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Exercise (Curvi-linear system)
Given a reference trajectory that is a helix around the z-axis with

~R(z) = r cos(kz)~eX + r sin(kz)~eY + z~eZ , (1)

with the Cartesian coordinate vectors ~eX , ~eY and ~eZ .
(a) Show that z is not the pathlength s with which the reference trajector is parametrized.

Then compute the path length s(z) and specify ~R(s) so that |d~R| = ds and compute ~es, ~eκ,
and ~eb.
(b) Compute ~ex and ~ey of the curvilinear system and check that d

ds
~ex and d

ds
~ey are what they

are specified to be in the handouts.

Exercise (Time, energy, and symplecticity)
Let the linearized particle transport from initial phase space coordinates ~zi to final phase
space coordinates ~zf be:
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The zeros in the matrix show that the particle motion is independent of the starting time
and that the energy is independent of the starting conditions.
(a) Describe the meaning of the coefficients Dx, Da, Tx, and Ta.
(b) Use the fact that this 4 × 4 matrix is symmplectic to show that the top left-hand 2 × 2
sub-matrix is symplectic.
(c) Show how Tx and Ta can be computed when this top left-hand sub-matrix and the dis-
persion Dx and its slope Da are known.

Exercise (Combined function magnets)
Using the relativistic approximation γ2 � 1, derive the 6 dimensional transport matrix for
A) a quadrupole magnet with length L and quadrupole coefficient k. Make a separate cal-
culation for positive and for negative k.
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B) a combined function magnet with length L, curvature κ and quadrupole coefficient k.
Use K = k + κ2 and distinguish the cases k > 0, k < −κ2, and −κ2 < k < 0.
C) Check that the time of flight could have been computed from the condition ~T =

−J4M
−1

4
~D due to symplecticity.

Exercise (Time of flight spectrometer)
A time of flight spectrometer takes all particles that come from a collision point regardless
of their initial slopes x′ and y′ and transports them to a point in a detector plane. The time
of flight should depend only on the energy, not on the initial position or the initial angle of
the particles in the collision plane. Write the most general form that the transport matrix
from the collision plane to the detector plane can have.

Exercise (Path length and momentum coordinates)
If not the time of flight τ = (t0−t)E0

P0

and the relative energy change δ = ∆E
E

had been chosen
as phase space variables, but the deviation in path length ∆l and the relative momentum
deviation ∆P

P
, how would the transport matrix look like and how could it be computed from

the transport matrix in exercise 4?
Exercise (Thin lens approximation)
Determine the thin lens approximation for the 6 × 6 matrix of a combined function magnet
with quadrupole strength k and curvature κ. Use that the thin lens approximation is lin-
earized in the length L.

Exercise (Solenoid matrix)
(a) Determine the transport matrix for a solenoid in the sharp cutoff limit. It has the length
L, and the longitudinal field strength on axis is Bz for x ∈ [0, L] and 0 outside this region.
As solenoid strength you can use the parameter g = qBz

2p
.

(b) Determine the thin lens approximation of this solenoid, which is linearized in L.
Exercise (Phase space distribution):
(a) Given the Twiss parameters α, β, γ: specify the transformation from the amplitude and
phase variables J and Ψ to the Cartesian phase space variables x and x′.
(b) Specify the inverse transformation.
(c) Given the Gaussian beam distribution in amplitude and phase variables, ρ(J, φ) =
1

2πε
e−

J

ε . What is the projection ρ(x) of this distribution on the x axis. Check that the

rms width of this distribution leads to
√

< x2 > =
√

βε.


