

Symplectic Flows => Hamilton Function

For every symplectic transport map there is a Hamilton function

The flow or transport map:

$$\vec{z}(s) = \vec{M}(s, \vec{z}_0)$$

Force vector:

$$\vec{h}(\vec{z},s) = -\underline{J} \left[\frac{d}{ds} \vec{M}(s,\vec{z}_0) \right]_{\vec{z}_0 = \vec{M}^{-1}(\vec{z},s)}$$

Since then:

$$\frac{d}{ds}\vec{z} = \underline{J}\vec{h}(\vec{z}, s)$$

There is a Hamilton function H with: $\hat{h} = \vec{\partial} H$

$$\vec{h} = \vec{\partial}H$$

If and only if:

$$\partial_{z_j} h_i = \partial_{z_i} h_j \implies \underline{h} = \underline{h}^T$$

$$\underline{MJM}^{T} = \underline{J} \implies \begin{cases}
\frac{d}{ds} \underline{MJM}^{T} = -\underline{MJ} \frac{d}{ds} \underline{M}^{T} \\
\underline{M}^{-1} = -\underline{JM}^{T} \underline{J}
\end{cases}$$

$$\vec{h} \circ \vec{M} = -\underline{J} \frac{d}{ds} \vec{M}$$

$$\underline{h}(\vec{M})\underline{M} = -\underline{J}\frac{d}{ds}\underline{M}$$

$$\vec{h} \circ \vec{M} = -\underline{J} \frac{d}{ds} \vec{M}$$

$$\underline{h}(\vec{M})\underline{M} = -\underline{J} \frac{d}{ds} \underline{M}$$

$$\underline{h}(\vec{M}) = -\underline{J} \frac{d}{ds} \underline{M}\underline{M}^{-1} = \underline{J} \frac{d}{ds} \underline{M}\underline{J}\underline{M}^T \underline{J} = -\underline{J}\underline{M}\underline{J} \frac{d}{ds} \underline{M}^T \underline{J} = \underline{M}^{-T} \frac{d}{ds} \underline{M}^T \underline{J} = \underline{h}^T$$
Georg. Hoffstaetter@Cornell.edu Introduction to Accelerator Physics Fall semester 2017

Generating Functions

CHESS & LEPP

The motion of particles can be represented by Generating Functions

Each flow or transport map: $\vec{z}(s) = \vec{M}(s, \vec{z}_0)$

With a Jacobi Matrix : $M_{ij} = \partial_{z_{0j}} M_i$ or $\underline{M} = (\vec{\partial}_0 \vec{M}^T)^T$

That is Symplectic: $\underline{M} \underline{J} \underline{M}^T = \underline{J}$

Can be represented by a Generating Function:

 $F_1(\vec{q}, \vec{q}_0, s)$ with $\vec{p} = -\vec{\partial}_q F_1$, $\vec{p}_0 = \vec{\partial}_{q_0} F_1$

 $F_2(\vec{p}, \vec{q}_0, s)$ with $\vec{q} = \vec{\partial}_p F_2$, $\vec{p}_0 = \vec{\partial}_{q_0} F_2$

 $F_3(\vec{q}, \vec{p}_0, s)$ with $\vec{p} = -\vec{\partial}_q F_3$, $\vec{q}_0 = -\vec{\partial}_{p_0} F_3$

 $F_4(\vec{p}, \vec{p}_0, s)$ with $\vec{q} = \vec{\partial}_q F_4$, $\vec{q}_0 = -\vec{\partial}_{p_0} F_4$

6-dimensional motion needs only one function! But to

obtain the transport map this has to be inverted.

Symplectic Representations

CHESS & LEPP

Hamiltonian

$$\vec{z}' = \underline{J} \, \vec{\partial} \, H(\vec{z}, s)$$

ODE

$$\vec{z}' = \vec{F}, \quad \underline{F}\underline{J} + \underline{J}\underline{F}^T = 0$$

Generating Functions

$$(\vec{p}, \vec{p}_0) = -\underline{J} \, \vec{\partial} \, F_1(\vec{q}, \vec{q}_0, s)$$

Symplectic transport map

$$\underline{M}\,\underline{J}\,\underline{M}^T = \underline{J}$$

Phase space density in 2D

CHESS & LEPP

Phase space trajectories move on surfaces of constant energy

$$\frac{d}{ds}\vec{z} = \underline{J}\vec{\partial}H \implies \underline{d}_{ds}\vec{z} \perp \vec{\partial}H$$

• A phase space volume does not change when it is transported by Hamiltonian motion. $\Delta E = d \left| \vec{\partial} H \right|$

The distance d of lines with equal energy is proportional to $d \propto 1/\|\vec{\partial} H\| \propto \|\vec{z}\|^{-1}$

$$|d * \Delta t | \dot{\vec{z}}| = \text{const}$$

Lioville's Theorem

CHESS & LEPP

A phase space volume does not change when it is transported by

Hamiltonian motion. $\vec{z}(s) = \underline{M}(s) \cdot \vec{z}_0$ with $\det[\underline{M}(s)] = +1$

Volume =
$$V = \iint_V d^n \vec{z} = \iint_{V_0} \left| \frac{\partial \vec{z}}{\partial \vec{z}_0} \right| d^n \vec{z}_0 = \iint_{V_0} |\underline{M}| d^n \vec{z}_0 = \iint_{V_0} d^n \vec{z}_0 = V_0$$

Hamiltonian Motion \longrightarrow $V = V_0$

But Hamiltonian requires symplecticity, which is much more than just det[M(s)] = +1

Eigenvalues of a Symplectic Matrix

For matrices with real coefficients:

If there is an eigenvector and eigenvalue: $M\vec{v}_i = \lambda_i \vec{v}_i$

then the complex conjugates are also eigenvector and eigenvalue: $M\vec{v}_i^* = \lambda_i^*\vec{v}_i^*$

For symplectic matrices:

If there are eigenvectors and eigenvalues: $\underline{M}\vec{v}_i = \lambda_i\vec{v}_i$ with $\underline{J} = \underline{M}^T\underline{J}\underline{M}$

then
$$\vec{v}_i^T \underline{J} \vec{v}_j = \vec{v}_i^T \underline{M}^T \underline{J} \underline{M} \vec{v}_j = \lambda_i \lambda_j \vec{v}_i^T \underline{J} \vec{v}_j \implies \vec{v}_i^T \underline{J} \vec{v}_j (\lambda_i \lambda_j - 1) = 0$$

Therefore $\underline{J}\vec{v}_i$ is orthogonal to all eigenvectors with eigenvalues that are not $1/\lambda_j$. Since it cannot be orthogonal to all eigenvectors, there is at least one eigenvector with eigenvalue $1/\lambda_i$

Two dimensions: λ_i is eigenvalue Then $1/\lambda_i$ and λ_i^* are eigenvalues

$$\frac{\lambda_2 = 1/\lambda_1 = \lambda_1^*}{\lambda_2 = 1/\lambda_1 = \lambda_2^*} \implies |\lambda_j| = 1$$

$$\frac{\lambda_2 = 1/\lambda_1 = \lambda_2^*}{\lambda_2}$$

$$\lambda_2 = 1/\lambda_1 = \lambda_2^*$$

Advantages of Symplecticity

CHESS & LEPP

Transfer matrix of linear motion with

$$\vec{z}(s) = \underline{M}(s) \cdot \vec{z}_0$$
 with $\det(\underline{M}(s)) = +1$ and $\vec{v}_i^T \underline{J} \vec{v}_j (\lambda_i \lambda_j - 1) = 0$

One function suffices to compute the total nonlinear transfer map:

$$F_{1}(\vec{q}, \vec{q}_{0}, s) \quad \text{with} \quad \vec{p} = -\vec{\partial}_{q} F_{1}(\vec{q}, \vec{q}_{0}, s) \quad , \quad \vec{p}_{0} = \vec{\partial}_{q_{0}} F_{1}(\vec{q}, \vec{q}_{0}, s)$$

$$\vec{z} = \begin{pmatrix} \vec{q} \\ \vec{p} \end{pmatrix} = \begin{pmatrix} \vec{q} \\ -\vec{\partial}_{q} F_{1}(\vec{q}, \vec{q}_{0}, s) \end{pmatrix} = \vec{f}(\vec{Q}, s)$$

$$\vec{z} = \vec{f}(\vec{g}^{-1}(\vec{z}_{0}, s), s)$$

$$\vec{z}_{0} = \begin{pmatrix} \vec{q}_{0} \\ \vec{p}_{0} \end{pmatrix} = \begin{pmatrix} \vec{q}_{0} \\ \vec{\partial}_{q_{0}} F_{1}(\vec{q}, \vec{q}_{0}, s) \end{pmatrix} = \vec{g}(\vec{Q}, s)$$

$$\vec{M} = \vec{f} \circ \vec{g}^{-1}$$

- Therefore Taylor Expansion coefficients of the transport map are related.
- Computer codes can numerically approximate $\vec{M}(S, \vec{z}_0)$ with exact symplectic symmetry.
- Liouville's Theorem for phase space densities holds.

The Frenet Coordinate System

CHESS & LEPP

$$\vec{r}' = (x' - yT')\vec{e}_{\kappa} + (y' + xT')\vec{e}_{b} + (1 + x\kappa)\vec{e}_{s}$$

$$\begin{vmatrix} d\vec{R} \end{vmatrix} = ds$$

$$\vec{e}_s = \frac{d}{ds} \vec{R}(s)$$

$$\vec{e}_{\kappa} = -\frac{d}{ds} \vec{e}_s / \left| \frac{d}{ds} \vec{e}_s \right|$$

$$\vec{e}_b = \vec{e}_s \times \vec{e}_{\kappa}$$

$$\frac{\frac{d}{ds}\vec{e}_{s} = -\kappa\vec{e}_{\kappa}}{0 = \frac{d}{ds}(\vec{e}_{\kappa}\cdot\vec{e}_{s}) = \vec{e}_{s}\cdot\frac{d}{ds}\vec{e}_{\kappa} - \kappa}$$

Accumulated torsion angle T

$$\frac{\frac{d}{ds}\vec{e}_{\kappa} = \kappa \vec{e}_{s} + T'\vec{e}_{b}}{0 = \frac{d}{ds}(\vec{e}_{b} \cdot \vec{e}_{\kappa}) = \vec{e}_{\kappa} \cdot \frac{d}{ds}\vec{e}_{b} + T'}$$

$$\frac{d}{ds}\vec{e}_{b} = -T'\vec{e}_{\kappa}$$