22.1. General Properties of Image Formation

22.1.1. Introduction

22.1.2. General Properties of Image Formation

22.2. ELECTROSTATIC LENSES

CHAPTER 22

K. J. Hanson and R. Laer
The power \(K \) of a lens is defined by:
\[
\frac{K}{\lambda} = \frac{1}{f} = \frac{f}{\lambda - f}
\]
for any object distance \(e \).

The following points:

1. **Cardinal Points**
 - The coordinates of the image points. Without restriction with these cardinal points, we shall consider only those forms of the image formation in the small angles that we can determine. From these, we can determine all possible objects in the case of two principal rays including the axes and (p) from the geometry of the lens. We proceed in this manner, if it is possible (a).

2. **Optical Lens Data**
 - The coordinates of the image points are the same as the axes of the principal points of the lens, which is the direction of the principal points. Applying these expressions to special ray corresponding to the principal point of the lens, we will find that the coordinates of the lens points are:

\[
\beta = \beta_{p} = *_{p}z - *_{p}z
\]

(c) The coordinates of the points of the principal points of the lens are:

\[
\beta_{p} = *_{p}z - *_{p}z
\]

(d) The intersection points of the axes are:

\[
*_{p}z = *_{p}z
\]
3. Partial Chromatic Aberration

The partial chromatic aberration is the difference between the wavelengths of the image and the object. This occurs because different wavelengths have different indices of refraction, causing them to focus at different points in the image.

2.2. ELECTROSTATIC LENSES

2.2.2. OPERATING RANGES OF LENSES

For electrostatic lenses, the operating ranges are determined by the strength of the electric field and the distance between the plates. The range is limited by the finite energy of the charged particles.

\[f/1 = f/1 = f \]

Hence, the focal length \(f \) is the same for all wavelengths. This is because the relationship between the focal length and the lens material is independent of the wavelength.

\[\left(\frac{M}{M} \right)_{\eta} = \left(\frac{\eta M / M + 1}{\eta M / M + 1} \right)_{\eta} \]

This is valid for all materials, but not for all materials. For some materials, the index of refraction changes with temperature or pressure.
Computing this result with (7), we find the required relation between the

\[\frac{d^2V}{dY^2} = (\infty)^p \quad \text{and} \quad \frac{d^2V}{dY^2} = (\infty)^p \]

Substituting into (31) and comparing it to (41) we get

\[\alpha \left(\frac{1}{\alpha} \right) fV \cdot \frac{d^2V}{dY^2} = fV \cdot \frac{d^2V}{dY^2} = \alpha \]

[41]

\[fV \cdot \frac{d^2V}{dY^2} = \alpha \]

In this manner we obtain with (1) and (7) the local differential of \(fV \) and \(fV \), which is regarded here as a function of \(\alpha \), \(\alpha' \), \(\alpha'' \), \(\alpha''' \). The local differential of the coordinates of the focal and principal points.

\[\frac{d^2V}{dY^2} \cdot \rho = \frac{d^2V}{dY^2} = (\infty)^p \]

If the chromatic aberration which we may write

\[\frac{M + M}{\alpha} \cdot \frac{d^2V}{dY^2} = (\infty)^p \]

the rear focal point

\[\frac{d^2V}{dY^2} \cdot \rho = (\infty)^p \quad \frac{d^2V}{dY^2} \cdot \rho = (\infty)^p \]

Considering the Huygens-Lagrange formula

\[\frac{d^2V}{dY^2} \cdot \rho = (\infty)^p \quad \frac{d^2V}{dY^2} \cdot \rho = (\infty)^p \]

For small angles of expansion, Eq. (6) becomes

\[(M + M) \cdot fV = (M + M) \cdot fV \]

with

\[(M + M) \cdot fV = (M + M) \cdot fV \]

And the chromatic aberration, which is given by the displacement of the card-

dinals, is shown in Fig. 10. The central beam can be regarded as a beam of parallel

I. The central beam can be regarded as a beam of parallel

What significant mathematical conclusions are:-

(a) Very strong diminution of the (0 \(\rightarrow \), \(N \))

(b) For very strong diminution and (c) for very strong

(c) Very strong diminution and (d) for very strong

(d) Very strong diminution and (e) for very strong

\[\frac{d^2V}{dY^2} \cdot \rho = (\infty)^p \]

The chromatic aberration in the paraxial area may also be described by

\[\frac{d^2V}{dY^2} \cdot \rho = (\infty)^p \]

The chromatic aberration (Fig. 10) and chromatic focal point displacements

\[\frac{d^2V}{dY^2} \cdot \rho = (\infty)^p \]

below the lens (Fig. 10) then those with low energy.

\[\frac{d^2V}{dY^2} \cdot \rho = (\infty)^p \]

Particulars with high energy always intersect the axis at greater distances.

(8) \[\frac{M}{M + \alpha} \cdot \rho = \frac{M}{M + \alpha} \cdot \rho = (\infty)^p \]

where \(\frac{M}{M + \alpha} \cdot \rho = (\infty)^p \)
4. General Information about Off-Axis Data

In discussing the data about the off-axis lens zones' again we continue

\[\frac{M}{M^*} \cdot p \cdot (\infty)^{\phi} = (0)^{\phi} \]

especially the combination of (17), (16), (61) leads to the result

\[\frac{\delta V}{p} = (\infty)^{\phi} \]
\[\frac{\delta V}{W} = (0)^{\phi} \]

we obtain

\[\frac{\left(\frac{\delta M}{\delta V} \right)^*}{p} = \frac{W}{v} \]

Later on with the combination of the corresponding chromatic-aberration disks will be indicated by the symbol \(\Delta \). The symbols within the brackets without primes. The symbols now shall mean from the right-hand side. In this case we must convert

\[\frac{M}{M^*} \]

in opposition to our former procedure the

\[\frac{\delta V}{p} = (\infty)^{\phi} \]

of the focal point on the object side:

\[\frac{\delta V}{p} = (\infty)^{\phi} \]

of the chromatic-aberration constant \(C^\phi \) and the chromatic-aberration constant \(C^\phi \)
ion, Held curvature, and coma.

In order to determine director
the special aberrations in the form of the rays with
the cross, it is for example, sufficient to know the general points and
surface of the cross and the values of all rays in
the points and the shape of the curve and the positions of all rays in
their all geometric points according to Fig. 4 by the axes
of the plane of incidence, we can change.

The curve of the plane of incidence, which is not only

4. Summarily. Except for the axial aberration, which is not.

The distance from the one drawn describes the off-axis aberration.

The points of the plane are not drawn in the same manner, the determination of this
planes. From the same object point, which do not proceed in the

2a) From the field curvature (curvature of the surface of points, marked by

Field curvature and off-axis aberration. Figs. 4 shows how

Fig. 3 shows the distortion of the parabola.

According to the parabola of Fig. 3, the point
placed at a large distance of the image plane will not influence the distortion
at a point source at the distance \(d \). The image screen will not influence the
To Fig. 4 we project the shadow image of an object located at the distance \(d \). The

4. Distortion. As the points of the field curvature of Fig. 4 are
are exactly drawn in Fig. 4. Therefore such is the

For point sources of very narrow beams, the outer rays of which are drawn in
the plane of incidence, we can make use of the calculated aberrations (see Sec. 2.5).

In the least zone immediately around to the paraxial area (in the so-

2.2. Third-Order Aberrations

\[
\begin{align*}
\text{(2a)} & \\
\text{(2b)} &
\end{align*}
\]

is the spherical longitudinal aberration (see Fig. 2.5) and

is the corresponding Gaussian point for \(d = 0 \).
The radius of the spherical deformation disk is given by

\[
\frac{(0\lambda)_{\theta}}{r_{\theta}} = \frac{\delta V}{r_{\theta}} = \frac{\delta V}{(\infty)_{\theta}}
\]

In the second case of the spherical deformation disk (see Fig. 6), we can write the radius of the spherical deformation disk in the equation by setting the radius of the spherical deformation disk to

\[
\frac{\delta V}{(\infty)_{\theta}} = \frac{\delta V}{r_{\theta}} = \frac{\delta V}{r_{\theta}} = \frac{\delta V}{(\infty)_{\theta}}
\]

The radius of the spherical deformation disk is determined by the focal length.

Then, we obtain for the spherical deformation disk in the equation by setting the focal length to

\[
\frac{0\lambda}{\delta V} = \frac{\delta V}{r_{\theta}} = \frac{\delta V}{r_{\theta}} = \frac{\delta V}{(\infty)_{\theta}}
\]

The radius of the spherical deformation disk is determined by the focal length.
The experimental methods are used to determine the distortion constant of the photographic plate. The distortion constant is determined by comparing the measured values of the distortion constant with the values calculated from theoretical considerations.

From this, the distortion constant can be calculated using the relation:

\[\varepsilon = \frac{\Delta x}{x} \]

where \(\Delta x\) is the distortion and \(x\) is the distance from the photographic plate.

In conclusion, the distortion constant is a critical parameter in the analysis of photographic data, and its accurate determination is essential for precise measurements in various scientific fields.
B. SIMILARITY LAWS

Of the two rays the equal, the shorter determined by the ratio of the desired of the electron.

For non-relativistic velocities of the particles, the properties of an electron are only determined by the incident angle of the electron.

The focal point of the image side.

The focal lengths of the two rays may be determined from the direction of the incident and the deflection of the electron. The focal lengths are identical at the positions of the corresponding points on the image. This can be calculated from the positions of the corresponding points on the image. For small angles, the ratio of the deflection to the incident angle is constant in direct proportion to the direction of the electron. The image side is measured in direct dependence on the incident angle, and the focal length data is different.

If one intersection is determined only by the paraxial lens data, it is different.

The measurement of the focal lengths can be accomplished by comparing the position of a point in the focal length at the corresponding points on the image. The image side is calculated by comparing the position of a point in the focal length at the corresponding points on the image.
2.2 Electromagnetic Lenses

C. Concentrations from the Equation of Motion

The intensity distribution of the wave is given by the equation:

\[\int \nabla \cdot \mathbf{E} = \frac{\epsilon_0}{2} \nabla^2 \phi \]

where \(\nabla \cdot \mathbf{E} \) is the divergence of the electric field, \(\mathbf{E} \) is the electric field, \(\epsilon_0 \) is the permittivity of free space, and \(\phi \) is the electric potential.

D. Magnetic Lenses

The magnetic field \(\mathbf{B} \) is given by the equation:

\[\mathbf{B} = \nabla \times \mathbf{A} \]

where \(\mathbf{A} \) is the vector potential.

E. Reference to the Previous Sections

The previous sections provided the theoretical background necessary for understanding the equations presented above. Further details and derivations can be found in the referenced sections.
2.2 ELECTROSTATIC LENSES

1. An Illustrative Model of the Single Lens

Moreover, for the realization of volume refractive power, the volume supply is needed. This idea is elaborated for the realization of volume refractive power, indicating that the volume supply is essential for the realization of volume refractive power.

2.2.2 DATA OF PARTIAL LENSES

With short focal lengths, the lens is much more than 60 kV, and the lens is of high efficiency. It is important to optimize the high-voltage lenses. Therefore, these lenses are not adequate for high-resolution microscopes. Therefore, these lenses are not adequate for high-resolution microscopes.
The dependence of the cardinal points on the voltages V_{1} and V_{2} is shown in Fig. 2. The results of the measurements are shown in Table I. The characteristic curves of the electron beams are shown in Fig. 3.

The characteristic of the electron beams may be represented by a curve of the form:

$$\frac{1}{f} = \frac{1}{R} = \frac{1}{f_0} + \frac{1}{k}$$

where f is the focal length, R is the radius of curvature of the electron beam, f_0 is the focal length of the reference lens, k is a constant, and R is the radius of curvature of the reference lens.

The characteristic curves of the electron beams may be represented by a curve of the form:

$$\frac{1}{f} = \frac{1}{R} = \frac{1}{f_0} + \frac{1}{k}$$

where f is the focal length, R is the radius of curvature of the electron beam, f_0 is the focal length of the reference lens, k is a constant, and R is the radius of curvature of the reference lens.
22 ELECTROSTATIC LENSES

Fig. 12 Power characteristics of symmetrical single lenses. Parameter is the thickness d.

Asymmetrical single lenses are essentially discussed in connection with
diameter g of the intermediate electrode (Hess and Rane, 1949).

Fig. 11 Power characteristics of symmetrical single lenses. Parameter is the bore

The side with the higher potential gradient

is indicated by the letters "s". The "midplane of the lens" appears displaced towards
these lenses is no longer symmetric or with respect to the intermediate electrode.

The power maximum of the asymmetrical lens is reached almost in the same
volcano ratio as the maximum of the corresponding symmetrical lens and is
both local maxima of asymmetrical single

\[R_s = \frac{c - b}{a - b} \]

\[R_s = \frac{c + b}{a + b} \]

The curves may be taken from Fig. 14.

Asymmetrical single lenses are geometrically different. The reason for these
metrical shape parameters, the lenses with the first maximum of the lens

K. H. HANSEN AND R. LÄVER
unprofitable loss decreases approximately 8% with increasing beam current. In the region near the focus length of the condenser lens (1947), the performance of the system is dominated by the image distance and the condenser lens. At low current, the image distance is much less than the system's focal length, and the condenser lens is a perfect lens. As the beam current increases, the image distance increases and the condenser lens performance is dominated by the condenser lens itself. In this region, the condenser lens is a perfect lens. The image distance of the system is defined as the distance between the image plane and the condenser lens, and for a fixed beam current, the image distance is proportional to the square root of the beam current. The condition of both figures leads to the following result. Figure 1 is the solid curve, the region of interest, and the dotted curve, the region of interest. Figure 2 is the solid curve, the region of interest, and the dotted curve, the region of interest.

The image distance is defined as the distance between the image plane and the condenser lens, and for a fixed beam current, the image distance is proportional to the square root of the beam current. The condition of both figures leads to the following result. Figure 1 is the solid curve, the region of interest, and the dotted curve, the region of interest. Figure 2 is the solid curve, the region of interest, and the dotted curve, the region of interest.
2.2 ELECTROSTATIC LENSES

\[
\left(\frac{1}{f} - 1 \right) \frac{M}{M_0} = \frac{2\kappa}{d}
\]

validity of from the given information about the lens characteristics, respecting the sense of the local length. The displacements however are very small.
...
2.2 ELECTROSTATIC LENSES

The spherical aberration of weak lenses (focus points beyond the lens field) is discussed in Section 2.1.4. The spherical aberration is given by the formula:

\[C(\infty) = \frac{1}{2} \frac{R^2}{f^2} \]

where, \(R \) is the radius of curvature of the lens, and \(f \) is the focal length of the lens.

According to Seeliger (1949), the influence of elastic effects on the spherical aberration of even modestly large lenses is not significant. For strong magnifying lenses, however, the spherical aberration of uncorrected lenses is significant. Seeliger and others (1958) report that such lenses have a spherical aberration of up to 20%. Seeliger and others (1958) and Seeliger and others (1959) utilized an asymmetrically shaped lens with \(C(\infty) \) = \(-2 \) behind the lens for high magnification. The spherical aberration constant, \(C(\infty) \), is given by the equation:

\[C(\infty) = \frac{1}{2} \frac{R^2}{f^2} \]

where, \(R \) is the radius of curvature of the lens, and \(f \) is the focal length of the lens.

Seeliger (1949) first pointed out that, as the beam moves from the lens to the film, the spherical aberration constant, \(C(\infty) \), changes sign. This is because the beam is no longer on the axis of the lens. The spherical aberration constant, \(C(\infty) \), is a function of the beam's position on the lens. For a beam that is not on the axis of the lens, the spherical aberration constant, \(C(\infty) \), is given by the equation:

\[C(\infty) = \frac{1}{2} \frac{R^2}{f^2} \]

where, \(R \) is the radius of curvature of the lens, and \(f \) is the focal length of the lens.

Seeliger (1949) and others (1958) also reported that the spherical aberration constant, \(C(\infty) \), changes sign as the beam moves from the lens to the film. This is because the beam is no longer on the axis of the lens. The spherical aberration constant, \(C(\infty) \), is a function of the beam's position on the lens. For a beam that is not on the axis of the lens, the spherical aberration constant, \(C(\infty) \), is given by the equation:

\[C(\infty) = \frac{1}{2} \frac{R^2}{f^2} \]

where, \(R \) is the radius of curvature of the lens, and \(f \) is the focal length of the lens.
Fig. 2.2: Contribution of the longitudinal field on the symmetrical and asymmetrical single lenses shown in Fig. 2.5. The numbers are as in Fig. 2.2 (Hanzsen, 1958).

Pro. 2A: Variation in the position of the same lens as shown in Fig. 2.2 for two different values of the longitudinal field on the symmetrical and asymmetrical single lenses. The beam enters the lens nearly parallel to the axes and is not deflected significantly. The center of the field has a large effect on the symmetrical lens (similar to the lens of Fig. 16). In comparison, the slope at the center shows a similar effect for the symmetrical and asymmetrical single lenses (similar to the lens of Fig. 16).
on gauge lenses as described in Section 2.2.2.8). Limited losses have been observed for upper limits to some detectors. These losses are significant only when
soil of the condiected loins of soil and the earth with short distant type then lower losses have been observed for the collection of losses with high dielectric. These losses less than are usually neglected for imaging purposes but frequently

4. Three-Phase Losses

smaller than the electrical constant of the soil gauge (Bernard, 1929). Three-Phase losses are smaller than the electrical constant of the soil gauge, as shown by the losses in Figs. 7 and 11, which indicates that the same losses are smaller than the electrical constant of the soil gauge. A similar effect is shown by Fig. 11, which indicates that the same losses are smaller than the electrical constant of the soil gauge.

The general properties of these lenses have already been reported.

3. Gauge Losses as Single Losses

can be drawn from Fig. 7, which shows the influence of the electrical constant of the soil gauge on the losses. The influence of the electrical constant of the soil gauge on the losses is shown by the heavy lines in Fig. 7. The influence of the electrical constant of the soil gauge on the losses is shown by the heavy lines in Fig. 7.

For some of the curves shown in Fig. 7, the deflection of the soil gauge is determined by the loss, as shown in Fig. 7. The influence of the electrical constant of the soil gauge on the losses is shown by the heavy lines in Fig. 7.

The values of the soil losses are given in 2.2.2.9.5. Several measurements are needed to determine the influence of the electrical constant of the soil gauge on the losses. The influence of the electrical constant of the soil gauge on the losses is shown by the heavy lines in Fig. 7.

Electrostatic losses are given in 2.2.2.9.6. The influence of the electrical constant of the soil gauge on the losses is shown by the heavy lines in Fig. 7.

Therefore, the interaction of the soil gauge with the observation plane...
The use of the parabolic mirror in the present case is to produce a virtual image of the object. The parabolic mirror is designed to focus the light rays from the object at a single point, which is the focal point of the mirror. This focal point is the location where the light rays converge. The shape of the mirror is such that the light rays are reflected in a way that creates an image of the object at the focal point.

The focal length of a parabolic mirror is given by the formula:

\[f = \frac{D^2}{8\pi} \]

where \(f \) is the focal length, and \(D \) is the diameter of the mirror.

The parabolic mirror is used in applications where a clear, focused image is required, such as in telescopes, telescopic microscopes, and various optical instruments. The mirror's design ensures that the light rays are reflected in a way that produces a sharp, clear image of the object, even when the object is far away.
\[
\frac{\theta - \theta_0}{\theta_0 - \theta_1} = n \gamma
\]

In this expression, \(\theta \) is the angle of incidence, \(\theta_0 \) and \(\theta_1 \) are the angles of refraction for two different media, and \(n \) is the refractive index of the second medium. The term \(\gamma \) is a function of the wave's properties and the medium.

The expression describes the behavior of light passing through a dielectric medium, where the change in angle is proportional to the refractive index and a function of the wave's properties.

In summary, the equation above is used to calculate the change in angle of light as it passes through different media, with the refractive index playing a crucial role in determining the outcome.

The concept of the dielectric constant, \(n \), is central to understanding the behavior of light in various materials. It is a measure of how much a material can store electric energy in an electric field and how much it can store magnetic energy in a magnetic field, when a material is subjected to a change in the electric or magnetic field, respectively.
The results of these measurements are represented in Figs. 29 and 30, where the width of the image was calibrated with a scale. The two co-axial lines of equal diameter are drawn with short distance, and the two co-axial lines of equal diameter are drawn with short distance.

The Poisson's relations hold particularly for two-coaxial and two-
The image formation process consists of several steps: (1) the source of the radiation is focused, (2) the radiation is bent by the magnetic field, (3) the radiation is filtered, and (4) the image is formed on the detector or screen.

The magnetic field is given by the formula:

\[B = \frac{v}{L} \]

where \(B \) is the magnetic field, \(v \) is the velocity of the radiation, and \(L \) is the length of the magnetic field.

The electric field is given by the formula:

\[E = \frac{F}{Q} \]

where \(E \) is the electric field, \(F \) is the force on the radiation, and \(Q \) is the charge of the radiation.

The image is formed on the detector or screen by the interaction of the radiation with the detector surface.

In summary, the process of image formation involves focusing, bending, filtering, and detecting.

\[J \]

The total charge of the radiation is given by the formula:

\[Q = \frac{e}{n} \]

where \(Q \) is the total charge, \(e \) is the charge of an electron, and \(n \) is the number of electrons.

The magnetic field and electric field are related by the formula:

\[B = \frac{e}{m} \]

where \(B \) is the magnetic field, \(e \) is the charge of an electron, \(m \) is the mass of the radiation, and \(n \) is the number of electrons.

The electric field is given by the formula:

\[E = \frac{F}{Q} \]

where \(E \) is the electric field, \(F \) is the force on the radiation, and \(Q \) is the charge of the radiation.

The image is formed on the detector or screen by the interaction of the radiation with the detector surface.

In summary, the process of image formation involves focusing, bending, filtering, and detecting.

\[J \]

The total charge of the radiation is given by the formula:

\[Q = \frac{e}{n} \]

where \(Q \) is the total charge, \(e \) is the charge of an electron, and \(n \) is the number of electrons.

The magnetic field and electric field are related by the formula:

\[B = \frac{e}{m} \]

where \(B \) is the magnetic field, \(e \) is the charge of an electron, \(m \) is the mass of the radiation, and \(n \) is the number of electrons.

The electric field is given by the formula:

\[E = \frac{F}{Q} \]

where \(E \) is the electric field, \(F \) is the force on the radiation, and \(Q \) is the charge of the radiation.

The image is formed on the detector or screen by the interaction of the radiation with the detector surface.

In summary, the process of image formation involves focusing, bending, filtering, and detecting.

\[J \]

The total charge of the radiation is given by the formula:

\[Q = \frac{e}{n} \]

where \(Q \) is the total charge, \(e \) is the charge of an electron, and \(n \) is the number of electrons.

The magnetic field and electric field are related by the formula:

\[B = \frac{e}{m} \]

where \(B \) is the magnetic field, \(e \) is the charge of an electron, \(m \) is the mass of the radiation, and \(n \) is the number of electrons.

The electric field is given by the formula:

\[E = \frac{F}{Q} \]

where \(E \) is the electric field, \(F \) is the force on the radiation, and \(Q \) is the charge of the radiation.

The image is formed on the detector or screen by the interaction of the radiation with the detector surface.

In summary, the process of image formation involves focusing, bending, filtering, and detecting.
According to the statement of de Beer (1954a), the value for the cathode position is found in such cases as an artifact of the cathode position. For small incident distances, the cathode position is lower than the maximum, while for larger incident distances, the cathode position is higher than the maximum. This is due to the effect of the incident distance on the cathode position. The cathode position increases with increasing incident distance, while the maximum remains constant. In this case, the cathode position is higher than the maximum, which is due to the incident distance effect. The cathode position is lower than the maximum, which is due to the incident distance effect. The cathode position is higher than the maximum, which is due to the incident distance effect. The cathode position is lower than the maximum, which is due to the incident distance effect.

In order to achieve the best performance, it is necessary to ensure that the cathode position is not too high or too low. This can be achieved by adjusting the cathode position, the incident distance, or the cathode voltage. The cathode position is lower than the maximum, which is due to the incident distance effect. The cathode position is higher than the maximum, which is due to the incident distance effect. The cathode position is lower than the maximum, which is due to the incident distance effect. The cathode position is higher than the maximum, which is due to the incident distance effect.

In order to achieve the best performance, it is necessary to ensure that the cathode position is not too high or too low. This can be achieved by adjusting the cathode position, the incident distance, or the cathode voltage. The cathode position is lower than the maximum, which is due to the incident distance effect. The cathode position is higher than the maximum, which is due to the incident distance effect. The cathode position is lower than the maximum, which is due to the incident distance effect. The cathode position is higher than the maximum, which is due to the incident distance effect.

In order to achieve the best performance, it is necessary to ensure that the cathode position is not too high or too low. This can be achieved by adjusting the cathode position, the incident distance, or the cathode voltage. The cathode position is lower than the maximum, which is due to the incident distance effect. The cathode position is higher than the maximum, which is due to the incident distance effect. The cathode position is lower than the maximum, which is due to the incident distance effect. The cathode position is higher than the maximum, which is due to the incident distance effect.

In order to achieve the best performance, it is necessary to ensure that the cathode position is not too high or too low. This can be achieved by adjusting the cathode position, the incident distance, or the cathode voltage. The cathode position is lower than the maximum, which is due to the incident distance effect. The cathode position is higher than the maximum, which is due to the incident distance effect. The cathode position is lower than the maximum, which is due to the incident distance effect. The cathode position is higher than the maximum, which is due to the incident distance effect.
A. MECANICAL TOLERANCES, SHIELDING OF STRAY FIELD, BUNCHES.

2.23. Practical aspects for the construction of Electron Optics Lenses

The amount of the component's astigmatism independent from one another. This amount is defined as parallel to the direction of the component's astigmatism, i.e., parallel to the direction of the astigmatism. For components with non-parallel, focussing, or astigmatic astigmatism which are composed of a number of components, a number of these components are combined in such a way that the components are focused along a number of components.

The astigmatism of the component is proportional to the number of components.

4. THE ELECTRON DIFFRACTION LENS

The electron diffraction lens is composed of a number of components.

The electron diffraction lens is composed of a number of components.

C. ELECTROSTATIC STATIONS (CORRECTION OF AXIAL ASYMMETRY)

D. ELECTROSTATIC LENSES (CORRECTION OF AXIAL ASYMMETRY)
2. Microdischarges on the Insulation Surface

From various references, it is known that a high electric field can cause microdischarges that weaken the insulation surface. These microdischarges can lead to the formation of small cracks and voids in the insulation material, which can eventually result in partial discharges and eventual failure of the insulation system.

3. Insulators

3.1 Breakdown Voltage of the System

The breakdown voltage of the system is determined by various factors such as the type of insulator, the voltage rating, the environmental conditions, and the electrical stress on the insulator. To ensure adequate insulation, the breakdown voltage must be greater than the expected operating voltage of the system.

4. Insulating Materials

The choice of insulating material is critical in determining the breakdown voltage and the overall performance of the electrical system. Different materials have different electrical and mechanical properties, which affect their suitability for specific applications. Therefore, careful selection and testing of insulating materials are necessary to ensure the reliability and safety of the system.

5. Protective Devices

Protective devices are used to limit the current and voltage during fault conditions to prevent damage to the insulation system. These devices can be classified into two types: short-circuit protective devices and fault current limiter devices. The selection of protective devices depends on the specific requirements of the system, such as the voltage level, the type of equipment, and the location of the installation.
REFERENCES

A comprehensive list of references related to the function of insulators and their applications would be beneficial for further study.

E. Examples for Design

The design of insulators and the positioning of electrodes can significantly affect the function of insulators. Proper design ensures that the insulators perform effectively.

C. Test Results for Design

Test results show that the design of insulators and the positioning of electrodes are critical for optimal performance.

Any mission of electronics must be avoided, according to the function of the insulator and the positioning of the electrodes. This can be done by suitable geometrical design (see Fig. 1.3 and by using

Fig. 34. Design of the function between insulator and electrode.)

Fig. 35. Design of the function between

Fig. 36. Design of the function between

Fig. 37. Design of the function between

Fig. 38. Design of the function between