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eV 

Energy that would be needed in a 
fixed target experiment versus the 
year of achievement 

2
02

2
cm

1 2 cm
EE =

Comparison: 
highest energy cosmic rays 
have a few 1020eV 

The Livingston Chart 
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●  1947: First detection of synchrotron light at General Electrics. 
●  1952: First accurate measurement of synchrotron radiation power by 

Dale Corson with the Cornell 300MeV synchrotron. 
●  1968: TANTALOS, first dedicated storage ring for synchrotron radiation 

Dale Corson 
Cornell’s 8th president 
USA 1914 – 

Rings for Synchrotron Radiation 
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●  1st Genergation (1970s): Many HEP rings are parasitically used for X-ray 
production 

●  2nd Generation (1980s): Many dedicated X-ray sources (light sources) 
●  3rd Generation (1990s): Several rings with dedicated radiation devices (wigglers 

and undulators) 
●  Today (4th Generation): Construction of Free Electron Lasers (FELs) driven by 

LINACs 

3 Generations of Light Sources 
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                                          E has a similar effect as v B. 
                                          For relativistic particles B = 1T has a similar effect as 
                                          E = cB = 3 108 V/m , such an 
                                          Electric field is beyond technical limits. 
●     Electric fields are only used for very low energies or 
●     For separating two counter rotating beams with 
       different charge. 
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Electrostatic separators at CESR 

Macroscopic Fields in Accelerators 
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Multipoles in Accelerators     ν=0: Solenoids 

x0 (t)=Cos[g(t − t0 ))x0 (0)For const. g:  
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Solenoid focusing is weak compared to the deflections created by a transverse 
magnetic field. 

Transverse fields: 

Strong focusing 
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The solenoid’s rotation                         of the beam is often compensated by 

a reversed solenoid called compensator. 

Solenoid or Weak Focusing: 

Weak focusing from natural ring focusing: 

Solenoid magnets are used in detectors for particle identification via 
qB
p
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C1 Symmetry 

Dipole magnets are used for steering the beams direction 
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Multipoles in Accelerators      ν=1: Dipoles 
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Shims reduce the space that is open 
to the beam, but they also 
reduce the fringe field region. 

a
nIB 00 µ=B < 1 T: Region in which 

B < 1.5 T: Typically used region 

B = 2 T: Typical limit, since the field becomes 
              dominated by the coils, not the iron. 
              Limiting j for Cu is about 100A/mm2 

Dipole Fields 
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HERA Tunnel 

Where is the vertical Dipole? 
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C2 Symmetry 

In a quadrupole particles are focused in one plane and defocused in the 
other plane.  Other modes of strong focusing are not possible. 
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PETRA Tunnel 

The coils show that this is an 
upright quadrupole not a rotated 
or skew quadrupole. 

SLAC 

Real Quadrupoles 
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i)  Sextupole fields hardly influence the 
particles close to the center, where one 
can linearize in  x and y. 

ii)  In linear approximation a by Δx shifted 
sextupole has a quadrupole field. 

iii)  When Δx depends on the energy, one can 
build an energy dependent quadrupole. 
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ESRF 

Real Sextupoles 
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The CESR Tunnel 
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The time dependence of a particle’s motion 
is often not as interesting as the 
trajectory along the accelerator length 
“s”. 

The comoving Coordinate System 
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3 dimensional ODE of 2nd order can be changed to a 
6 dimensional ODE of 1st order:  
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If the force does not depend on time, as in a typical beam line magnet, the 
energy is conserved so that one can reduce the dimension to 5. The 
equation of motion is then autonomous. 

 
Furthermore, the time dependence is often not as interesting as the 

trajectory along the accelerator length “s”.  Using “s” as the 
independent variable reduces the dimensions to 4.  The equation of 
motion is then no longer autonomous. 
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The 4D Equation of Motion 



CHESS & LEPP 

45 

Georg.Hoffstaetter@Cornell.edu               Topics in Accelerator Physics            Fall semester 2019 

Usually one prefers to compute the trajectory as a function of “s” along the 
accelerator even when the energy is not conserved, as when 
accelerating cavities are in the accelerator. 

 
Then the energy “E” and the time “t” at which a particle arrives at the 

cavities are important.  And the equations become 6 dimensional again: 
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d −==

!!!!

But:                     is an especially suitable variable, since it is a phase space 
vector so that its equation of motion comes from a Hamiltonian, or by 
variation principle from a Lagrangian. 
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The 6D Equation of Motion 


