The Closed Orbit of a Periodic Accelerator

\[x' = a \]

\[a' = -(\kappa^2 + k)x + \Delta f \]

The extra force can for example come from an erroneous dipole field or from a correction coil:

\[\Delta f = \frac{q}{p} \Delta B_y = \Delta \kappa \]

Variation of constants:

\[\ddot{z} = M \ddot{z}_0 + \Delta \ddot{z} \] with \(\Delta \ddot{z} = \int_0^s M(s - \hat{s}) \begin{pmatrix} 0 \\ \Delta \kappa(\hat{s}) \end{pmatrix} d\hat{s} \)

For the periodic or closed orbit:

\[\ddot{z}_{co} = M_0 \ddot{z}_{co} + M_0 \int_0^L M^{-1}(\hat{s}) \begin{pmatrix} 0 \\ \Delta \kappa(\hat{s}) \end{pmatrix} d\hat{s} \]

\[\ddot{z}_{co} = [M_0^{-1} - 1]^{-1} \int_0^L M^{-1}(\hat{s}) \begin{pmatrix} 0 \\ \Delta \kappa(\hat{s}) \end{pmatrix} d\hat{s} \]

\[= \frac{1}{2 - 2\cos \mu} [(\cos \mu - 1)1 + \sin \mu \beta] \int_0^L \left(- \sqrt{\beta \hat{\beta}} \sin \hat{\psi} \right) \Delta \kappa(\hat{s}) d\hat{s} \]
The oscillation amplitude J diverges when the tune ν is close to an integer.

$$x_{co}(s) = \text{sign} \Delta \theta_k A \sqrt{\beta} \sin(\psi - \psi_k + \frac{\pi}{2} - \frac{\mu}{2})$$

$$\text{sign} = \text{Sign}(\text{fractional part of } \mu)$$

$$x'_{co+}(s) = \Delta \theta_k \frac{\sqrt{\beta \beta_k}}{2 \sin \frac{\mu}{2}} \cos(\psi - \psi_k - \frac{\mu}{2})$$

$$x'_{co-}(s) = \Delta \theta_k \frac{\sqrt{\beta \beta_k}}{2 \sin \frac{\mu}{2}} \cos(\psi - \psi_k + \frac{\mu}{2}) = \Delta \theta_k \frac{\sqrt{\beta \beta_k}}{2 \sin \frac{\mu}{2}} \cos(\psi - \psi_k + \frac{\mu}{2})$$

Free betatron oscillation
When the closed orbit $x_{\text{co}}^{\text{old}}(s_m)$ is measured at beam position monitors (BPMs, index m) and is influenced by corrector magnets (index k), then the monitor readings before and after changing the kick angles created in the correctors by $\Delta \vartheta_k$ are related by

$$x_{\text{co}}^{\text{new}}(s_m) = x_{\text{co}}^{\text{old}}(s_m) + \sum_k \Delta \vartheta_k \frac{\sqrt{\beta_m \beta_k}}{2 \sin \frac{\mu}{2}} \cos(|\psi_k - \psi_m| - \frac{\mu}{2})$$

$$= x_{\text{co}}^{\text{old}}(s_m) + \sum_k O_{mk} \Delta \vartheta_k$$

$$\bar{x}_{\text{co}}^{\text{new}} = \bar{x}_{\text{co}}^{\text{old}} + \bar{O} \Delta \bar{\vartheta}$$

$$\Delta \bar{\vartheta} = -\bar{O}^{-1} \bar{x}_{\text{co}}^{\text{old}} \Rightarrow \bar{x}_{\text{co}}^{\text{new}} = 0$$

It is often better not to try to correct the closed orbit at the BPMs to zero in this way since

1. computation of the inverse can be numerically unstable, so that small errors in the old closed orbit measurement lead to a large error in the corrector coil settings.

2. A zero orbit at all BPMs can be a bad orbit inbetween BPMs
The periodic orbit for particles with relative energy deviation δ is

$$\tilde{\eta}(0) = M_0\tilde{\eta}(0) + \tilde{D}(L)$$

$$\tilde{\eta}(L) = M_0\tilde{\eta}(0) + \tilde{D}(L) \quad \text{with} \quad \tilde{\eta}(L) = \tilde{\eta}(0)$$

Particles with energy deviation δ oscillates around this periodic orbit.

$$\bar{z} = \bar{z}_\beta + \delta \tilde{\eta}$$

$$\bar{z}_\beta(L) + \delta \tilde{\eta}(L) = \bar{z}(L) = M_0\bar{z}(0) + \tilde{D}(L)\delta = M_0[\bar{z}_\beta(0) + \delta \tilde{\eta}(0)] + \tilde{D}(L)\delta$$

$$= M_0\bar{z}_\beta(0) + \delta \tilde{\eta}(L)$$

Poincare Section
Principal dispersion integral

\[x' = a \]
\[a' = -(\kappa^2 + k)x + \kappa \delta \]

\[\bar{z} = M \bar{z}_0 + \int_0^s M (s - \hat{s}) \begin{pmatrix} 0 \\ \delta \kappa(\hat{s}) \end{pmatrix} d\hat{s} \]

\[\Rightarrow \quad \vec{D}(L) = \int_0^L M (L - \hat{s}) \begin{pmatrix} 0 \\ \kappa(\hat{s}) \end{pmatrix} ds' \]

\[\Delta \kappa = \delta \kappa \]

\[\eta(s) = \frac{\sqrt{\beta(s)}}{2 \sin \frac{\mu}{2}} \int \kappa(\hat{s}) \sqrt{\beta(\hat{s})} \cos(|\psi(\hat{s}) - \psi(s)| - \frac{\mu}{2}) d\hat{s} \]

\[\vec{\eta}(s) \]