The time dependence of a particle’s motion is
often not as interesting as the trajectory
along the accelerator length “s”.
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The 4D Equation of Motion

—r—f(,dtrt)

3 dimensional ODE of 2"9 order can be changed to a
6 dimensional ODE of 15! order:

ST =2 P="T7=—=D)

dt m - - -
T o7 <7 = {(Z,1), Z=(F,p)

45 = F(F, 1)

J

If the force does not depend on time, as in a typical beam line magnet, the
energy is conserved so that one can reduce the dimension to 5. The
equation of motion is then autonomous.

Furthermore, the time dependence is often not as interesting as the

trajectory along the accelerator length “s”. Using “s” as the
independent variable reduces the dimensions to 4. The equation of

motion is then no longer autonomous.

4Z=f(2.5), Z=(x.3.p..D,)
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The 6D Equation of Motion

Usually one prefers to compute the trajectory as a function of “s” along the
accelerator even when the energy is not conserved, as when
accelerating cavities are in the accelerator.

Then the energy “E” and the time “t” at which a particle arrives at the cavities
are important. And the equations become 6 dimensional again:

di f(Z s), 2=(X,y,px,py,—f,E)

But: Z = (r,p) is an especially suitable variable, since it is a phase space
vector so that its equation of motion comes from a Hamiltonian, or by
variation principle from a Lagrangian.

0 f pX+p,y+ps—H(,p,t) ];lt =0 = Hamiltonian motion

(Sf_pxx'+pyy'—H 1'+p, (x,y,px,py,t,H)]z’ =0 = Hamiltonian motion

The new canonical coordinates are: Z = (x,y,px,py,—t,E) with E=H

The new Hamiltonian is: K=-p(zZ,s)
Georg.Hoffstaetter@Cornell.edu Accelerator Physics USPAS June 2010




Significance of Hamiltonian

The equations of motion can be determined by one function:

wx =0, H(Z,s), &p,=-0.H(Z,s),
- ~ 0 1
43 = JOHE,5)=F(Es) with J=diag(,), J, =( )

The force has a Hamiltonian Jacobi Matrix:

A linear force: F(Z,5)=F(s) 2

The Jacobi Matrix of a linear force: F' ()

The general Jacobi Matrix : F,-j = ZJ.E- or F = (5ﬁT)T
Hamiltonian Matrices: FJ+JF =0

Prove: F), = asz. = aszl.kazkH =J, 0,0 H = F=JDH

FJ+JF =JDJH+JD' J H=0
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H i Symplectic Flows

The flow of a Hamiltonian equation of motion has a symplectic Jacobi Matrix

The flow or transport map: Z(s) = M(S, Zy)

A linear flow: z(s)=M(s)" z,

The Jacobi Matrix of a linear flow: M(s)

The general Jacobi Matrix : Mz'j = azoj M, or M = GOMT)'

The Symplectic Group SP2N): M J M =]

diM azoj F;(Eas)=azoijaZkF;(2’S)
SM(s,2)) = F(Z,5)M(s,Z,)

K=MJM'
K-S MIJM +MJLM =FMJM +MJM F' =FK+KF'
K = J is a solution. Since this is a linear ODE , K = J is the unique solution.
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Symplectic Flows i H

For every symplectic transport map there is a Hamilton function

The flow or transport map: Z(s) = M(Sa 50)
Force vector: h(z,s)= —ll% M(SaEO)JsO:M-l(z,s)
Since then: %5 = l};(gas)

There is a Hamilton function H with: l_i = 5H

If and only if: azjh,- =d,h, = h= h

WM)=-J4<MM ' =JEMIM' J=-JMJ <M J=M"

ds ————— — —_—

MTJ=hT
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Phase space density in 2D

Phase space trajectories move on surfaces of constant energy

ﬂ( 47=J0H = <Z10H
X

\J H(x, p,)=const

A phase space vqume does not change when it is transported by

Jf

C

Hamiltonian motion.

Py At | z | The distance d of lines with equal energy

aH is proportional to 1/ 5]-[ | Z |-1

\) d * At | Z |= const
H (x p.) = const
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Lioville’s Theorem

A phase space volume does not change when it is transported by
Hamiltonian motion. z(s) =M (s) -z, with det[M(s)]=

voume ¥ = = [ [ %, = s, - [

Hamiltonian Motion V= Vo

But Hamiltonian requires symplecticity, which is

much more than just det[M(s)] =
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Generating Functions

The motion of particles can be represented by Generating Functions

Each flow or transport map: Z(s) = M(S, Zy)
With a Jacobi Matrix : Mij = azoj M;  or M = GOMT
That is Symplectic: MJMT =J

Can be represented by a Generating Function:

F(G.Gy»s) with p=-9,F , p,= 9,k
F,(p,Gy,s) with G= 9, F, , p,= 9, F,
Fy(§Po-s) with p=-d,F, , G,=-9,F
F,(P,Dy.s) with G= 0.F, , G,=-0,F,

6-dimensional motion needs only one function ! Butto

obtain the transport map this has to be inverted.
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Generating Functions produce symplectic tranport maps

E(69609S) with ﬁ=_aqﬂ(éﬂé>09s) )

z=”§)=(_5 N T

\p qﬂ(éaéowg)/
. (d |
Zo=|_ |=|z p/= = = g(0,s)
’ \po) aqui(q,qo,S)/

Jacobi matrix of concatenated functions:
5(20) = 2 © E(ZO)
Cij - ajCi - Z azojBk(ZO)szAi(E)jL:E(ZO)

Mog=f = M(g)=FG"

—

Bo= 0, F(G.4y.S)

2= F(7 Gors)ss)

M=fog"

(function concatenation)

= C=A(B)B
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(&) F i SP(2N) [for notes]

&, &
DED A,o

(10 o (0 YY) O g [EE R
_El _Ez F21 Fzz 1 0

— F_IF F—l
M(g)=FG'=| 272 o
Fanl Fzz _Flz _F11F21
O 1 T . . . .
M 10 M — | The map from a generating function is symplectic.
= 2 - Fy Py -F,F, F,F,F, -F, = ( ) 1)
Fan_ll E1F2_11F22 -k, Fﬁl —Fl;lFH -1 0
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Symplectic tranport maps have a Generating Functions
Z=M(z,)

G\ (MG)\ 5. (B ( Bo \ 7o
B =1 ’ Y =h(z,) =J|9F(q.4,) | ..
(éo) ( 7 =) (]3) (M2(§0)) o) |29 (9.9 )1(20)

OF, =—-Jhol ' = F

For F, to exist it is necessary and sufficient that aiFj=ajFl_ = E:ET
~Jh=Fol = -Jh=F()I
Is J h I'" symmetric ? Yes since:
- - -r = -1

gt (0! ~TO~ ~T1~ Yt 0 M
T =L ofa My 9, My 0

_ M21 Mzz 0 1 _ ]\422]\41_21 M21_M22M1_21M11

0 -1 jwfz1 _M1_21M11 Mle M1_21M11
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M}, MM,

M( Z)= M(%apo) ’ M=(MH Mlz)
M(%al’o) M, M,

SERIEAER g

M M =M, M, = (MM,
M, M}, =M, M,

M, M, -M M) =1
MM - M, M/ =1

(MM Y = [ MMM — M, 1M =

le _M22M1_21M11 = le _M22M11M1_2T = Ml_zT

Jhi" = (MzzMS M, - MZZMI;IMH) _ (A B)

C D

M, M\(M, M\ (0 1
Mzz le Mf; Mérz -1 0
y = [M1_21M11M1T2]M1_2T = M1_21M11

!

D=D"
A=A"

]

22[M1_21M11M2Tz - Mle] = Mzle_zl

»"B=C"
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Symplectic Representations

Hamiltonian

2'=JoH(Z,s)

Generating Functions
(P, Do) =-J9F(q,4,,5)

\ 4

Z'=F, FJ+JF =0

\ 4

[from notes]

a

\ 4

Symplectic transport map

MIM =J
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!;3 @) Advantages of Symplecticity

Q 6
DED Ao

Determinant of the transfer matrix of linear motion is 1:

Z(s)= M(s)-Z, with det(M(s))=+1

One function suffices to compute the total nonlinear transfer map:

—

F\(G.Gy»s) with p=-0,F(G.Ge-8) » By= 09,F(G.Gys)

(4)( B A N7

]_5 —aqﬂ(é,qo,S)/ , §=f(g (ZO,S) S)
_(d, G\ s | M=Fog

0T (po) 9, F,(g. qo,s))_g(Q’S)

Therefore Taylor Expansion coefficients of the transport map are related.

Computer codes can numerically approximate M(Sjo) with exact
symplectic symmetry.

Liouville’s Theorem for phase space densities holds.
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(>
5 o)
ED A

For matrices with real coefficients:
If there is an eigenvector and eigenvalue: Mv = )L v,

— % * %
then the complex conjugates are also eigenvector and eigenvalue: MV, = )L,-V,-

For symplectic matrices: .
If there are eigenvectors and eigenvalues: MV, = Av. with J =M JM

then V' Jv. =v' M' JMV. =AAV JV, = ﬁiTlﬁj()Li)Lj—l)=O

i 2] i = =7 A R By |

Therefore JV is orthogonal to all eigenvectors with eigenvalues that are
not 1/)L Slnce it cannot be orthogonal to all eigenvectors, there is at least
one elgenvector with elgenvaluel/)L

Four dimensiqns: Y]

Two dimensions: lj is eigenvalue t ]
Then1/A.and A are eigenvalues / J /A
j J ®

* >
A=lih=Ah = [4]=] \ \c)r.

* " _1 *
A =114 =4, )Lj=)tj .)Lj
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bending radius

\< accclerating

radiation field
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When the light wave passes the
electron beam by half a wavelength
per half beam oscillation, the

radiation from each beam oscillation
adds.

electron trajectory

T

Z

Similar adding can happen
for 3, 5, 7, etc. half beam
oscillations. For every

‘ X
' > strong frequency there are
odd order harmonics.
= light wave
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( e‘ﬁ cAt = cosg+ A A=A - cosg
l \ \ B
=A 5 \ \

\ \
‘ ® VAt = 4, e
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A= i&u(—%—cowi

;
. 6\/\
Longer wavelength for larger angles. \

Odd and even harmonics off axis.

_ \

\’L cAt = A, cos¢p + A \ }*=\A\n3%-&005¢
\ \
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Wiggler gap
High Reflector

Hole Outcoupler
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Angular Spectral Flux (Ph pers mrad® 0.1% BW) Angular Spectral Flux (Ph per s mrad® 0.1% BW )
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PC
COO &

The umbrella of N-pole undulator radiation
r

C

F total X N

Flux from N poles is N times

the flux from one pole
Georg.Hoffstaetter@Cornell.edu Accelerator Physics USPAS June 2010




The umbrella of N-pole undulator radiation
rl

C

LxN — AtxN —> AwxN7'  Angular Spectral Flux (Ph per s mrac? 0.1% BW)

N-1

F

total o N

Flux from N poles is N times

the flux from one pole
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LxN — AtxN —> AwxN7'  Angular Spectral Flux (Ph per s mrac? 0.1% BW)

-1
N-1/2 N

F

total o N

The power in the central Flux from N poles is N times
cone is in dependent of N the flux from one pole
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;) Brightness reduction by beam properties

CrlESS & LEPP

Widening due to beam
energy spread: Uncritical if

energy spread < L
gy Sp N

S
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. //////// ///////////‘
W,
- //////////////'////-

Widening due to beam
energy spread: Uncritical if

ener read < i
gy sp N

Crl

Widening due to beam

divergence: Uncritical if
1

divergence <

yIN

[a®
S &

¢ LEPP

s

\ 4
o

Y

»
-
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Brightness reduction by beam properties

sl )y )
CrlesSS &

B

24
\

| EPP

Widening due to beam Widening due to beam
energy spread: Uncritical if divergence: Uncritical if
1 : 1
ener read < — divergence <
_ e N 1 y\/ﬁ _
Y Yy

FPe[d frqm a single electron cannot bg spot size < — A
distinguished from field from a spot with: divergence
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W

Widening due to beam Widening due to beam

energy spread: Uncritical if divergence: Uncritical if
1 : 1
energy spread < — divergence <
| cremvepedsy N
Yy Y
Fie{d frqm a single electron cannot bg spot size < A
distinguished from field from a spot with: divergence

To take advantage of many undulator poles, the electron beam needs to
have little energy spread, little divergence, and small beam size.
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Principle of an X-ray ERL

X-ray analysis with highest
resolution in space and time:

5GV*100mA = 0.5GW
(good size power plant)

« Low emittance, high current creation
Emittance preservation

Beam stability at insertion devices
Accelerator design

Component properties, e.g. SRF

4
&
Main Linac -/ \x-rays
& L 5-7 GeV |
’ S *]
Injector
® Accelerating Buncl
Challenges: #® Returning Bunch
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Principle of an X-ray ERL
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X-ray analysis with highest
resolution in space and time:

V.
1

Main Linac

Injector
® Accelerating Bunch

ChaIIenges: E ﬁetuming Bunch
« Low emittance, high current creation

Emittance preservation

Beam stability at insertion devices
Accelerator design

Component properties, e.g. SRF
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