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We can now replace the actual bell-shaped function T by the Glaser expression
NJ!—

] 1 + AN\.QVN ’

a r.m:é,s&: a such that the T2 curves, real and model, have the same area—

using wo_..E:_m (4.15). we see that this ensures that the focal lengths are

identical in the extreme case of weak convergence. For o we obtain the

expression:
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for such functions, 7 = having the same maximum 7, and

The values of focal length which have been calculated in this way are
.moocnzo to within two per cent for very convergent lenses in the region which
is used in practice: 0-1 <y < 10; an excellent agreement. The numerical
values are obtained from the formulae:

a Kyl oyl
fi = l.lw\lu fo = AN\A v

sin(K ) sin(K z) °

2

Zr, = a K cot(Km) — HIMQIV
zr, = —a Kcot(Km) — ﬁu

\Ilmw,
K=+ (5)ers., (8.10)

: \

a = 0-483 coth? @ (x cothx —1),

— . X - -
7,, = 2-636 tanh ﬁrwxy, x = —log, }y.
K is always very close to unity, and the formulae approximate to:
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The reduced ray can be written in terms of sinusoidal functions.

In Fig. 72, the closeness of the agreement between the values of the focal
length calculated in this way and the values obtained experimentally by
Spangenberg and Field (1943) is displayed—the other curve in the same
figure represents the behaviour of the abscissa of the image focal plane.

The curve T(Z) and the cardinal elements are even more accurately
represented if we write

\N
ﬂnﬁomoor ﬂlblv (8.12)
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(Fig.73); the reader is referred to the article by Bernard and Grivet (1952a)
for further details. In Fig. 74, the results furnished by this improved model,
the theoretical results of Goddard (1944), and the experimental results of
Spangenberg and Field (1943) are all presented simultaneously for com-
parison.

So far we have been making the assumption that the gap between the
cylinders is thin; if this gap is in fact of width 24, however, the axial potential
is found to be well represented by

D+ Dy _+_IV\ 1 coshw(z + d)

v 2 l +9 2m0d log. coshw(z — d) | (®.13)

so that the formulae listed earlier are still valid provided o is replaced
by w,, where
tanh (wd)

T w = 1.318. 8.14)

w, =
These same formulae also describe quite accurately (to within a few per
cent) the lens which is formed by two diaphragms in which two equal
circular holes have been cut.

82 LENSES FORMED FROM THREE DIAPHRAGMS

8.2.1 The Potential

The three-clectrode, or “einzel” lens is frequently used as the second
lens of a cathode ray oscillograph, and is also the standard type of lens
for an electrostatic electron microscope. As the bibliography for this para-
graph shows, it has often been studied; we shall describe the properties
of the einzel lens in terms of the very complete, though analytically simple,
theory which Regenstreif (1951a) has proposed. We have already stated
that the potential around a single plate with a circular hole, lying between
two distant parallel plates without holes, can be calculated; on the axis,
it takes the form

W) = a + bz + cztan Aﬂv (8.15)
Regenstreif, and later Bertein (1952b), have shown that the potential on
the axis of the three-electrode lens can be represented approximately by
a linear superposition of three potential functions of the form (8.15).
We try, therefore, to use a function of the form

G(2)= AV (z — zp) + BY(2) + C¥(z + z). (8.16)

A function constructed in this way satisfies Laplace’s equation exactly,
but can only be approximately matched to the boundary conditions.
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FiG. 73. Approximations to the characteristic function.
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FiG. 74. The cardinal elements of lenses with two equal cylinders.
: ﬂmm:_ﬁ obtained with the second approximation (Grivet-Bernard).
A A A experimental results, —e—e— : Goddard’s theoretical results.
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Regenstreif selected the values of 4, B, C, a, b, ¢ in such a way that ¢(z2)
would represent the actual field most faithfully at the centre of the lens
where the electrons move most slowly, and are hence most susceptible to

deviation. This produces
c(:)=a+b TN + 2 tan! AEV
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in which R, is the radius of the opening in the central electrode, which
is held at potential @,; R, is the radius of the opening in each of the outer
electrodes, which are held at potential @,; and z, is the distance between
the central electrode and each of the other two. This notation is shown
in Fig. 75a; in Figs. 75b and 75c¢ a cross-section of the actual lens and a
photograph of the actual component parts are to be seen. A potential
function of the form (8.17) is not difficult to handle, and a comparison
between electrolytic tank measurements and this mathematical model shows
that the latter provides a very good description of the lens. We should,
however, point out that a considerably less accurate model is necessary

FiG. 75a. The lens formed from three thin diaphragms.
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F1G. 75b. The cross-section of a three-clectrode lens (scale: #/5).
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lower electrode

screening for the high tension lead

high tension input connection upper clectrode

F1G. 75¢. Some typical electrodes.

this case than in the case of the immersion objective which is discussed
later; an error of a few per cent is of little importance, as the electron
velocity never drops below some 20 per cent of the maximum velocity.
whereas near a cathode, the corresponding velocity might be less than
one-thousandth of its value at the anode.
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In a unipotential lens with all three openings the same size, and with
a thick central electrode, there is a different method of approximating to
the real situation which gives a better expression for ¢(z) in the neighbour-
hood of the centre of the lens, particularly if the holes are large in diameter
with respect to the inter-electrode distance (a situation in which Regenstreif’s
formulae can no longer be applied).

The general solution of the Laplace equation can be put into the form

D(z,r) = \ [A(k)sinkz + B(k) coskz] Iy(krydk. (8.18)

0

If the potential is known over the surface of a cylinder of radius R, A(k)
and B(k) can be determined and the axial potential ¢(z) deduced. We
suppose, therefore, that the potential over the cylinder on which the peri-
pheries of the three apertures lie varies in some simple fashion; we suppose,
for example, that the potential, which is constant over the electrode surfaces,
changes linearly between them, an assumption fully justified by measure-
ments in the electrolytic tank.

With a potential @, applied to the outer electrodes and &, to the central
one. the formula which is finally obtained for ¢(z) (for z = 0) is

, — Py coshw(z + z,) coshw(z — 2y)
— # )
2w(zs — 7y) °8 coshw(z + z;) coshw(z — z7) 8.19)

(see Septier (1953). for example). in which @ = 1-318. z, is the abscissa
of the face of the central electrode, and z, that of the inner face of the
outer electrode. The origin z = 0 is at the centre of the lens, and the radius

of the openings is taken as the unit of length.

The case z; = z, corresponds to the limiting situation of a three-cylinder
lens, with an infinitely small gap between each pair of cylinders. The poten-
tial reduces to

¢(2) = @, — (@, — D)) [tanh w(z+ z,) —tanh w(z—2z,)]. (8.20)

p(z) =P

The situation in which the diaphragms have different radii has been studied
by Ehinger and Bernard (1954).

8.2.2 The Cardinal Elements

The formulae of the preceding section are too complicated to be sub-
stituted into the ray equation with any hope of successfully solving it.
Regenstreif, following an idea of Riidenberg (1948), represented the curve
#(z) by three smoothly joined parabolic arcs. The Gaussian or transgaussian
equation of motion is soluble in terms of hyperbolic functions (with
arguments which are circular functions) or of circular functions (with
hyperbolic functions as arguments). Each arc is joined continuously
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and with the same gradient at the frontier between each parabolic region:
although the calculation is long, it is straightforward and possesses the
advantage that the resulting formulae are particularly tractable in that

FiG. 76. The focal length of a weak lens as a function of x.

for a whole range of microscope lenses, the physical data only appear
in the form of a single, and thus most convenient, parameter x, given by

GH + l@w |@~
) I + 2% tan? Apv
x = w%w ~ Ry \M ; (8.21)
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x is simply the ratio of the axial potential at the centre, ¢ (0), to the potential
on the axis in the plane of one of the outer electrodes. From among Regen-
streif’s numerous results on this series of lenses, we list five important
examples:

(1) The focal length of a lens of weak or medium convergence is given by

' 8 X

L= 8.22)

Zy 3 (1 — x)? (
(see Fig. 76); the principal planes then coincide with the central elec-
trode.
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(i) The focal length f of strong lenses and the position zy of their foci

are given by E 07

7o = Tsin(0-707 logox 4 0-353)
ZF -, ,5in(0-707 log. x — 0-887)
=T 0T 6707 Tog, x 7 0355)

“o

(8.23)

(see Fig. 77).
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FiG. 77. The behaviour of the focal length of a strong lens.

(iti) The critical potential @, of the central electrode at which the lens
is transformed into a mirror is given by

¢ v (8.24)

Py “0 an-1 Apv
R,

(see Fig. 78). . . o
(iv) The focal length of convergent or divergent mirrors is given by
Va 072

J_ , (8.25)
Z,  sin[0-707 log, (— x) + 0-35]

(see Fig. 79).
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(v) The cardinal elements of lenses in which the central electrode is
positive and accelerating in its action are given by Regenstreif, and the
behaviour of the focal length is illustrated in Fig. 80.

The formulae which we have at our disposal, therefore, are adequate to
describe very fully indeed the behaviour of this family of lenses. These
theoretical predictions are in satisfactory agreement with the measurements
of Heise and Rang (1949).

° Reflexion

F1G. 78. The repulsive potential @,/®, as a function of zy/R,.

f/z,

F1G. 79. The focal lengths of mirrors.
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FiG. 81. The appearance of a lens with a thick central electrode.
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Finally, we mention the case in which the central electrode is very thick,
for which the formulae are more complicated but no more difficult—the
potential is represented by a wide “plateau” in the centre of the lens,
and to the parabolic arcs, we must add a fourth section, a horizontal
straight line; the results are again in good agreement with experiment.

In Fig. 81, the lens is shown schematically; in Fig. 82, the values of the
focal length are plotted. The parameter v is defined by v = z,/z,.

FiG. 82. The focal length of a lens with a thick central electrode as a function
of x, for various thicknesses.

8.2.3 Aberrations; Ellipticity Astigmatism

The results of the preceding section have a special relevance when we
consider aberrations, since the focal length, distortion, and spherical
aberration all pass through their minima simultaneously (Bruck and Ro-
mani, 1944; Heise, 1949), With the aid of Regenstreif’s formulae, therefore,
we can easily establish the conditions for these minima which correspond
to the value x, = 58 x 102 (f, = 0-7730) when the central electrode
is thin. Only with difficulty can the aberration coefficients C,and C. of
the lens be determined using this approximate method: we need to repre-
sent P(z) by a single, well-chosen. analytic function, which would enable
us to integrate the equation of the paraxial rays. Glaser (1952) and Glaser
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and Schiske (1954, 1955) have suggested the following model:
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&, denotes the accelerating voltage and d is the :m:n@&: of Sm.cm:-
shaped curve representing ®(z); ®,(0) = ®,— @ (0O) is the potential at

2= 0(Fig. 82a).
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F1G. 82a. The potential distribution in ::.o:ﬁm_ E:_?:c::w: lens, E_M Glaser-
Schiske model: d denotes the half-width at half the maximum height.

The factor k* can be calculated by Regenstreif’s method, recently
improved by Kanaya et al. (1966). for each J\,Uo of _9,: m:a.omw: <m_:w
of ®,. The following table gives the values of &* m:ﬂ d for various lenses,
when the central electrode is held at cathode potential (P, = 0).

RIRy | /R | 2R & dz,
! 0-550 | 0-875

1 0 2 0-740 | 0-677
4 0-860 | 0-590

5 0 2 -720 :.aﬂ
- 4 0-855 | 0-581
1 3 0-950 | 0-700

) 1’51 35 | 0-980 | 0-705
151 45 | 0-988 | 0:659

2 4 0-996 | 0-750




