics.

The equation in #, Equation (1.33) is one form of an equation known
as Legendre’s differential equation. This equation yields acesptable
(single-valued) solutions only if [ is 2 positive integer whose value is
equal lo or greater than [m|, The integer [ is called the azimuthal quantum
number. The resulting solutions are known as asrociated Legendre poly-
nomials, deaoted by Fy|™|(cos ). They may be found by means of a
generafing formula

Pinitx) = 42 _;t;-}: = (%)Im M -y (7:39)

A few of these are:
Poz) =1 Pyl(x) = 3x{] — x*)1r2 Pai{x) = (W) (32 - 1)
Pi¥x) = x A{x) = (1 — x¥)re= Fa¥x) = 31 — 2%

The radial equation, (7.38), is called Laguerre's differential equation.
Acceptable solutions (ones leading (o guadratically integrable func-
tions) are given by the formula

Rip) = p' e~ L[, 2141 (p) {148
The varable p 15 defined as a certain constant times r, namely
2r

k gy

The quantity n is the principal quantum anmber. 1L s an integer whose
value is equal 1o or greater than / 4 1. The functions Ly #+ 1 (g} are
called associated Laguerre polynomials. A formula for generating them is

Lo g ¥+ 1{p) = (ﬁ,ip)ﬂ i IE"‘ (%]‘ e c'-“:ll (141

Siomne of these are as follows:
La™p) = |
Li%p)=1=p LiYp) = =1
LP(p)=p* —3p+2 Lalp)=1p—-4 L p)=2

In the process of solving the radial differential equation, it is found
that the eigeavalues of the energy E are determined solely by the prin-
cipal quantum number n. The eigenvalues are given by the formula
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This is exactly the same formula as that given by the simple Bobr
theory.

Far each value of the principal quantum number n, with energy Ea
given by the above equation, there are n different possible vilues of the
azimuthal quantum oumber L pamely 0, 1, 2,++-n —2,n — L Each
value of | represents a different kind of eigenstate. States in which
f=201,2 3, are traditionally called s, p, 4, and [ states, respectively.

For each value of [, there are 2! 4+ | possible values of the magnetic
quantum pumber m. These are i =1y =10, 3
(1 = 1), 4+ L Az aresull, there are it differsnt eigenfunctions or states

for each value of n. The following diagram summarizes thesituation:

al l 2 3
Floye | 4] 1 2
(=) (s} (r) (s} (7 ()

mﬂﬂ-.1l]-|-1ﬂ—1ﬂ|-I—1—'|D+1 b2

The complete state function, corresponding 1o prescribed values
of n, 1. and s, is given by the formula

Yt = Cpf et Ly & V1V (p) Pi=i(cosd) ' {743

where p = 2rfnag, and C s & normalizing constant. Table 7.2 shows
a few of the simpler state functivas uf the hydrogen atom. Some of thess
are illustrated in Figure 7.6.

Figure 7.6, Frobahility density for the first excited stute {# = 2} of the hydrogea
AL

Angular Momentum The angular momentum of an electron moving
-1 a central force field can be obtained by standard guantum-mechan-
ical methods. Tt develops that the angular momentum is guanlized, as
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in the Bohr theory, and that the magnitude is determingd by the

T quantum numbers designating the vanous quantum staes.
_ : The fotal orbital angular momentum is given by an expression in-

ample Bohe volving only the azimuthal quantum number I, namely
cith eneray £a
= values of the I+ L

cat— b Engh g o VIT+ Tyn

sies in which - g
?_. E.Eip:“wjt :: This is different from the value rh/2s of the Bohr theory. o particular, !
' 1’;": ?:?5?_ : ; for £ states {{ = 0}, the angular momentum is zero. Physically, this

it '_"ﬂ ‘“atr_; means that the electron cloud for s states does nol possess anet rotation.

A ) [t does not preclude any maotion of the electron.

iHe sinuation:

: Table 72 EiceneUncTions Of THE HYDROOGEN ATOM
¥ : (MORMALIELAD CONSTANTS ARE OMITTED.]

ETATE —= ) —— | =it
I +2
. Ia 1 i 0 e
«nbed valies 25 2 i 0 et 1] = )
_— | I:i.ﬁ ﬂ gria
Ip 2 1 0 e S p cas i .
[Tk ny gin i gt f
ble 7.2 shows e 3 v " cERept =l E-
Some of these = sin @l e~ i
1p 3 | L] Eelrte (G . Jp) el t
28 41 sinf eti¢ ;
= A
. =1 Gt i et
2 p{an =0} 3d 3 2 0 e-i1ihe o3 sin & cos & e
e 31 () — 3 cos® B) _
1 - +2 sin  cos 8 e+l Ei
\-.J; o sin? @ e¥0 -_ 1
k. i B o
4 agl
j ¥ Theory also shows that the = compenent of the angular momentim % l
is quantized, This component has the value 3§
H
niltf 2w = mh 1
af Ahechiieronsh : whete m is the magnetic quantum number. As we have scen, mi i Lhe ]
: quantum number associated with the angle of rotation ¢ about the i

s axis, Since m €an assume any aof the values 0, =1, =2, --- X}, it
follows that there are 2 + | different possible values of the z com-
ponent of the angular momentum for a given value of [ This is fllus-

trated in Figure T.0.

A= aron moving
=.mechan-
) tized, as
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=2
£ anis
L
=
7 axis iy = +2 i
m‘=-l-|] r".l—'+l
m; = O my= 0 i
i == = m, =—1
g _—2

Fipure 7.7, space guantization of angulor nwanentum fior the coses { = | and
=

7.6 Radiative Transitions and Selection Hules

As already meationed in Section 7.6, when an atom is in the process
of changing from one eigenstate o another, the prabability density of
the electronic charge becomes cohersnt and oscillates sinusoidally with
a frequency given by the Bohe frequency condition. The way in which
the charge cloud oscillates depends on the particular gigenstates in-
volved. In the case of a so-called dipole transition, the centinid of the
negative charge of the electron cloud oscillates about the positively
charged nucleus. The atom thereby becomes an oscillating eleciric
dipole.

Figure 7.8 is & diagram showing the time varation of the charge
distaibation for the hydrogsn atom when it is in the coherent staie
represented by the combination 15 & 2p(m = 0). It is seen that the
centruid of the charge moves back and forth along the 7 axis. The

S—

1 £
|

i HH@‘; ¥ Y SmT
T Ty It"-' l Ty ¥ Ty _t.;""-- o s Ay
{ |

P . - L
=3 hiaE r=hfaE

i
-~

— Al : i
=0 i= 3 hfaE e %Hﬁf

Figure 7.8. Charge distribution in the cohereat state 1y + 2ps as a funetion af
lime The atom is an oscillating dipole.
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