Answer:
The Hamiltonian

H = o\ [f. — A7, ) + (me)? + g0(7, ) ()

leads to the equations of motion

Po= %F—c P — 44 ) (10)
V@ — aA) + (mey?
g d (pei — qA1)TA; ~

Pe = Pe = cq
dt r =
\/(pC — qA)? + (mc)?

where a sum over the index ¢ is implied. The first of these equations can be
used to compute the relativistic factor v as

1= e = (= 0+ (me)? (12

With this the equations of motion can be simplified to

_ DPe—q
¥ o= wy (13)
ci Az A —
B = BB e (14)
mry
With A,BC; = A x (B x ) + (A - B)C one obtains
7:_.’: i:ﬁ:_’c_qjv (15)
my
. ; 5 _. d -
p. = qr x (0 x A) —q[o®(7,t) + &, ]-I-thA (16)

1

)A + 8, A was used. Taking into account that £ = —[8@ +
A, we obtain the Lorentz-force equation

XQJ

ﬁ':mw%', ﬁ':q?"xg—l-qﬁ. (17)

Exercise (Symplecticity)
(a) A matrix M is symplectic when it satisfies M JMT = J. Using J=1 = —J
and JT = —J, show that the following properties are also satisfied:

M=—-JMT], MTJM=J. (6)



(b) The linear transport map of a quadrupoele is given by

(5)- ( iy T ) ()

when k is the strength of the quadrupole field and p is the momentum of the
particle. Derive a Hamiltonian H (z,p,) that represents this map.

Answer:

(a) Multiplying MJMT = J by —J leads to —M JM?J = I so that —JMTJ
is the inverse of M. Since the right and the left inverse for matrices is
the same, we can write —JM7TJM = [. Multiplying this by J leads to
MTJM = J.

(b):

First we need to create a differential equation with this general solution. For
this we write

(5) = (s ) (o)

(
J( knosl/Be) esinlilba) (pxn)

—VEsin(VEs)  cos(Vks) )
_(mwgkmm)

Vksin(vEks)  cos(

VE

(o 0)(a )= (o) G eom)

The Hamiltonian is therefore

H = J(ka* +77). (11)

cos(Vks)  —-sin(Vks) g )

(10)

Vksin(vks)  cos(vks)

(8)

(9)



Exercise (Curvi-linear system)
Given a reference trajectory that is a helix around the z-axis with

E(z) =rcos(kz)éx + rsin(kz)éy + zéz, (13)

with the Cartesian coordinate vectors €y, €y and €.

(a) Show that z is not the pathlength s with which the reference trajector is
parametrized. Then compute the path length s(z) and specify ﬁ(e) so that
|d§[ ds and compute €;. €, and €.

(b) Compute €, and €, of thP curvilinear system and check that (’I and

%ey are what they are specified to be in the handouts.

Answer:
(a)
ds = |dR| = | — rksin(kz)éx + rk cos(k2)éy + éz|dz = /1 + (rk)2dz . (14)
Therefore s(z) = z/e and with e = ———,
1+(rk)2
R(s) = rcos(kes)@x + rsin(kes)éy + eséz . (15)
& = O,R(s) = —rkesin(kes)éx + rke cos(kes)éy +€ez ,  (16)
E = —0,& = r(ke)*[cos(kes)éx + sin(kes)éy] , (17)
g = F{/|R’[ cos(kes)ey + sin(kes)éy , (18)
€ €, X €, = —esin(kes)éx + € cos(kes)éy — rkeéy . (19)
(b)
The torsion T" is computed by
T =& 8.8 =ke . (20)

The new coordinate vectors are therefore (Note that the €, and €, here are



of the new curvilinear system, which are NOT the €x and éy from part (a))

€, = cos(ke’s)é, — sin(ke’s)é, (21)
= [cos(ke’s) cos(kes) + esin(ke’s) sin(kes)]€y
+ [cos(ke®s) sin(kes) — esin(ke’s) cos(kes)|@y + rkesin(ke’s)éy
€, = sin(ke’s)e, + cos(ke’s)é, (22)
= [sin(ke’s) cos(kes) — € cos(ke?s) sin(kes)]€x
+ [sin(ke’s) sin(kes) + € cos(ke’s) cos(kes)|&y — rke cos(ke’s)éz .
(23)

A differentiation leads to

0,6, = ke(—1+ €*)cos(ke’s)sin(kes)éx
+  ke(1 — €%) cos(ke®s) cos(kes)éy + r(ke)®ecos(ke?s)éz ,  (24)

0.8y = ke(=1+ €*)sin(ke’s) sin(kes)Ex
+  ke(1 — €)sin(ke®s) cos(kes)éy + r(ke)®sin(ke’s)éz . (25)
(26)

With 1 — €2 = (rke)? this proves the desired relation

05, = 1(ke)? cos(ke?s)€, = Kk.€, , (27)
0.6, = 1(ke)? sin(ke*s)é, = ke, . (28)

The right hand relations hold since & - & = r(ke)? cos(ke’s) and i - €, =
r(ke)? sin(ke?s).



Answer:
(a) The differential equation for k = 0 is

fl=-2a, o =—y (18)
leading to
dB” _ 4B b o 4+p”

This can be integrated leading to

with an integration constant In -+ which is chosen so that 8 = 3* when
A’ = 0. This leads to another differential equation

,_ B 1 _
ﬁ_iQ,‘/F—l :/iz\/gdﬁ—fds. (21)

B
ﬁ#
B(s) = B*[1+ (%52)]. This leads to B, = B*[1+ (;—‘3)2] and ap = —38) = o

which results in 8* = By/[1 + a2] = 7. Therefore one obtains

B(s) = Bo — 2005 + Yos° . (22)

(b) The solution of the equation of motion in a drift is

With two integration constants one obtains +/3* — 1 = s — 59, which is

x(s) = xo + sxy , T'(s) =y . (23)

The initial phase space coordinates can be expressed in terms of the initial
Twiss parameter as

(3)-w(5 1)(=1)

0 ~VE R cos ¢y

Similarly, the Twiss parameters at s are related to the phase space coordi-
nates at s by

vB 0 cos® sinW singg \ 1 T
—75 ﬁ —sin¥ cosW¥ cosgg ) 2J \ 7
s
1

i 1 1 ) ( iy} ) _ ( BDJ%US S ) ( sin Qf)ﬂ ) (2:’)
N 0 ) | =5 cos ¢ ' .
20§ 0 B 0

S
(=] o



Here the transport matrix of a drift has been used and could be replaced by
that of another element within which the beta functions are sought. This
leads to

(26)

( \/ﬁcos_\ll \/Bsinlll )_ /| (ﬁo—aos 5)
_acosW4sin® _ asinW—cos W = \/ﬁ_() —ag 1 :

] VB
Eliminating the betatron phase by adding the quadrature of the top two
matrix elements leads to

1

§ = 5 (Bo—aos]’ +5°) = o — 2005 + 05" (27)
0
@ = Op— YoS , (28)
1+ a?
ﬁ/ — )8 = ’}f(} 3 (29)
5
tanW¥ = m . (30)

(c) With & = cos(vks) and 5 = sin(v/ks) one obtains
( VB cos ¥ VB sin ¥ )_ 1 ( Eﬁg—%ao %) e

a cos W+sin ¥ asin W—cos ¥ R i 5
— =g — oS e VBo \ —(5vkBo + éap)

Eliminating the betatron phase by adding the quadrature of the top two
matrix elements leads to

1 5 &
B = (8- =)+
1 1 1
= (Bo+ %)5 + (8 — qu)é_ cos(2v/ks) — v sin(2v/ks) . (32)
Exercise (Phase space distribution):
(a) Given the Twiss parameters «, 3, y: specify the transformation from the
amplitude and phase variables .J and ¢ to the Cartesian phase space variables
z and 7.
(b) Specify the inverse transformation.
(c) Given the Gaussian beam distribution in amplitude and phase variables,
p(J,0) = ﬁe_%. What is the projection p(x) of this distribution on the z

axis. Check that the rms width of this distribution leads to v < 22 > = /fe.



Answer:

(a)
(2)-( 4)(mig)

VB VB COS(?,&(S) + ébo)

(b) The inverse of this equation is obtained from

(3 5)(5) (i) o

which leads to

|
J = =(yz? + 20zx + B2’°) , ¢o= arctan(

; eI R OB C.)

(c) Since the Jacobi-Matrix of the transformation between (z,z’) and (J, ¢)
is one,

I _sa@ah 1 _ae?t2ase’t280
S ' . ! _ = .
plz,z") = p(J(z,x'), d(z,2")) 27%(3 271-5(; z (36)

The position distribution is then given by the projection along the z’-axis,

G 1 a2-9722 o0 pal+Gm)?
ple) = f plz,z)dz' = —e = f e dd! (37)

- 27e

1 2 26
— e 2 =~
27e 5  2me

This is a Gauss-function with the standard deviation o = /.

Exercise (Propagation of Twiss parameters)

Characterize Twiss parameters by {3(s), a(s), ¥ (s)}. Imagine two sections of
a beam line where the first section transports Twiss parameters {3, g, 0}
to {B1,a1,11} and the second transports {1, a1,0} to {52, as,12}. Show
that the total beam-line transports {3y, ag, 0} to {82, aa, 1 + 12 }.

Answer:
There are various ways to answer the question. The simplest is to observe

that ¢, = fs 21 51 ds and ¥y = f > (13) ds so that the total phase advance is




¥ = [, 555545 = ¥1 + 2. One can also use the matrices

—_ VB 0 - cosy siny
é(_% ﬁ) ' E(d))(—sinw cosv,b) '

to represent the transport matrix of the two sections with

M, =B, R(¥n)B;" , M, =B,R(¥2)B," -

The transport matrix of the total beam line is then clearly

M=M,M, = §2E(7f)1 + %)Q;l .

(10)



