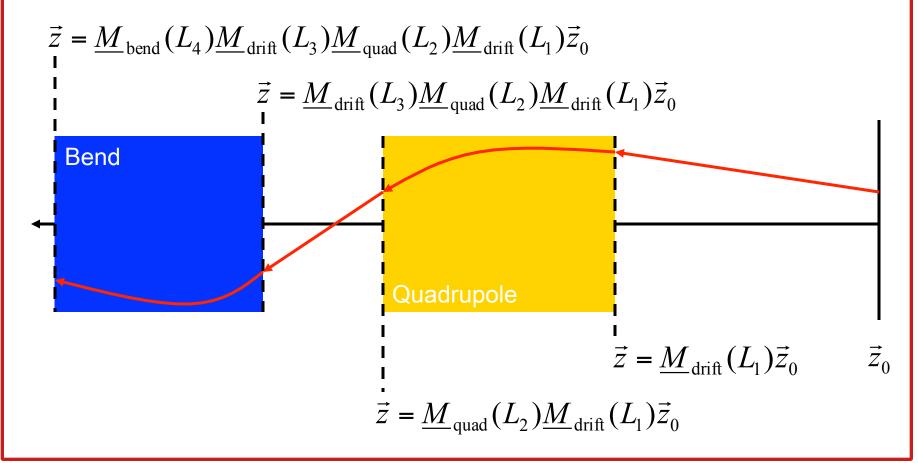
Matrix Solutions

CHESS & LEPP

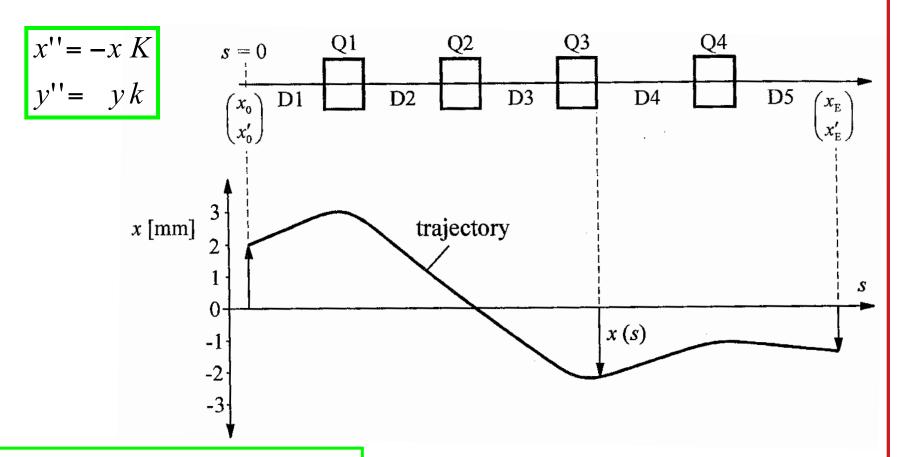
Linear equation of motion: $\vec{z}' = \underline{F}(s)\vec{z}$

Matrix solution of the starting condition $\vec{z}(0) = \vec{z}_0$



Beta Function and Betatron Phase

CHESS & LEPP



$$x(s) = M_{11}(s)x_0 + M_{12}(s)x_0'$$
$$x(s) = \sqrt{2J\beta(s)}\sin(\psi(s) + \phi_0)$$

Twiss Parameters

$$x'' = -k x$$

$$x(s) = \sqrt{2J\beta(s)}\sin(\psi(s) + \phi_0)$$

$$x'(s) = \sqrt{\frac{2J}{\beta}} [\beta \psi' \cos(\psi(s) + \phi_0) - \alpha \sin(\psi(s) + \phi_0)] \quad \text{with} \quad \alpha = -\frac{1}{2}\beta'$$

$$x''(s) = \sqrt{\frac{2J}{\beta}} [(\beta \psi'' - 2\alpha \psi') \cos(\psi(s) + \phi_0) - (\alpha' + \frac{\alpha^2}{\beta} + \beta \psi'^2) \sin(\psi(s) + \phi_0)]$$
$$= \sqrt{\frac{2J}{\beta}} [-k\beta \sin(\psi(s) + \phi_0)]$$

$$\beta \psi'' - 2\alpha \psi' = \beta \psi'' + \beta' \psi' = (\beta \psi')' = 0 \implies \psi' = \frac{I}{\beta}$$

$$\alpha' + \gamma = k\beta$$
 with $\gamma = \frac{I^2 + \alpha^2}{\beta}$ Universal choice: I=1!

$$\alpha, \beta, \gamma, \psi$$
 are called Twiss parameters.

$$\beta' = -2\alpha$$

$$\alpha' = k\beta - \gamma$$

$$\psi = \int_{0}^{s} \frac{I}{\beta(s')} ds'$$

What are the initial conditions?

Phase Space Ellipse

Particles with a common J and different φ all lie on an ellipse in phase space:

$$\begin{pmatrix} x \\ x' \end{pmatrix} = \sqrt{2J} \begin{pmatrix} \sqrt{\beta} & 0 \\ -\frac{\alpha}{\sqrt{\beta}} & \frac{I}{\sqrt{\beta}} \end{pmatrix} \begin{pmatrix} \sin(\psi(s) + \phi_0) \\ \cos(\psi(s) + \phi_0) \end{pmatrix}$$
 (Linear transform of a circle)
$$x_{\text{max}} = \sqrt{2J\beta} \text{ at } x' = -\alpha \sqrt{\frac{2J}{\beta}}$$

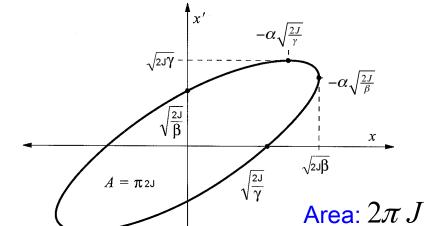
(Linear transform of a circle)

$$x_{\text{max}} = \sqrt{2J\beta}$$
 at $x' = -\alpha \sqrt{\frac{2J}{\beta}}$

$$(x, x') \begin{pmatrix} \frac{I}{\sqrt{\beta}} & \frac{\alpha}{\sqrt{\beta}} \\ 0 & \sqrt{\beta} \end{pmatrix} \begin{pmatrix} \frac{I}{\sqrt{\beta}} & 0 \\ \frac{\alpha}{\sqrt{\beta}} & \sqrt{\beta} \end{pmatrix} \begin{pmatrix} x \\ x' \end{pmatrix} = \begin{pmatrix} x \\ x' \end{pmatrix} \begin{pmatrix} \gamma & \alpha \\ \alpha & \beta \end{pmatrix} \begin{pmatrix} x \\ x' \end{pmatrix} = 2J$$
 (Quadratic form)
$$\beta \gamma - \alpha^2 = I^2$$
 Area: $2\pi J/I$

$$\beta \gamma - \alpha^2 = I^2$$

I=1 is therefore a useful choice!



What β is for x, γ is for x'

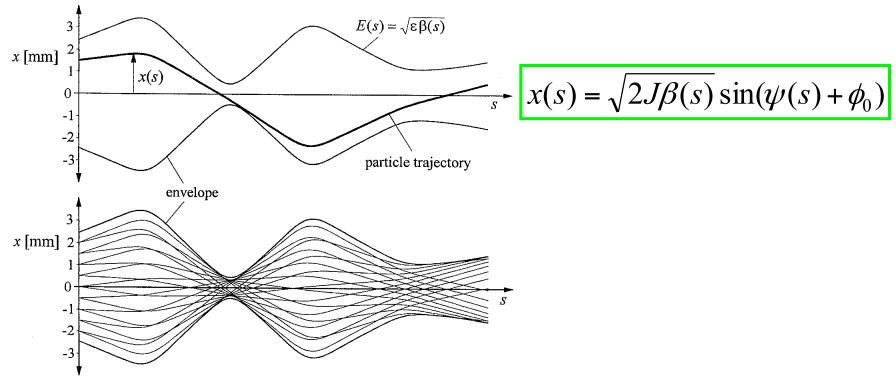
$$x'_{\text{max}} = \sqrt{2J\gamma}$$
 at $x = -\alpha\sqrt{\frac{2J}{\gamma}}$

 $2\pi J$

Area:
$$2\pi J \longrightarrow \iint_0^{2\pi} dJ d\phi = 2\pi J = \iint_0^{2\pi} dx dx'$$

The Beam Envelope

CHESS & LEPP



In any beam there is a distribution of initial parameters. If the particles with the largest J are distributed in ϕ over all angles, then the envelope of the beam is described by $\sqrt{2J_{\rm max}}\beta(s)$

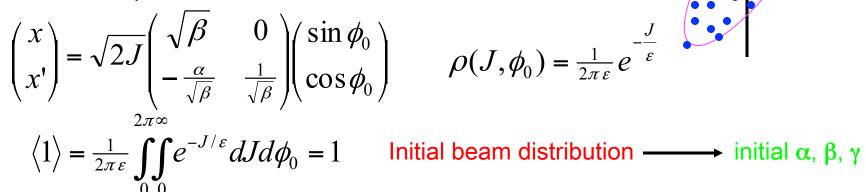
The initial conditions of β and α are chosen so that this is approximately the case.

Phase Space Distribution

Often one can fit a Gauss distribution to the particle distribution: $\gamma x^2 + 2\alpha xx' + \beta x'^2$

$$\rho(x, x') = \frac{1}{2\pi\varepsilon} e^{-\frac{\gamma x^2 + 2\alpha x x' + \beta x'^2}{2\varepsilon}}$$

The equi-density lines are then ellipses. And one chooses the starting conditions for β and α according to these ellipses!



$$\langle 1 \rangle = \frac{1}{2\pi\varepsilon} \iint_0 e^{-J/\varepsilon} dJ d\phi_0 = 1$$
 Initial beam distribution — initial α , β ,

$$\langle x^{2} \rangle = \frac{1}{2\pi\varepsilon} \iint 2J\beta \sin \phi_{0}^{2} e^{-J/\varepsilon} dJ d\phi_{0} = \varepsilon\beta \qquad \qquad \langle x'^{2} \rangle = \varepsilon\gamma$$
$$\langle xx' \rangle = -\frac{1}{2\pi\varepsilon} \iint 2J\alpha \sin \phi_{0}^{2} e^{-J/\varepsilon} dJ d\phi_{0} = \varepsilon\alpha$$

$$\langle xx' \rangle = -\frac{1}{2\pi\varepsilon} \iint 2J\alpha \sin \phi_0^2 e^{-J/\varepsilon} dJd\phi_0 = \varepsilon\alpha$$

$$\varepsilon = \sqrt{\langle x^2 \rangle \langle x'^2 \rangle - \langle xx' \rangle^2}$$
 is called the emittance.