
Revision: July 24, 2019

The

Tao
Manual

David Sagan

2

Introduction

Tao stands for “Tool for Accelerator Optics”. Tao is a general purpose program for simulating high
energy particle beams in accelerators and storage rings. The simulation engine that Tao uses is the
Bmad software library[Bma06]. Bmad was developed as an object-oriented library so that common
tasks, such as reading in a lattice file and particle tracking, did not have to be coded from scratch every
time someone wanted to develop a program to calculate this, that or whatever.

After the development of Bmad, it became apparent that many simulation programs had common
needs: For example, plotting data, viewing machine parameters, etc. Because of this commonality, the
Tao program was developed to reduce the time needed to develop a working programs without sacrificing
flexibility. That is, while the “vanilla” version of the Tao program is quite a powerful simulation tool, Tao
has been designed to be easily customizable so that extending Tao to solve new and different problems
is relatively straight forward.

This manual is divided into two parts. Part I is the reference section which defines the terms used by
Tao and explains in detail the syntax of the configuration files that Tao uses to make a connection with
a specific machine. Part II is a programmer’s guide which shows how to extend Tao’s capabilities and
incorporate custom calculations.

More information, including the most up–to–date version of this manual, can be found at the Bmad web
site at:
www.classe.cornell.edu/bmad

The Tao manual is organized as reference guide and so does not do a good job of instructing the beginner
as to how to use Tao. For that there is an introduction and tutorial on Bmad and Tao concepts that
can be downloaded from the Bmad web page. Go to either the Bmad or Tao manual pages and there
will be a link for the tutorial.

Errors and omissions are a fact of life for any reference work and comments from you, dear reader, are
therefore most welcome. Please send any missives (or chocolates, or any other kind of sustenance) to:
David Sagan <dcs16@cornell.edu>

It is my pleasure to express appreciation to people who have contributed to this effort. To Scott Berg,
Michael Ehrlichman, Chris Mayes, and Jeff Smith for bug reports, suggestions, code improvements, Etc.
To John Mastroberti and Kevin Kowalski for their work on a graphics user interface and associated
plotting, And last but not least thanks also must go to Dave Rubin and Georg Hoffstaetter for their
help and patience.

Contents

I Reference Guide 13

1 Overview: Starting and Running Tao 15
1.1 Tao Setup . 15
1.2 Tao Tutorial . 15
1.3 Initialization from the Command Line . 15
1.4 Initializing Tao . 17
1.5 Command Line Mode and Single Mode . 17
1.6 Lattice Calculations . 17
1.7 Command Files and Aliases . 17
1.8 Customizing Tao . 18

2 Overall Organization and Structure 19
2.1 The Organization of Tao: The Super_Universe . 19
2.2 The Super_universe . 20
2.3 The Universe . 20
2.4 Lattices . 21
2.5 Tracking Types . 22
2.6 Lattice Calculation . 22

3 Syntax 25
3.1 Element List Format . 25
3.2 Arithmetic Expressions . 26
3.3 Specifying Data Parameters in Expressions . 27
3.4 Specifying Variable Parameters in Expressions . 27
3.5 Specifying Lattice Parameters in Expressions . 28
3.6 Specifying Beam Parameters in Expressions . 29
3.7 Specifying Element Parameters in Expressions . 29
3.8 Format Descriptors . 30

4 Variables 33

5 Data 37
5.1 Data Organization . 37
5.2 Anatomy of a Datum . 39
5.3 Datum values . 42
5.4 Evaluation Point of a Datum . 43
5.5 Datums in Optimization . 43
5.6 Data_source . 44
5.7 Datum Evaluation and Associated Lattice Elements . 45
5.8 Tao Data Types . 46

3

4 CONTENTS

6 Plotting 61

7 Optimization: Lattice Correction and Design 67
7.1 Lattice Corrections . 67
7.2 Lattice Design . 68
7.3 Generalized Design . 69
7.4 Variable Limits and Optimization . 70
7.5 Optimizers in Tao . 70
7.6 Optimization Troubleshooting Tips . 72
7.7 Common Root Lattice (CRL) Analysis . 72

8 Wave Analysis 75
8.1 General Description . 75
8.2 Wave Analysis in Tao . 77

8.2.1 Preparing the Data . 77
8.2.2 Wave Analysis Commands and Output . 77

9 Tao Initialization 79
9.1 Namelist Syntax . 79
9.2 Beginning Initialization . 81
9.3 Lattice Initialization . 81
9.4 Initializing Globals . 84

9.4.1 tao_global_struct Structure . 84
9.4.2 bmad_com_struct Structure . 87
9.4.3 csr_param_struct Structure . 89
9.4.4 opti_de_param_struct Structure . 89

9.5 Initializing Particle Beams . 90
9.6 Initializing Variables . 92
9.7 Initializing Data and Constraints . 95

9.7.1 Old Data Format . 98
9.8 Initializing a Building Wall . 99
9.9 Initializing Dynamic Aperture . 100
9.10 Initializing Plotting . 102

9.10.1 Plot Window . 102
9.10.2 Plot Templates . 104
9.10.3 Data and Variable plotting . 108
9.10.4 Graphing a Data Slice . 110
9.10.5 Plotting With a Variable Parameter on the X-Axis 111
9.10.6 Drawing a Lattice Layout . 111
9.10.7 Drawing a Floor Plan . 113
9.10.8 Defining Shapes for Lat_layout and Floor_plan Drawings 115
9.10.9 Drawing a Dynamic Aperture . 118
9.10.10 Drawing a Histogram . 120
9.10.11 Drawing the Beam Chamber Wall . 121
9.10.12 Drawing a Key Table . 122
9.10.13 Phase Space Plotting . 122

CONTENTS 5

10 Tao Commands 125
10.1 alias . 126
10.2 call . 127
10.3 change . 127
10.4 clip . 128
10.5 continue . 129
10.6 do, enddo . 129
10.7 end_file . 130
10.8 exit . 130
10.9 derivative . 130
10.10 flatten . 130
10.11 help . 130
10.12 misalign . 131
10.13 pause . 131
10.14 place . 132
10.15 plot . 132
10.16 ptc . 132
10.17 python . 133
10.18 quiet . 133
10.19 quit . 133
10.20 re_execute . 133
10.21 read . 134
10.22 restore . 134
10.23 reinitialize . 135
10.24 run_optimizer . 135
10.25 scale . 135
10.26 set . 136

10.26.1 set beam . 137
10.26.2 set beam_init . 138
10.26.3 set bmad_com . 138
10.26.4 set branch . 138
10.26.5 set csr_param . 139
10.26.6 set curve . 139
10.26.7 set data . 139
10.26.8 set default . 140
10.26.9 set element . 140
10.26.10 set floor_plan . 140
10.26.11 set geodesic_lm . 141
10.26.12 set global . 141
10.26.13 set graph . 141
10.26.14 set key . 141
10.26.15 set lat_layout . 142
10.26.16 set lattice . 142
10.26.17 set opti_de_param . 142
10.26.18 set particle_start . 143
10.26.19 set plot . 143
10.26.20 set plot_page . 144
10.26.21 set ran_state . 144
10.26.22 set symbolic_number . 144
10.26.23 set universe . 144
10.26.24 set variable . 145

6 CONTENTS

10.26.25 set wave . 146
10.27 show . 146

10.27.1 show alias . 147
10.27.2 show beam . 147
10.27.3 show branch . 148
10.27.4 show building_wall . 148
10.27.5 show constraints . 148
10.27.6 show control . 148
10.27.7 show curve . 148
10.27.8 show data . 149
10.27.9 show derivative . 149
10.27.10 show dynamic_aperture . 150
10.27.11 show element . 150
10.27.12 show field . 151
10.27.13 show global . 151
10.27.14 show graph . 151
10.27.15 show history . 152
10.27.16 show hom . 152
10.27.17 show internal . 152
10.27.18 show key_bindings . 152
10.27.19 show lattice . 153
10.27.20 show matrix . 157
10.27.21 show merit . 157
10.27.22 show normal_form . 157
10.27.23 show optimizer . 157
10.27.24 show opt_vars . 157
10.27.25 show particle . 158
10.27.26 show plot . 158
10.27.27 show spin . 159
10.27.28 show symbolic_numbers . 159
10.27.29 show taylor_map . 159
10.27.30 show track . 160
10.27.31 show twiss_and_orbit . 162
10.27.32 show universe . 162
10.27.33 show use . 162
10.27.34 show value . 162
10.27.35 show variable . 163
10.27.36 show wakes . 163
10.27.37 show wall . 163
10.27.38 show wave . 164

10.28 single_mode . 164
10.29 spawn . 164
10.30 timer . 164
10.31 use . 165
10.32 veto . 165
10.33 wave . 165
10.34 write . 166
10.35 x_axis . 168
10.36 x_scale . 168
10.37 xy_scale . 169

CONTENTS 7

11 Single Mode 171
11.1 Key Bindings . 171
11.2 List of Key Strokes . 173

II Programmer’s Guide 175

12 Python/GUI Interface 177
12.1 Python Interface Via Pexpect . 177
12.2 Python Interface Via Ctypes . 178
12.3 Tao Python command . 178
12.4 Plotting Issues . 178

13 Customizing Tao 179
13.1 Initial Setup . 179
13.2 It’s All a Matter of Hooks . 180
13.3 Initializing Hook Routines . 180
13.4 Hook Routines . 180

13.4.1 tao_hook_graph_setup . 180
13.4.2 tao_hook_command . 181
13.4.3 tao_hook_evaluate_a_datum . 181
13.4.4 tao_hook_init1 and tao_hook_init2 . 181
13.4.5 tao_hook_init_design_lattice . 181
13.4.6 tao_hook_lattice_calc . 182
13.4.7 tao_hook_merit_data . 182
13.4.8 tao_hook_merit_var . 182
13.4.9 tao_hook_optimizer . 182
13.4.10 tao_hook_parse_command_args . 182
13.4.11 tao_hook_plot_graph . 182
13.4.12 tao_hook_plot_data_setup . 183
13.4.13 tao_hook_post_process_data . 183

13.5 Adding a New Data Type Example . 183
13.6 Reading in Measured Data Example . 185

13.6.1 Analysis of the tao_hook_command.f90 File . 187

14 Tao Structures 193
14.1 Overview . 193
14.2 tao_super_universe_struct . 193
14.3 s%plot_page Component . 194
14.4 s%v1_var Component . 195
14.5 s%var Component . 196
14.6 s%u Component . 197
14.7 s%mpi Component . 198
14.8 s%key Component . 198
14.9 s%building_wall Component . 198
14.10 s%wave Component . 198
14.11 s%history Component . 198

8 CONTENTS

List of Figures

5.1 Data tree structure . 37
5.2 Building wall datum . 58

6.1 A plot has a collection of graphs. 61
6.2 Example of a plot page . 64
6.3 Another example of a plot page. 65

8.1 Example wave analysis. 76

9.1 Floor plot showing the walls of the building . 99
9.2 The plot window. 103
9.3 Example lattice layout and data plots . 112
9.4 Example Floor Plan drawing. 113
9.5 Example dynamic aperture plot. 119
9.6 Example histogram plot. 121
9.7 Example Phase Space plot, with points colored by the pzcoordinate. 122

11.1 Bindings of key pairs on the keyboard to variables. 171
11.2 Example key table with a lattice layout and data plots. 172

13.1 Custom data type: non-normalized emittance . 186

9

10 LIST OF FIGURES

List of Tables

3.1 Tao datums that have equivalent Bmad element parameters. 30
3.2 Tao datums that have equivalent Bmad orbital parameters. 30

5.1 The three lattice elements associated with a datum. 45
5.2 Common Driving Terms. 51
5.3 Predefined Data Types in Tao . 58

7.1 The form of delta . 69
7.2 Constraint Type List. 69

8.1 Wave measurement types. 75

9.1 Table of taoInitialization Namelists. 82

10.1 Table of Tao commands. 126

11

12 LIST OF TABLES

Part I

Reference Guide

13

Chapter 1

Overview: Starting and Running Tao

1.1 Tao Setup

Instructions for obtaining and for setting up Tao can be found at:
www.lepp.cornell.edu/bmad/

1.2 Tao Tutorial

This manual is organized more as a reference guide than as a tutorial so for an introduction to Tao (and
Bmad) there is a link on the web page at:
www.lepp.cornell.edu/bmad/tao.html

1.3 Initialization from the Command Line

The syntax of the command line for running Tao is:
EXE-DIRECTORY/tao {OPTIONS}

where EXE-DIRECTORY is the directory where the tao executable lives. If this directory is listed in your
PATH environmental variable then the directory specification may be omitted. The optional arguments
are:

-beam_file <file_name>
Sets the name of the file containing the tao_beam_init namelist (§9.5). Overrides the setting of
beam_file (§9.2) specified in the Tao initialization file.

-beam_all_file <file_name>
Overrides the setting of beam_all_file (§9.5) specified in the tao_beam_init namelist.

-beam_init_position_file <file_name>
Specifies the file containing initial particle positions. Overrides the setting of beam_init%position_file
(§9.5) specified in the tao_beam_init namelist.

-building_wall_file <file_name>
Overrides the building_wall_file (§9.2) specified in the Tao initialization file.

15

16 CHAPTER 1. OVERVIEW: STARTING AND RUNNING TAO

-data_file <file_name>
Overrides the data_file (§9.2) specified in the Tao initialization file.

-disable_smooth_line_calc
Disable computation of the “smooth curves” used in plotting. This can be used to speed up Tao
as discussed in §9.10.3.

-geometry <width>x<height>
Overrides the plot window geometry. <width> and <height> are in Points. This is equivalent to
setting plot_page%size in the tao_plot_page namelist §9.10.

-hook_init_file
Specifies an input file for customized versions of Tao. Default file name is tao_hook.init.

-init_file <file_name>
replaces the default Tao initialization file name (tao.init). Note: A Tao initialization file is
actually not needed. If no Tao initialization file is used, the use of the -lattice_file switch is
mandatory and Tao will use a set of default plot templates for plotting.

-lattice_file <file_name>
Overrides the design_lattice lattice file specified in the Tao initialization file (§9.3). Example:
tao -init my.init -lat slac.xsif

If there is more than one universe and the universes have different lattices, separate the different
lattice names using a "|" character. Do not put any spaces in between. Example:
tao -lat xsif::slac.lat|cesr.bmad

-log_startup If there is a problem with Tao is started, -log_startup can be used to create a log file
of the initialization process.

-no_stopping
For debugging purposes. Prevents Tao from stopping where there is a fatal error.

-noinit
Suppresses use of a Tao initialization file. In this case the use of the -lattice_file switch is
mandatory and Tao will use a set of default plot templates for plotting.

-noplot
Suppresses the opening of the plot window.

-plot_file <file_name>
Overrides the plot_file (§9.2) specified in the Tao initialization file.

-prompt_color
Sets the prompt string color to Blue. For different colors, use the set global prompt_color
command (§10.26).

-rf_on Leaves rfcavity elements on. Normally Tao turns off these elements since Twiss and dispersion
calculations do not make sense with them on. Note: If you want to see orbit changes with RF
frequency changes then you will need to set parameter[absolute_time_tracking] to True. See
the “Relative Versus Absolute Time Tracking” section in theBmad manual for more details.

-slice_lattice <element_list> If present, discard from the lattice all lattice elements that are not
in the <element_list>. Overrides the setting of design_lattice(i)%slice_lattice.

-startup_file <file_name> Overrides the startup_file (§9.2) specified in the Tao initialization file.

1.4. INITIALIZING TAO 17

-var_file <file_name>
Overrides the var_file (§9.2) specified in the Tao initialization file.

To negate an argument, use a two dash prefix instead of a single dash prefix. For example:
tao -noplot --noplot

The -noplot argument turns off plotting and the following –noplot argument negates the effect of
-noplot and turns plotting back on. This is useful with the reinit tao command (§10.23) to negate
saved command line argument settings.

1.4 Initializing Tao

Initialization occurs when Tao is started. Initialization information is stored in one or more files as
discussed in Chapter §9. If no initialization files are found. Tao uses a default initialization.

1.5 Command Line Mode and Single Mode

After Tao is initialized, Tao interacts with the user though the command line. Tao has two modes for
this. In command line mode, which is the default mode, Tao waits until the the return key is depressed
to execute a command. Command line mode is described in Chapter §10.

In single mode, single keystrokes are interpreted as commands. Tao can be set up so that in single
mode the pressing of certain keys increase or decrease variables. While the same effect can be achieved
in the standard line mode, single mode allows for quick adjustments of variables. See Chapter §11 for
more details.

1.6 Lattice Calculations

By default Tao recalculates lattice parameters and does tracking of particles after each command. The
exception is for commands that do not change any parameter that would affect such calculations such
as the show command. See §2.6 for more details. If the recalculation takes a significant amount of time,
the recalculation may be suppressed using the set global lattice_calc_on command (§10.26.12) or
the set universe command (§10.26.23).

1.7 Command Files and Aliases

Typing repetitive commands in command line mode can become tedious. Tao has two constructs to
mitigate this: Aliases and Command Files.

Aliases are just like aliases in Unix. See Section §10.1 for more details.

Command files are like Unix shell scripts. A series of commands are put in a file and then that file can
be called using the call command (§10.2).

Tao will call a command file at startup. The default name of this startup file is tao.startup but this
name can be changed (§9.1).

Do loops (§10.6) are allowed with the following syntax:

18 CHAPTER 1. OVERVIEW: STARTING AND RUNNING TAO

do <var> = <begin>, <end> {, <step>}
...
tao command [[<var>]]
...

enddo

The <var> can be used as a variable in the loop body but must be bracketed “[[<var>]]”. The step size
can be any integer positive or negative but not zero. Nested loops are allowed and command files can
be called within do loops.
do i = 1, 100
call set_quad_misalignment [[i]] ! command file to misalign quadrupoles
zero_quad 1e-5*2^([[i]]-1) ! Some user supplied command to zero quad number [[i]]

enddo

To reduce unnecessary calculations, the logicals global%lattice_calc_on and global%plot_on can be
toggled from within the command file. Example
set global lattice_calc_on = F ! Turn off lattice calculations
set global plot_on = F ! Turn off plot calculations
... do some stuff ...
set global plot_on = T ! Turn back on
set global lattice_calc_on = T ! Turn back on

Additionally, the global%command_file_print_on switch controls whether printing is suppressed when
a command file is called.

A end_file command (§10.7) can be used to signal the end of the command file.

The pause command (§10.13) can be used to temporarily pause the command file.

1.8 Customizing Tao

Custom code can be linked with Tao to extend Tao’s capabilities. For example, Tao can be extended to
be used as an online model in a control system. See Chapter §13 for more details.

Chapter 2

Overall Organization and Structure

Tao stands for “Tool for Accelerator Optics”. Tao is a general purpose program for simulating high
energy particle beams in accelerators and storage rings. This manual assumes you are already familiar
with the basics of particle beam dynamics and its formalism. There are several books that introduce the
topics very well. A good place to start is, for example, The Physics of Particle Accelerators by Klaus
Wille[Wil00].

Tao is based on the Bmad [Bma06] subroutine library. An understanding of the nitty-gritty details of
the routines that comprise Bmad is not necessary, however, one should be familiar with the conventions
that Bmad uses and this is covered in the Bmad manual.

So, what is Tao good for? A large variety of applications: Single and multiparticle tracking, lattice
simulation and analysis, lattice design, machine commissioning and correction, etc. Furthermore, it is
designed to be extensible using interface “hooks” built into the program. This versatility has been used,
for example, to enable Tao to directly read in measurement data from Cornell’s Cesr storage ring and
Jefferson Lab’s FEL. Think of Tao as an accelerator design and analysis environment. But even without
any customizations, Tao will do much analysis.

This chapter discusses how Tao is organized. After you are familiar with the basics of Tao, you might be
interested to exploit its versatility by extending Tao to do custom calculations. For this, see Chapter 13.

2.1 The Organization of Tao: The Super_Universe

Many simulation problems fall into one of three categories:

• Design a lattice subject to various constraints.

• Simulate errors and changes in machine parameters. For example, you want to simulate what
happens to the orbit, beta function, etc., when you change something in the machine.

• Simulate machine commissioning including simulating data measurement and correction. For ex-
ample, you want to know what steering strength changes will make an orbit flat.

Programs that are written to solve these types of problems have common elements: You have variables
you want to vary in your model of your machine, you have "data" that you want to view, and, in the

19

20 CHAPTER 2. OVERALL ORGANIZATION AND STRUCTURE

first two categories above, you want to match the machine model to the data (in designing a lattice the
constraints correspond to the data).

With this in mind, Tao was structured to implement the essential ingredients needed to solve these
simulation problems. The information that Tao knows about can be divided into five (overlapping)
categories:

Lattice
Machine layout and component strengths, and the beam orbit (§2.4).

Data
Anything that can be measured. For example: The orbit of a particle or the lattice beta functions,
etc. (§5)

Variables
Essentially, any lattice parameter or initial condition that can be varied. For example: quadrupole
strengths, etc. (§4).

Plotting
Information used to draw graphs, display the lattice floor plan, etc. (§6).

Global Parameters
Tao has a set of parameters to control every aspect of how it behaves from the random number
seed Tao uses to what optimizer is used for fitting data.

2.2 The Super_universe

The information in Tao deals is organized in a hierarchy of “structures”. At the top level, everything
known to Tao is placed in a single structure called the super_universe.

Within the super_universe, lies one or more universes (§2.3), each universe containing a particular
machine lattice and its associated data. This allows for the user to do analysis on multiple machines or
multiple configurations of a single machine at the same time. The super_universe also contains the
variable, plotting, and global parameter information.

2.3 The Universe

The Tao super_universe (§2.2) contains one or more universes. A universe contains a lattice
(§2.4) plus whatever data (§5) one wishes to study within this lattice (i.e. twiss parameters, orbit,
phase, etc.). Actually, there are three lattices within each universe: the design lattice, model lattice
and base lattice. Initially, when Tao is started, all three lattices are identical and correspond to the
lattice read in from the lattice description file (§9.3).

There are several situations in which multiple universes are useful. One case where multiple universes
are useful is where data has been taken under different machine conditions. For example, suppose that
a set of beam orbits have been measured in a storage ring with each orbit corresponding to a different
steering element being set to some non-zero value. To determine what quadrupole settings will best
reproduce the data, multiple universes can be setup, one universe for each of the orbit measurements.
Variables can be defined to simultaneously vary the corresponding quadrupoles in each universe and
Tao’s built in optimizer can vary the variables until the data as determined from the model lattice (§2.4)

2.4. LATTICES 21

matches the measured data. This orbit response matrix (ORM) analysis is, in fact, a widely used
procedure at many laboratories.

If multiple universes are present, it is important to be able to specify, when issuing commands to tao and
when constructing Tao initialization files, what universe is being referred to when referencing parameters
such as data, lattice elements or other stuff that is universe specific. [Note: Tao variables are not universe
specific.] If no universe is specified with a command, the default universe will be used. This default
universe is set set by the set default universe command (§10.26). When Tao starts up, the default
universe is initially set to universe 1. Use the show global (§10.27) command to see the current default
universe.

the syntax used to specify a particular universe or range of universes is attach a prefix of the form:
[<universe_range>]@<parameter>

Commas and colons can be used in the syntax for <universe_range>, similar to the element list
format used to specify lattice elements (§3.1). When there is only a single Universe specified, the
brackets [...] are optional. When the universe prefix is not present, the current default universe is
used. The current default universe can also be specified using the number -1. Additionally, a “*” can
be used as a wild card to denote all of the universes. Examples:
[2:4,7]@orbit.x ! The orbit.x data in universes 2, 3, 4 and 7.
[2]@orbit.x ! The orbit.x data in universe 2.
2@orbit.x ! Same as "2@orbit.x".
orbit.x ! The orbit.x data in the current default universe.
-1@orbit.x ! Same as "orbit.x".
*@orbit.x ! orbit.x data in all the universes.
@ ! All the data in all the universes.

2.4 Lattices

A lattice consists of a machine description (the strength and placement of elements such as quadrupoles
and bends, etc.), along with the beam orbit through them. There are actually three types of lattices:
Design Lattice

The design lattice corresponds to the lattice read in from the lattice description file(s) (§9.3). In
many instances, this is the particular lattice that one wants the actual physical machine to conform
to. The design lattice is fixed. Nothing is allowed to vary in this lattice.

Model Lattice
Initially the model lattice is the same as the design lattice. Except for some commands that
explicitly set the base lattice, all Tao commands to vary lattice variables vary quantities in the
model lattice. In particular, things like orbit correction involve varying model lattice variables
until the data, as calculated from the model, matches the data as actually measured.

Base Lattice
It is sometimes convenient to designate a reference lattice so that changes in the model from
the reference point can be examined. This reference lattice is called the base lattice. The set
command (§10.26) is used to transfer information from the design or model lattices to the base
lattice.

Lattices can have multiple branches. For example, two intersecting rings can be represented as a lattice
with two branches, one for each ring. See the Bmad manual for more details. Many Tao commands
operate on a particular lattice branch. For example, the show lat command prints the lattice elements
of a particular branch. If no branch is specified with a command, the default branch is used. The

22 CHAPTER 2. OVERALL ORGANIZATION AND STRUCTURE

default branch is set with the set default branch command (§10.26). Initially, when Tao is started,
the default branch is set to branch 0. Use the show global (§10.27) command to see the current default
branch.

2.5 Tracking Types

The are two types of tracking implemented in Tao: single particle tracking and many particle multi-
bunch tracking. Single particle tracking is just that, the tracking of a single particle through the lattice.
Many particle multi-bunch tracking creates a Gaussian distribution of particles at the beginning of the
lattice and tracks each particle through the lattice, including any wakefields. Single particle tracking is
used by default. The global%track_type parameter (§9.4), which is set in the initialization file, is used
to set the tracking.

Particle spin tracking has also been set up for single particle and many particle tracking. See Sections §9.4
and §9.5 for details on setting up spin tracking.

2.6 Lattice Calculation

After each Tao command is processed, the lattice and “merit” function are recalculated and the plot
window is regenerated. The merit function determines how well the model fits the measured data. See
Chapter 7 for more information on the merit function and its use by the optimizer.

Below are the steps taken after each Tao command execution:

1. The data and variables used by the optimizer are re-determined. This is affected by commands
such as use, veto, and restore and any changes in the status of elements in the ring (e.g. if any
elements have been turned off).

2. If changes have been made to the lattice (e.g. variables changed) then the model lattice for all
universes will be recalculated. The model orbit, linear transfer matrices and Twiss parameters are
recalculated for every element. All data types will also be calculated at each element specified in
the initialization file. For single particle tracking the linear transfer matrices and Twiss parameters
are found about the tracked orbit. Tracking is performed using the tracking method defined for
each element (i.e. Bmad Standard, Symplectic Lie, etc...). See the Bmad Reference manual for
details on tracking and finding the linear transfer matrices and Twiss parameters.

3. The model data is recalculated from the model orbit, linear transfer matrices, Twiss parameters,
particle beam information and global lattice parameters. Any custom data type calculations are
performed before the standard Tao data types are calculated.

4. Any user specified data post-processing is performed in tao_hook_post_process_data.

5. The contributions to the merit function from the variables and data are computed.

6. Data and variable values are transferred to the plotting structures.

7. The plotting window is regenerated.

If a closed orbit is to be calculated, Tao uses an iterative method to converge on a solution where Tao
starts with some initial orbit at the beginning of the lattice, tracks from this initial orbit through to the
end of the lattice, and then adjusts the beginning orbit until the end orbit matches the beginning orbit.

2.6. LATTICE CALCULATION 23

A problem arises if the tracked particle is lost before it reaches the end of the lattice since Tao has no
good way to calculate how to adjust the beginning orbit to prevent the particle from getting lost. In
this case, Tao, in desperation, will try the orbit specified by particle_start in the Bmad lattice file
(see the Bmad manual for more details on setting particle_start). Note: particle_start can be
varied while running Tao using the set particle_start (§10.26) or change particle_start (§10.3)
commands.

If the recalculation takes a significant amount of time, the recalculation may be suppressed using the
set global lattice_calc_on command (§10.26.12) or the set universe command (§10.26.23).

24 CHAPTER 2. OVERALL ORGANIZATION AND STRUCTURE

Chapter 3

Syntax

3.1 Element List Format

The syntax for specifying a set of lattice elements is called element list format. Each item of the list
is one of:

Item Type Example
An element name. "5@q*"
An element index. "23", "2»183"
A range of elements. "b23w:67"
A class::name specification. "sbend::b*"

Items in a list are separated by a blank character or a comma. Example:
23, 45:74 quad::q*

An element name item is the name of an element or elements. The wild card characters “*” and/or “%”
can be used. The “*”wildcard matches any number of characters, The “%” wildcard matches a single
character. For example, “q%1*” matches any element whose name begins with “q” and whose third
character is “1”. If there are multiple elements in the lattice that match a given name, all such elements
are included. Thus “d12” will match to all elements of that name. Element names may be prefixed by
the universe number followed by the “” sign. If a universe is not specified, the current universe is used.
Examples
"134" ! Element with index 134 in branch 0 of the current universe.
"1>>13" ! Element with index 13 in branch 1 of the current universe.
"5@q*" ! All elements whose name begins with "q" of universe 5.
"*@sex10w" ! Element "sex10w" of all universes.
"b37" ! Element "b37" of the current universe.
"0@b37" ! Same as the previous example.

Note: element names are not case sensitive.

An element index item is simply the index of the number in the lattice list of elements. A prefix followed
by the string "»" can be used to specify a branch. As with element names, a universe prefix can be
given. Example
2@2>>183 ! Element number 183 of branch # 2 of universe 2.

A range of elements is specified using the format:
25

26 CHAPTER 3. SYNTAX

{<class>::}<ele1>:<ele2>

<ele1> is the element at the beginning of the range and <ele2> is the element at the end of the range.
Either an element name or index can be used to specify <ele1> and <ele2>. Both <ele1> and <ele2>
are part of the range. The optional <class> prefix can be used to select only those elements in the range
that match the class. Example:
quad::sex10w:sex20w

This will select all quadrupoles between elements sex10w and sex20w.

A class::name item selects elements based upon their class (Eg: quadrupole, marker, etc.), and their
name. The syntax is:
<element class>::<element name>

where <element class> is an element class and <element name> is the element name that can (and
generally does) contain the wild card characters “%” and “*”. Essentially this is an extension of the
element name format. As with element names, a universe prefix can be given. Example:
"4@quad::q*" ! All quadrupole whose name starts with "q" of universe 4.

3.2 Arithmetic Expressions

Tao is able to handle arithmetic expressions within commands (§10) and in strings in a Tao initialization
file. Arithmetic expressions can be used in a place where a real value or an array of real values are
required. The standard operators are defined:

a+ b Addition
a− b Subtraction
a ∗ b Multiplication
a / b Division
a ∧ b Exponentiation

The following intrinsic functions are also recognized (this is the same list as the Bmad parser):
sqrt(x) Square Root
log(x) Logarithm
exp(x) Exponential
sin(x) Sine
cos(x) Cosine
tan(x) Tangent
asin(x) Arc sine
acos(x) Arc cosine
atan(y) Arc Tangent
atan2(y, x) Arc Tangent
abs(x) Absolute Value
factorial(x) Factorial
ran() Random number between 0 and 1
ran_gauss() Gaussian distributed random number with unit RMS
int(x) Nearest integer with magnitude less then x
nint(x) Nearest integer to x
floor(x) Nearest integer less than x
ceiling(x) Nearset integer greater than x

Both ran and ran_gauss use a seeded random number generator. Setting the seed is described in
Section §9.4.

See the following sections for the syntax for using data, variable, and lattice parameters in an expression.

3.3. SPECIFYING DATA PARAMETERS IN EXPRESSIONS 27

3.3 Specifying Data Parameters in Expressions

A data (§5.1) parameter “token” is a string that specifies a scalar or an array of data parameters. The
general form for data tokens in expressions (§3.2) is:
{[<universe(s)>]@}data::<d2.d1_name>[<index_list>]|<component>

where:
<universe(s)> Optional universe specification (§2.3)
<d2.d1_name> D2.D1 data name
<index_list> List of indexes.
<component> Component.

examples:
[2:4,7]@data::orbit.x ! The orbit.x data in universes 2, 3, 4 and 7.
[2]@data::orbit.x ! The orbit.x data in universe 2.
2@data::orbit.x[4] ! Fourth orbit.x datum in universe 2.
data::orbit.x[4,7:9]|meas ! Default uni measured values of datums 4, 7, 8, and 9.
-1@data::orbit.x ! Same as "orbit.x".
*@data::orbit.x ! orbit.x data in all the universes.
@data:: ! All the data in all the universes.

It is important to keep in mind that data must be defined at startup in the appropriate initialization
file as discussed in Sec. §9.7 before reference is made to data in an expression. The <d2.d1_name> data
names that have been defined at initialization time may be viewed using the show data command. Note
that these names are user defined and do not have to correspond to the data types given in Sec. §5.8.
See Sec. §3.5 for how to use “lattice parameters” that correspond to the data types given in Sec. §5.8
and that do not need to be defined at initialization.

See Sec. §5.2 for a list of datum <component>s (when running Tao, view a particular datum with the
show data command to see the list).

<index_list> is a list of indexes. <index_list> will determine how many elements are in the array.
For example, orbit.x[10:21,44] represents an array of 13 elements.

Depending upon the context, some parts of a token may be omitted. For example, with the set data
command the “data::” part of the token may be omitted. Example:
set data 2@orbit.x|meas = var::quad_k1[5]|model - orbit.y[3]|ref

Here Tao will default to evaluating a token as data. In general, what may be omitted should be clear in
context.

Data components that are computed by Tao may be used on the right hand side of an equal sign but
may not be set. For example, the model value of a datum is computed by Tao but the ref value is not.

If multiple tokens are used in an expression, all tokens must evaluate to arrays of the same size.

3.4 Specifying Variable Parameters in Expressions

A variable (§4) parameter “token” is a string that specifies a scalar or an array of variable parameters.
The general form for variable tokens in expressions (§3.2) is:
var::<v1_name>[<index_list>]<component>

where:
<universe(s)> Optional universe specification (§2.3)
<v1_name> V1 variable name.
<index_list> List of indexes.
<component> component.

28 CHAPTER 3. SYNTAX

Examples:
var::* ! All the variables
var::quad_k1[*]|design ! All design values of quad_k1.
var::quad_k1[]|model ! No values. That is, the empty set.
var::quad_k1|model ! Same as quad_k1[*]|model

It is important to keep in mind that variables must be defined at startup in the appropriate initialization
file as discussed in Sec. §9.6 before reference is made to them in an expression. The defined <v1_name>
variable names can be viewed using the show variable command. Since these names are user defined
they will change if different initialization files are used.

See Sec. §4 for a list of <components> of a variable.

<index_list> is a list of indexes. <index_list> will determine how many elements are in the array.
For example, k_quad[10:21,44] represents an array of 13 elements.

Depending upon the context, some parts of a token may be omitted. For example, with the set variable
command the “var::” part of the token may be omitted. Example:
set var quad_k1[5]|meas = data::2@orbit.x|meas

Here Tao will default to evaluating a token as a variable component. In general, what may be omitted
should be clear in context.

Variable components that are computed by Tao may be used on the right hand side of an equal sign but
may not be set. For example, the design value of a variable is computed by Tao but the meas value is
not.

If multiple tokens are used in an expression, all tokens must evaluate to arrays of the same size.

3.5 Specifying Lattice Parameters in Expressions

“Lattice parameters” are like data parameters (§3.3) except lattice parameters are calculated from the
lattice and do not have to be defined at initialization time. A lattice parameter “token” is a string that
specifies a scalar or an array of lattice parameters. The general form for data tokens in expressions (§3.2)
is:
{[<universe(s)>]@}lat::<parameter>[{<ref_ele>&}<element_list>]{|<component>}

where:
<universe(s)> Optional universe specification (§2.3)
<parameter> Name of the parameter.
<ref_ele> Optional reference element.
<element_list> Evaluation point or points.
<component> Optional component.

correspond to the data types as listed in Sec. §5.8.
3@lat::orbit.x[34:37] ! Array of orbits at element 34 through 37 in universe 3.
3@lat::orbit.x[q10w]|model ! Orbit.x model value at element q10w
lat::sigma.12[q10w] ! Beam sigma matrix component at element q10w computed

! from lattice parameters.

The list of possible lattice <parameter> names is given in Sec. §5.8. The table 5.3 shows which data
names are associated with the lattice. Lattice parameters are independent of data parameters. For
example, lat::orbit.x refers to the horizontal orbit while data::orbit.x refers to user defined data
whose name corresponds to orbit.x and in fact there is nothing to prevent a user from assigning the
name orbit.x to data that is derived from, say, the Twiss beta function.

3.6. SPECIFYING BEAM PARAMETERS IN EXPRESSIONS 29

Also notice the difference between, say, “lat::orbit.x[10]” and “data::orbit.x[10]”. With the
“lat::” source, the element index, in this case 10, refers to the 10th lattice element. With the “data::”
source, “10” refers to the 10th element in the orbit.x data array which may or may not correspond to
the 10th lattice element.

The optional <ref_ele> specifies a reference element for the evaluation. For example
lat::r.56[q0&qa:qb]

is an array of the r(5, 6) matrix element of the transport map between element q0 and each element in
the range from element qa and qb.

3.6 Specifying Beam Parameters in Expressions

Beam parameters are like lattice parameters (§3.5) except beam parameters are derived from tracking
a beam of particles and may only be used in an expression if beam tracking is turned on. A beam
parameter “token” is a string that specifies a scalar or an array of beam parameters. The general form
for data tokens in expressions (§3.2) is:
{[<universe(s)>]@}beam::<parameter>[{<ref_ele>&}<element_list>]{|<component>}

where:
<universe(s)> Optional universe specification (§2.3)
<parameter> Name of the parameter
<ref_ele> Optional reference element.
<eval_points> Evaluation point or points.
<component> Component.

Examples:
2@beam::sigma.x[q10w] Beam sigma at element q10w.
beam::n_particle_loss[2&56] Particle loss between elements 2 and 56.

The list of possible beam <parameter> names is given in Sec. §5.8. The table 5.3 shows which data
names are associated with beam tracking.

3.7 Specifying Element Parameters in Expressions

“Element parameters” are parameters associated with lattice elements like the quadrupole strength as-
sociated with an element. Element parameters also include derived quantities like the computed Twiss
parameters and the beam orbit. An element parameter “token” is a string that specifies a scalar or an
array of element parameters. The general form for element tokens in expressions is:
{<universe(s)>@}ele::<element_list>[<parameter>]{|<component>}
{<universe(s)>@}ele_mid::<element_list>[<parameter>]{|<component>}

where:
<universe(s)> Optional universe specification (§2.3)
<element_list> List of element names or indexes.
<parameter> Name of the element parameter
<component> Component.

Examples:
3@ele_mid::34[orbit_x] Orbit at middle of element with index 34 in universe 3.
ele::sex01w[k2] Sextupole component of element sex01w
ele::Q01W[is_on]|model The on/off status of element Q01W.

30 CHAPTER 3. SYNTAX

There is some overlap between element parameters and lattice parameters (§3.5). For historical reasons,
the element parameter syntax roughly follows a convention developed for Bmad lattice files which is
somewhat different from the convention developed for Tao data. For example, the a-mode beta is named
beta.a in Tao while Bmad uses the name beta_a. See the Bmad manual for more information on the
Bmad lattice file syntax. The following table lists the parameters that have both Tao datum and Bmad
element parameter names

Tao Datum Bmad Element Parameter

alpha.a, alpha.b alpha_a, alpha_b
beta.a, beta.b beta_a, beta_b
c_mat.11, etc. cmat_11, etc.
e_tot e_tot
eta.a, eta.b eta_a, eta_b
eta.x, eta.y eta_x, eta_y
etap.a, etap.b etap_a, etap_b
etap.x, etap.y etap_x, etap_y
floor.x, floor.y, floor.z x_position, y_position, z_position
floor.theta, floor.phi, floor.psi theta_position, phi_position, psi_position
gamma.a, gamma.b gamma_a, gamma_b
phase.a, phase.b phi_a, phi_b

Table 3.1: Tao datums that have equivalent Bmad element parameters.

The following table lists the parameters that have both Tao datum and Bmad particle orbit names

Tao Datum Bmad Orbit Parameter

orbit.x, orbit.y, orbit.z x, y, z
orbit.px, orbit.py, orbit.pz px, py, pz
spin.x, spin.y, spin.z spin_x, spin_y, spin_z
spin.amp spin.theta, spin.phi spinor_polarization, spinor_theta, spinor_phi

Table 3.2: Tao datums that have equivalent Bmad orbital parameters.

For parameters that are varying throughout the element, like the Twiss parameters, ele:: will evaluate
the parameter at the exit end of the element and ele_mid:: will evaluate the parameter at the middle
of the element. For parameters that do not vary, like the quadrupole strength, use the ele:: syntax.

Element list format (§3.1) is used for the <element_list> so an array of elements can be defined.

For element parameter that evaluate to a logical, if they are used on the right hand side of an expression
where the result is a real number, a True value will be converted to a value of 1 and a False value is
converted to a value of 0.

3.8 Format Descriptors

Some Tao commands like show lattice (§10.27.19) have optional arguments where the format output
of various quantities can be specified. Tao follows Fortran format descriptor notation. Since complete

3.8. FORMAT DESCRIPTORS 31

information is available on the Web (do a search for “fortran edit descriptor”), only a brief introduction
will be given here.

Format descriptors are case insensitive. The commonly used descriptors with Tao are:
Form Output
---- ----------------------------
Aw String
Fw.d Real numbers. Fixed point (no exponent).
nPFw.d Real numbers. Fixed point with the decimal point shifted n places.
ESw.d Real numbers. Floating point (with exponent).
Lw Logicals.
Iw Integers.
Iw.r Integers padded with zeros to width r.
wX White space.
Tc Tab to column c.

In the above, “w” is the width of the field (number of charactgers in the printed string) and “d” is the
number of digits to the right of the decimal place,

Examples:
Internal

Format Quantity Output String Comment
---- -------- ------------- -----------
F7.2 76.1234 " 76.12" Right justified.
1PF7.2 76.1234 " 761.23" Shifted decimal place 1 digit.
F0.2 76.1234 "76.12" 0 Field width => Output width exactly fits.
F3.2 76.1234 "***" Number overflows field width.
ES9.2 76.1234 " 7.61E+01" Right justified.
L3 True " T" Right justified.
I0 34 "34" 0 Field width => Actual width = number of digits.
I4 34 " 34" Right justified.
I4.3 34 " 034" Number padded with a zero to three digits.
A3 "abcdef" "abc" String truncated.
A3 "ab " "ab " String truncated but looks left justified.
A "abcdef" "abcdef" Output width exactly fits string.
A8 "abcdef" " abcdef" Right justified.
4x " " Four spaces.
T45 Next output string starts at column 45

Note: When a format descriptor is being used to construct a table (EG show lattice command), using
a “0” for the field width is ill-advised since columns will not be properly aligned.

A comma delimited list is used for outputting multiple quantities. For example, the format “I4, A” is
used to output an integer followed by a string.

If multiple quantities with the same format are to be outputted a multiplier prefix number can be
used. For example, “3A” is equivalent to “A, A, A”. If the format has a P prefix then parentheses can
be used to separate the multiplier from the P prefix. Example: “2(3PF7.2)” is equivalent to “3PF7.2,
3PF7.2”.

Note to programmers: In a code file, a format string must always be enclosed in parentheses.

32 CHAPTER 3. SYNTAX

Chapter 4

Variables

For the model lattice (or lattices if there are multiple universes) the change command (§10.3) can be
used to vary lattice parameters such as element strengths, the initial Twiss parameters, etc. Additionally,
variables can be defined in the Tao initialization files (§9.6) that can also be used to vary these model
lattice parameters. A given Tao variable may control a single attribute of one element in one or more
universes. There are a few reasons why one would want to setup such variables. For example, the
optimizer (§7) will only work with Tao variables and blocks of these variables can be plotted for visual
inspection.

Blocks of variables are associated with what is called a v1_var structure and each of these structures
has a name with which to refer to them in Tao commands. For example, if quad_k1 is the name of a
v1_var, then quad_k1[5] referees to the variable with index 5 in the block.

A set of variables within a v1_var block can be referred to by using using a comma , to separate their
indexes. Additionally, a Colon “:” can be use to specify a range of variables. For example
quad_k1[3:6,23]

refers to variables 3, 4, 5, 6, and 23. Instead of a number, the associated lattice element name can be
used so if, in the above example, the lattice element named q01 is associated with quad_k1[1], etc.,
then the following is equivalent:
quad_k1[q03:q06,q23]

Using lattice names instead of numbers is not valid if the same lattice element is associated with more
than one variable in a v1_var array. This can happen, for example, if one variable controls an element’s
x_offset and another variable controls the same element’s y_offset.

In referring to variables, a “*” can be used as a wild card to denote “all”. Thus:
* ! All the variables
quad_k1[*]|design ! All design values of quad_k1.
quad_k1[]|model ! No values. That is, the empty set.
quad_k1|model ! Same as quad_k1[*]|model

A given variable may control a single attribute of one element in a model lattice of a single universe or
it can be configured to simultaneously control an element attribute across multiple universes. Any one
variable cannot control more than one attribute of one element. However, a variable may control an
overlay or group element which, in turn, can control numerous elements.

Each individual variable has a number of values associated with it: The list of components that can be
set or refereed to are:
ele_name ! Associated lattice element name.

33

34 CHAPTER 4. VARIABLES

attrib_name ! Name of the attribute to vary.
ix_attrib ! Index in ele%value(:) array if appropriate.
s ! longitudinal position of ele.

meas ! Value of variable at time of a data measurement.
ref ! Value at time of the reference data measurement.
model ! Value in the model lattice.
base ! Value in the base lattice.
design ! Value in the design lattice.
correction ! Value determined by a fit to correct the lattice.
old ! Scratch value.

weight ! Weight used in the merit function.
delta_merit ! Diff used to calculate the merit function term.
merit ! merit_term = weight * delta^2.
merit_type ! ’target’ or ’limit’
dMerit_dVar ! Merit derivative.

high_lim ! High limit for the model_value.
low_lim ! Low limit for the model_value.
step ! For fitting/optimization: What is considered a small change.

key_bound ! Variable bound to keyboard key?
ix_key_table ! Has a key binding?

ix_v1 ! Index of this var in the s%v1_var(i)%v(:) array.
ix_var ! Index number of this var in the s%var(:) array.
ix_dvar ! Column in the dData_dVar derivative matrix.

exists ! Does the variable exist?
good_var ! The variable can be varied (set by Tao).
good_user ! The variable can be varied (set by the user).
good_opt ! For use by extension code.
good_plot ! For use by extension code
useit_opt ! Variable is to be used for optimizing.
useit_plot ! Variable is to be used for plotting.

attrib_name
Name of the attribute to vary. Consult the Bmad manual for appropriate attribute names. If
the attribute is associated with a lattice element, the show element -all command will list most
attributes of interest. It is important to keep in mind that it is not possible to use attributes that
are computed (that is, dependent attributes).

base
The value of the variable as derived from the base lattice (§2.3).

delta_merit
Difference value used to calculate the contribution of the variable to the merit function (Eq. (7.1)).

design
The value of the variable as given in the design lattice.

35

dMerit_dVar
Derivative of the merit function with respect to the variable.

ele_name
Associated lattice element name. For controlling the starting position in a lattice with open
geometry the element name is particle_start (which is the name used if the starting position is
set in the lattice file).

exists
The variable exists. Non-existent variables can serve as place holders in a variable array.

good_opt
Logical not modified by Tao proper and reserved for use by extension code. See below.

good_plot
Logical not modified by Tao proper and reserved for use by extension code. See below.

good_var
Logical controlled by Tao and used to veto variables that should not be varied during optimization.
For example, variables that do not affect the merit function. See below.

good_user
Logical set by the user using veto, use, and restore commands to indicate whether the variable
should be used when optimizing. See below.

high_lim
High limit for the model value during optimization (§7.3) beyond which the contribution of the
variable to the merit function is nonzero.

ix_attrib
Index assigned by Bmad to the attribute being controlled. Used for diagnosis and not of general
interest.

ix_dvar
Column index of the variable in the dData_dVar derivative matrix constructed by Tao. Used for
diagnostics and not of general interest.

ix_key_table
Index of the variable in the key table (§11.1).

ix_v1
Index of this variable in the variable array of the associated v1_var variable. For example, a
variable named q1_quad[10] would have ix_v1 equal to 10.

ix_var
For ease of computation, Tao establishes an array that holds all the variables. ix_var is the index
number for this variable in this array. Used for diagnostics and not of general interest.

key_bound
Variable bound to keyboard key (§11.1)?

measured
The value of the variable as obtained at the time of a data measurement.

merit
The contribution to the merit function Eq. (7.1) from the variable. Use the show merit command
to set the variables and data which contribute most to the merit function.

36 CHAPTER 4. VARIABLES

merit_type
T’target’ or ’limit’

low_lim
Lower limit for the model value during optimization (§7.3) beyond which the contribution of the
variable to the merit function is nonzero.

model
The value of the variable as given in the model lattice.

reference
The Value of the variable as obtained at the time of a reference data measurement (§7.1.

s
longitudinal position of element whose attribute the variable is controlling. Since a variable may
control multipole attributes in multiple elements at different s-positions, The value of s may not
be relevant.

step
What is considered a small change in the variable but large enough to be able to compute derivatives
by changing the variable by step. Used for fitting/optimization.

useit_opt
Variable is to be used for optimization. See below.

useit_plot
If True, variable is used when plotting variable values. See below.

weight
Weight used in the merit function. wj in Eq. (7.1)

These components and others can be refereed to in expressions using the notation documented in
Sec. §3.4.

Use the show var (§10.27) command to see variable information

When using optimization for lattice correction or lattice design (§7), Individual variables can be excluded
from the process using the veto (§10.32), restore (§10.22), and use (§10.31) commands. These set the
good_user component of a variable. This, combined with the setting exists, good_var, and good_opt
determine the setting of useit_opt which is the component that determines if the datum is used in the
computation of the merit function.
useit_opt = exists & good_user & good_opt & good_var

The settings of everything but good_user and good_opt is determined by Tao

For a given graph that potentially will use a given variable for plotting, the useit_plot component is
set to True if the variable is actually used for plotting. useit_plot is set by Tao using the prescription:

useit_plot = exists & good_plot & good_var &
(good_user | graph:draw_only_good_user_data_or_vars)

Since useit_plot is set on a graph by graph basis, If multipole graphs that use a particular variable
are to be plotted, The setting of useit_plot at the end of plotting will just be the setting for the last
graph that was plotted.

Chapter 5

Data

A Tao “datum” is a parameter associated with a lattice that is used in lattice correction or design
(§7). Example data includes the vertical orbit at a particular position or the horizontal emittance of
a storage ring. This chapter explains how data is organized in Tao while Section §9.7 explains how, in
an initialization file, to define the structures that hold the data. When running Tao, the show data
(§10.27) command can be used to view information about the data.

5.1 Data Organization

The horizontal orbit at a particular BPM is an example of an individual datum. For ease of manipulation,
arrays of datums are grouped into what is called a d1_data structure. Furthermore, sets of d1_data
structures are grouped into what is called a d2_data structure. This is illustrated in Figure 5.1. For
example, a d2_data structure for orbit data could contain two d1_data structures — one d1_data
structure for the horizontal orbit data and another d1_data structure for the vertical orbit data. Each
datum of, say, the horizontal orbit d1_data structure would then correspond to the horizontal orbit at
some point in the machine.

When issuing Tao commands, all the data associated with a d2_data structure is specified using the
d2_data structure’s name. The data associated with a d1_data structure is specified using the format

d2_data
[EG: “orbit”]

d1_data
[EG: “x”]

d1_data

datum
[Index: 36]

datum
[Index: 37]

datum

. . .

. . .

d1_data
[EG: “y”]

d2_data

Figure 5.1: A d2_data structure holds a set of d1_data structures. A d1_data structure holds an array
of datums.

37

38 CHAPTER 5. DATA

d2_name.d1_name

For example, if a d2_data structure has the name “orbit”, and one of its d1_data structures has the
name “x”, then Tao commands that refer to the data in this d1_data structure use the name “orbit.x”.
Sometimes there is only one d1_data structure for a given d2_data structure. In this case the data can
be referred to simply by using the d2_data structure’s name. The individual datums can be referred to
using the notation
<d2_name>.<d1_name>[<list_of_datum_indexes>]

For example, orbit.x[10] refers to the horizontal orbit datum with index 10. Notice that the beginning
(lowest) datum index is user selectable and is therefore not necessarily 1.

Period characters are not allowed in both the d2_data and d1_data names.

It is important to note that the name given to d2_data and d1_data structures is arbitrary and does
not have to correspond to the type of data contained in the structures. In fact, a d1_data array can
contain heterogeneous data types. Thus, for example, it is perfectly permissible (but definitely not
recommended) to set up the data structures so that, say, orbit.x[10] is the a-mode emittance at a
certain element and orbit.x[11] is the b-mode beta function at the same element.

Ranges of data can be referred to using using a comma , to separate the indexes combined with the
notation n1:n2 to specify all the datums between n1 and n2 inclusive. For example
orbit.x[3:6,23]

refers to datums 3, 4, 5, 6, and 23.

If multiple universes are present, then, as explained in §2.3, the prefix "@" may be used to specify which
universe the data applies to. The general notation is
[<universe_range>]@<d2_name>.<d1_name>[<datum_index>]

Examples:
[2:4,7]@orbit.x ! The orbit.x data in universes 2, 3, 4 and 7.
[2]@orbit.x ! The orbit.x data in universe 2.
2@orbit.x ! Same as "2@orbit.x".
orbit.x ! The orbit.x data in the current default universe.
-1@orbit.x ! Same as "orbit.x".

As explained in Section §5.2, each individual datum has a number of components. The syntax to refer
to a component is:
d2_name.d1_name[datum_index]|component

For example:
orbit.x[3:10]|meas ! The measured data values

In referring to datums, a “*” can be used as a wild card to denote “all”. Thus:
*@orbit.x ! The orbit.x data in all universes.
* ! All the data in the current default universe.
. ! Same as "*"
@ ! All the data in all the universes.
@.* ! Same as "*@*"
orbit.x[*]|meas ! All measured values of orbit.x
orbit.x[]|meas ! No values. That is, the empty set.
orbit.x|meas ! Same as orbit.x[*]|meas.

The last example shows that when referring to an entire block of data encompassed by a d1_data
structure, the [*] can be omitted.

5.2. ANATOMY OF A DATUM 39

5.2 Anatomy of a Datum

Each datum has a number of components associated with it:
data_type ! Character: Type of data: "orbit.x", etc.
ele_name ! Character: Name of lattice element where datum is evaluated.
ele_start_name ! Character: Name of starting lattice element in a range.
ele_ref_name ! Character: Name of reference lattice element.
merit_type ! Character: Type of constraint: "target", "max", etc.
data_source ! Character: How the datum is calculated. "lat", "beam", etc.
ix_ele ! Integer: Index of "ele" in the lattice element list.
ix_branch ! Integer: Lattice branch index.
ix_ele_start ! Integer: Index of "ele_start" in the lattice element list.
ix_ele_ref ! Integer: Index of "ele_ref" in the lattice element list.
ix_ele_merit ! Integer: Lattice index where merit is evaluated.
ix_d1 ! Integer: Index number in d1_data structure
ix_data ! Integer: Index in the global data array
ix_dModel ! Integer: Row number in the dModel_dVar derivative matrix.
ix_bunch ! Integer: Bunch number to get the data from.
eval_point ! Character/integer: Evaluation point relative to the lattice element.
meas ! Real: Measured datum value.
ref ! Real: Measured datum value from the reference data set.
model ! Real: Datum value as calculated from the model.
design ! Real: What the datum value is in the design lattice.
old ! Real: Used by Tao to save the model at some previous time.
base ! Real: The value as calculated from the base model.
fit ! Real: This value is not used by Tao.
invalid ! Real: The value used for delta_merit if good_model = False.
delta_merit ! Real: Diff used to calculate the merit function term
weight ! Real: Weight for the merit function term
merit ! Real: Merit function term value: weight * delta^2
s ! Real: longitudinal position of ele.
s_offset ! Real: Offset of the evaluation point.
exists ! Logical: Does the datum exist?
good_model ! Logical: Does the model component contain a valid value?
good_design ! Logical: Does the design component contain a valid value?
good_base ! Logical: Does the base component contain a valid value?
good_meas ! Logical: Does the meas component contain a valid value?
good_ref ! Logical: Does the ref component contain a valid value?
good_user ! Logical: Does the user want this datum used in optimization?
good_opt ! Logical: Can be used in Tao extensions.
good_plot ! Logical: Can be used in Tao extensions.
useit_plot ! Logical: Is this datum to be used in plotting?
useit_opt ! Logical: Is this datum to be used for optimization?

When running Tao, the show data (§10.27) command can be used to view the components of a datum.
The set command (§10.26) can be used to set some of these components.

base
The value of the datum as calculated from the base lattice (§5.3).

data_source
The data_source component specifies where the data is coming from (§5.6).

40 CHAPTER 5. DATA

data_type
The type of data (§5.8). For example, beta.a. At startup, if the data_type is not specified, it
is set to <d2_name>.<d1_name> where <d2_name> is the name of the associated d2 data structure
and <d1_name> is the name of the associated d1 data structure (§9.7).

delta_merit
Difference used to calculate the contribution of the datum to the merit function (§7.1).

design
The value of the datum as calculated from the design lattice (§5.3).

ele_name
Name of the associated lattice element where the datum is evaluated at (§5.7). Not used for datums
that are global, like the emittance. Also see eval_point and s_offset components.

ele_start_name
Starting element of a range of lattice elements (§5.7).

ele_ref_name
Reference lattice element (§5.7).

eval_point
Used with s_offset to determine where the datum is evaluated at (§5.4).

exists
Set by Tao to True if the datum exists (§5.5).

fit
Not used by Tao. Can be used with custom code.

good_base
Set by Tao. Is the base value valid?

good_design
Set by Tao. Is the value as calculated from the design lattice valid? For example, if the datum is
the particle orbit at some BPM in a ring and if it is not possible to compute the orbit at the BPM
due to the lattice being ustable then good_design will be False.

good_meas
Set by Tao. Is the meas value valid?

good_model
Set by the user. Is the value as calculated from the model lattice valid? For example, if the
datum is the particle orbit at some BPM in a lattice with open geometry and if it is not possible
to compute the orbit at the BPM due to the particle being lost upstream of the element then
good_model will be False.

good_opt
Set by the user. Is the datum valid for optimization?

good_plot
Set by the user. Is the datum to be used in plotting?

good_ref
Set by the user. Is the ref value valid?

5.2. ANATOMY OF A DATUM 41

good_user
Set by the user. Is the datum valid for optimization or plotting?

invalid
The value used in the computation of delta_merit one of the following three conditions is True:
1) if good_model = False, or 2) if good_base is False when the global opt_with_base is True, or
3) if good_design is False when the global opt_with_ref is True.

ix_branch
The index of the lattice branch that contains ele, ref_ele, and start_ele.

ix_ele
Index of the lattice element where the datum is evaluated at.

ix_ele_start
Index of the start element.

ix_ele_ref
Index of the reference element.

ix_ele_merit
Set by Tao. When the merit_type is set to max or min and there is a range of elements that over
which the there is an evaluation, ix_ele_merit is set to the element where the value is the max or
min.

ix_d1
Index of the associated d1_data array.

ix_data
For convenience, all the datums of a given universe are put into one large array. ix_data is the
index of the datum in this array. This is useful for debugging purposes.

ix_dModel
For optimization, Tao creates a derivative matrix dMerit_i/dVar_j. ix_dmodel is set to the ith
column of this matrix. This is useful for debugging purposes

ix_bunch
For datums that have data_source set to beam, ix_bunch selects which bunch of the beam the
datum is evaluated at.

meas
The value of the datum as obtained from some measurement (§5.3).

merit
The contribution to the merit function due to this datum (§7.1).

merit_type
The type of merit (§7.3).

model
The value of the datum as calculated from the model lattice (§5.3).

old
A datum value that was saved at some point in Tao’s calculations. This value can be ignored
(§5.3).

42 CHAPTER 5. DATA

ref
The reference datum value as obtained from some reference measurement (§5.3).

s
Longitudinal s-position of the lattice element.

s_offset
Offset of the evaluation point when there is an associated lattice element (§5.4).

useit_opt
Datum is used for optimization. useit_opt is set by Tao using the other logicals components
using the prescription:
useit_opt = exists & useit_opt & good_user & good_meas &

good_ref (if reference data is used in optimization)
Notice that if, for example, good_model is False then the datum will still be used for optimization but
in this case the invalid value set by the user will be used in the computation for delta_merit in
place of a value computed from lattice.

useit_plot
Set True if the datum is valid for plotting for a particular graph. This component gets reevaluated
for each graph that potentially uses the datum so the value observed after plotting is refreshed is
simply the value as calculated for the last graph considered. The value for useit_plot is evaluated
using other logical components using the preseciption:
useit_plot = exists & good_plot &

(good_user | graph:draw_only_good_user_data_or_vars) &
good_meas (if measured data is being plotted) &
good_ref (if reference data is being plotted) &
good_model (if model data is being plotted)

weight
Weight used in evaluating the contribution of the datum to the merit function (§7.1).

5.3 Datum values

A given datum has six values associated it:
meas

When fitting data, the meas value is the value of the datum as obtained from some measurement.
When designing lattices, the meas value is the desired value of the datum. For example, when
designing a lattice for a colliding ring machine, a datum may be constructed for the beta function
at the interaction point with the meas value set to the desired value. See Chapter 7 for more
details.

base
The datum value as calculated from the base lattice (§2.4).

design
The value of the datum as calculated from the design lattice (§2.4).

fit
The fit value is not used by Tao directly and is available for use by custom code.

model
The value of the datum as calculated from the model lattice (§2.4).

5.4. EVALUATION POINT OF A DATUM 43

old
A datum value that was saved at some point in Tao’s calculations. This value can be ignored.

ref
When fitting data, ref is the datum value as obtained from some reference measurement. For
example, a measurement before some variable is varied could be designated as the reference, and
the datum taken after the variation could be designated the measured datum. When designing
lattices, the ref value is the value of the datum associated with the design or base lattice (de-
termined by the setting of the global opt_with_base parameter (§7.3). Note: The meas value of
a datum is always associated with the model lattice.

5.4 Evaluation Point of a Datum

.

When the datum is to be evaluated at a specific point in the lattice, that is, when there is an associated
lattice element, the default position for evaluating the datum is at the downstream end of the element.
This evaluation point can be shifted using the eval_point and/or s_offset components.

The eval_point component can be set to one of:
beginning ! entrance end of lattice element.
center ! Center of lattice element
end ! Exit end of lattice element. Default.

The evaluation point is shifted by s_offset from the eval_point.

If there is a reference point, the setting of eval_point is used to determine where the reference point.
The setting of s_offset is ignored for the reference point.

Due to internal logic considerations, Not all data_types are compatible with a finite s_offset or
a setting of eval_point to center. The table of data_types (§5.3) shows which data_types are
compatible and which are not.

Another restriction is that specifying a range of elements for evaluation (that is, specifying ele_start_name
§9.7) is not compatible with a finite s_offset or a setting of eval_point to center.

5.5 Datums in Optimization

When using optimization for lattice correction or lattice design (§7), Individual datums can be excluded
from the process using the veto (§10.32), restore (§10.22), and use (§10.31) commands. These set the
good_user component of a datum. This, combined with the setting exists, good_meas, good_ref, and
good_opt determine the setting of useit_opt which is the component that determines if the datum is
used in the computation of the merit function. The settings of everything but good_user is determined
by Tao

The exists component is set by Tao to True if the datum exists and False otherwise. A datum may not
exist if the type of datum requires the designation of an associated element but the ele_name component
is blank. For example, a d1_data array set up to hold orbit data may use a numbering scheme that fits
the lattice so that , say, datum number 34 in the array does not correspond to an existing BPM.

The good_model component is set according to whether a datum value can be computed from the model
lattice. For example, If a circular lattice is unstable, the beta function and the closed orbit cannot be

44 CHAPTER 5. DATA

computed. Similarly, the good_design and good_base components mark whether the design and base
values respectively are valid.

The delta_merit component of a datum is set to the delta value used in computing the contribution to
the merit function (§7.3). If it is not possible to compute the datum value, then the invalid component
is used for the computation of delta_merit. It is not possible to compute the datum value if one of
the following three conditions is True: 1) good_model is False, 2) good_design is False and the global
opt_with_ref is True, or 3) good_base is False and the global opt_with_base is True.

good_meas is set True if the meas component value is set in the data initialization file (§9.7) or is set
using the set command (§10.26). Similarly, good_ref is set True if the ref component has been set.
good_ref only affects the setting of useit_opt if the optimization is using reference data as set by the
global variable opt_with_ref (§9.4).

Finally good_opt is meant for use in custom versions of Tao (§13) and is always left True by the standard
Tao code.

Example of using a show data (§10.27) to check the logicals in a datum:
Tao> show data 3@beta[1]

Universe: 3
%ele_name = IP_L0
%ele_ref_name =
%ele_start_name =
%data_type = beta.a

... etc ...
%exists = T
%good_model = T
%good_meas = F
%good_ref = F
%good_user = T
%good_opt = T
%good_plot = F
%useit_plot = F
%useit_opt = F

Here useit_opt is False since good_meas is False and good_meas is False since the meas value of the
datum (not shown) was not set in the Tao initialization file or set using the set command.

5.6 Data_source

The data_source component specifies where the data is coming from. Possible values are:
"beam" ! Data from from multiparticle beam distribution
"data" ! Data from from a Tao datum in a data array.
"lat" ! Data from from the lattice.

If data_source is set to "beam", the data is calculated using multiparticle tracking. If data_source
is set to "lat", the data is calculated using the “lattice” which here means everything but multiparticle
tracking In particular, the "lat" data_source includes data derived from single particle tracking. For
example, the "beam" based calculation of the emittance uses the bunch sigma matrix obtained through
multiparticle tracking. The "lat" based calculation of the emittance uses radiation integrals.

Some data types may be restricted as to which data_source is possible. For example, a datum with

5.7. DATUM EVALUATION AND ASSOCIATED LATTICE ELEMENTS 45

data_type set to n_particle_loss must use "beam" for the data_source. Table 5.3 lists which
data_source values are valid for what data types.

5.7 Datum Evaluation and Associated Lattice Elements

Datums can be divided up into two classes. In one class are the datums that are “local”, like the beam
orbit, which need to be evaluated at either a particular point are evaluated over some finite region of the
machine. Other datums, like the emittance, are “global” and do not have associated evaluation points.

As mentioned, local datums may be evaluated at a specific point or over some evaluation region, an
evaluation region is used when, for example, the maximum or minimum value over a region is wanted. To
specify an evaluation point, an evaluation element must be associated with a datum. The evaluation
point will be at the exit end of this element. To specify an evaluation region, a start element must
also be associated with a datum along with the evaluation element. The evaluation region is from
the exit end of the start element to the exit end of the evaluation element.

In addition to the evaluation element and the start element, a local datum may have an associated
reference element. A reference element is used as a fiducial point and the datum value is calculated
relative to that point. For example, a datum value may be the position of the evaluation element
relative to the position of the reference element. The evaluation point of a reference element is
the exit end of that element.

The components in a datum corresponding to the evaluation element, the reference element, and
the start element. are shown in Table 5.1. These three elements may be specified for a datum by
either setting the name component or the index component of the datum. Using the element index over
the element name is necessary when more than one element in the lattice has the same name.

Data Component

Element name index

Reference Element ele_ref_name ix_ele_ref
Start Element ele_start_name ix_ele_start
Evaluation Element ele_name ix_ele

Table 5.1: The three lattice elements associated with a datum may be specified in the datum by setting
the appropriate name component or by setting the appropriate index component.

If a datum has an associated evaluation element, but no associated start or reference elements, the
model value of that datum is the value of the data_type at the evaluation element. For example, if a
datum has:
data_type = "orbit.x"
ele_name = "q12"

here the model value of this datum will be the horizontal orbit at the element with name q12.

If a datum has an associated start element, specified by either setting the ele_start_name or ix_ele_start
datum components, the datum is evaluated over a region from the exit end of the start element to the
exit end of evaluation element. For example, if a datum has:
data_type = "beta.a"
ele_name = "q12"
ele_start_name = "q45"
merit_type = "max"

46 CHAPTER 5. DATA

then the model value of this datum will be the maximum value of the a-mode beta function in the region
from the exit end of the element with name q12 to the exit end of the element with name q45. Notice
that when a range of elements is used, a merit_type of target does not make sense.

Typically, in evaluating a datum over some region to find the maximum or minimum, Tao will only
evaluate the datum at the ends of the elements with the assumption that this is good enough. If
this is not good enough, marker elements can be inserted into the lattice at locations that matter.
For example, the maximum or minimum of the beta function typically occurs near the middle of a
quadrupole so inserting marker elements in the middle of quadrupoles will improve the accuracy of
finding the extremum beta.

If a datum has an associated reference element, specified by either setting the ele_ref_name or
ix_ele_ref datum components, the model value of the datum is the value at the evaluation ele-
ment (or the value over the range ele_start to the evaluation element if ele_start is specified),
minus the model value at ele_ref. For example, if a datum has:
data_type = "beta.a"
ele_name = "q12"
ele_start_name = "q45"
ele_ref_name = "q1"
merit_type = "max"

then the model value of the datum will be the same as the previous example minus the value of the
a-mode beta function at the exit end of element q1. There are a number of exceptions to the above rule
and datum types treat the reference element in a different manner. For example, the r. data type
uses the reference element as the starting point in constructing a transfer matrix.

5.8 Tao Data Types

The data_type component of datum specifies what type of data the datum represents. For example,
a datum with a data_type of orbit.x represents the horizontal orbit. Table 5.3 lists what data types
Tao knows about.

It is important to note the difference between the d2.d1 name that is used to refer to a datum and the
actual type of data, given by data_type, of the datum. The d2.d1 name is arbitrary and is specified in
the Tao initialization file (§9.7). Often, these names do reflect the actual type of data. However, there is
no mandated relationship between the two. For example, it is perfectly possible to set create a data set
with a d2.d1 name of orbit.x to hold, say, global floor position data. In fact, the datums in a given
d1 array do not all have to be of the same type. Thus the user is free to group data as s/he sees fit.

Description of the data types:

alpha.a, .b
Twiss function alpha.

apparent_emit.x, .y
The apparent emittance is the emittance that one would calculate based upon a measurement of
the beam size[Fra11]. It can be useful to compare this to the true normal mode emittance. Also
See the norm_apparent_emit, emit. and norm_emit. data types. With data_source set to
"beam", apparent_emit.x is

emitx =
σxx − η2x σpzpz

βa
(5.1)

5.8. TAO DATA TYPES 47

with a similar equation for apparent_emit.y. Here σ is the beam size matrix

σr1r2 ≡ 〈r1 r2〉 (5.2)

With data_source set to "lat", The apparent emittance is calculated from the true normal mode
emittance and the Twiss parameters (Cf. Eqs (4) and (5) of [Fra11]).

beta.a, .b, .c
Lattice normal mode betas.

beta.x, .y, .z
Beam projected beta functions. beta.x is defined by

β.x =
< x2 >√

< x2 >< x′2 > − < xx′ >2
. (5.3)

with similar equations for the other planes. The average <> is over all the particles in the beam.

Note: If the beta function is calculated from the beam distribution, the initial beam emittance
must be set to something non-zero.

bpm_cbar.22a, .12a, .11b, .12b
The normalized Cbar coupling parameters. The computed model values include detector misalign-
ments, rotations, gain errors, etc. This type of datum is useful for simulating how well actual
coupling corrections are. See the Bmad manual on “Instrumental Measurement Attributes” for
more details. Note: This type of datum can only be used with detector, instrument, monitor
or marker elements

bpm_eta.x, y
The horizontal and vertical dispersion components. The computed model values include detector
misalignments, rotations, gain errors, etc. This type of datum is useful for simulating how well
actual dispersion corrections are. See the Bmad manual on “Instrumental Measurement Attributes”
for more details. Note: This type of datum can only be used with detector, instrument, monitor
or marker elements

bpm_orbit.x, y
Beam Orbit. The computed model values include detector misalignments, rotations, gain errors,
etc. This type of datum is useful for simulating how well actual orbit corrections are. See the
Bmad manual on “Instrumental Measurement Attributes” for more details. Note: This type of
datum can only be used with detector, instrument, monitor or marker elements

bpm_phase.a, b
Betatron phase. The computed model values include detector misalignments, rotations, gain errors,
etc. This type of datum is useful for simulating how well actual orbit corrections are. See the Bmad
manual on “Instrumental Measurement Attributes” for more details. Note: This type of datum
can only be used with detector, instrument, monitor or marker elements

bpm_k.22a, .12a, .11b, .12b
Measured beam coupling components. The computed model values include detector misalignments,
rotations, gain errors, etc. This type of datum is useful for simulating how well actual coupling
corrections are. See the Bmad manual on “Instrumental Measurement Attributes” for more details.
Note: This type of datum can only be used with detector, instrument, monitor or marker
elements

bunch_max, bunch_min.x, .px, .y, .py, .z, .pz
Maximum or minimum phase space coordinate in a bunch, relative to its centroid.

48 CHAPTER 5. DATA

c_mat.11, .12, .21, .22
Coupling matrix components. The 2x2 C matrix describe the x-y coupling of the beam. See the
Bmad manual for more details.

cbar.11, .12, .21, .22
Normalized coupling matrix components. The 2x2 C matrix describe the x-y coupling of the beam.
The normalized matrix is normalized by factors of β. See the Bmad manual for more details.

chrom.a, .b
Chromaticities. Old names: chrom.dtune.a and chrom.dtune.b

chrom.dbeta.a, .dbeta.b
The normalized change of the beta function with energy (1/βa,b)∂βa,b/∂δ. Unlike the standard
chromaticities,chrom.a and chrom.b, the these chromaticities are evaluated at individual elements.

chrom.deta.x, .deta.y
The chromatic dispersion ∂ηx,y/∂δ. Unlike the standard chromaticities,chrom.a and chrom.b, the
these chromaticities are evaluated at individual elements.

chrom.detap.x, .detap.y
The chromatic dispersion derivatives ∂η′x,y/∂δ. Unlike the standard chromaticities,chrom.a and
chrom.b, the these chromaticities are evaluated at individual elements.

chrom.dphi.a, .dphi.b
The chromatic betatron phase ∂φa,b/∂δ. Unlike the standard chromaticities,chrom.a and chrom.b,
the these chromaticities are evaluated at individual elements.

damp.j_a, .j_b, .j_z
Damping partition numbers.

dpx_dx, dpy_dy, etc.
Bunch sigma matrix ratios, <x px> / <x2> & Etc.

e_tot_ref
The reference energy of the lattice. This is the same as the E_tot attribute of a lattice element.
For the actual particle energy, use orbit.e_tot.

element_attrib.<attrib_name>
The element_attrib.<attrib_name> data type is associated with the lattice element attribute
named <attrib_name>. See the Bmad ([Bma06]) manual for information on attribute names. For
example, to plot the dipole bend strength g, the following plot template (§9.10) can be used:
&tao_template_plot
plot%name = ’bend_g’
plot%n_graph = 1
plot%x_axis_type = ’index’

/

&tao_template_graph
graph%name = ’g’
graph%type = ’data’
graph_index = 1
graph%y%label = ’g’
graph%n_curve = 1
curve(1)%name = ’g’
curve(1)%data_type = ’element_attrib.g’

5.8. TAO DATA TYPES 49

curve(1)%draw_line = F
/

emit.a, .b, .c
True normal mode (eigen) emittances. With data_source set to "beam", the emittance is calcu-
lated from the beam sigma matrix. With data_source set to "lat", the normal mode emittance
is calculated using the standard radiation integrals.

emit.x, .y, .z
“Projected” emittances[Fra11]. For a linear lattice, the emittance varies along the length of the
line while for a circular lattice there is a single emittance number.

With data_source set to "beam", the emittance is calculated from the beam sigma matrix. The
formula for εx is

εx =
√
σ̃xx σ̃pxpx − σ̃2

xpx (5.4)

With a similar equation for εy. Here σ̃ is the energy normalized beam size:

σ̃xx = 〈xx〉 − 〈x pz〉 〈x pz〉
〈pz pz〉

(5.5)

with similar definitions for the other σ̃ components. Note that the projected emittance is sometimes
defined using x′ and y′ in place of px and py. However, in the vast majority of cases, this does not
appreciably affect the numeric results.

See also the norm_emit., apparent_emit., and norm_apparent_emit. data types.

expression: <arithmetic_expression>
<arithmetic_expression> is an arithmetic expression (§3.2) which is evaluated to get the value
of the datum. For example:
datum(i)%data_type = "expression: 1@ele::q10w[beta_a] - 2@ele::q10w[beta_a]"

With this, the value of the datum will be the difference between the a-mode beta at element q10w
for universe 1 and universe 2. In this example, the source of both terms in the expression is
explicitly given as ele. This is not necessary if the datum%data_source is set to ele
datum(i)%data_type = "expression: 1@q10w[beta_a] - 2@q10w[beta_a]"
datum(i)%data_source = "ele"

An expression can also be used as the default_data_type. In this case, the evaluation point is
implicit. For example:
default_data_source = "data"
default_data_type = "expression: 1@beta.a - 2@beta.a"

which is equivalent to:
default_data_type = "expression: 1@data::beta.a - 2@data::beta.a"

To be valid, if an expression has a term with a data source, the expression must be evaluated
after the data source components are evaluated. Data evaluation is done universe by universe
starting with universe 1, then universe 2, etc. Within a given universe, the order of evaluation
can be complicated but in this case a datum using an expression will always be evaluated after
any datum that appears earlier in the initialization file. In the last example above, the expression
terms involve an evaluation of beta.a in universe 2. Therefore, this expression datum should be
in universe 2 or higher. Notice that while all datums must be assigned a universe, in this case,
since all the terms explicitly give a universe number, the value of the datum will be independent
of the universe it is in.

In the above examples, the lattice elements involved were explicitly specified. To apply an ex-
pression to the lattice element associated with a datum use the syntax “ele::#” to represent the
associated lattice element. Example:

50 CHAPTER 5. DATA

default_data_type = "expression: ele::#[k1] * ele::#[l]"
datum(1:4)%ele_name = "Q01", "Q02", "Q03", "Q04"

In this example the values of the four datums will the integrated quadrupole strength K1*L of the
associated lattice elements Q01 for the first datum, etc.

floor.x, .y, .z, .theta, .phi, .psi
Position and orientation of the element in the global “floor” coordinate system. This is the nominal
position ignoring any misalignments. That is, this is the “laboratory” coordinates that define the
curvilinear reference orbit. See the Bmad manual for details on the global coordinate system. Also
see the documentation on floor_actual. rel_floor., and floor_orbit. datum types.

floor_actual.x, .y, .z, .theta, .phi, .psi
Position and orientation of the element with misalignments in the global “floor” coordinate system.
That is, this is the “element body” coordinates”. See the Bmad manual for details on the global
coordinate system. See also the documentation on floor. rel_floor., and floor_orbit. datum
types.

floor_orbit.x, .y, .z
Position of the element in the global “floor” coordinate system. See the Bmad manual for details
on the global coordinate system. See also floor..

gamma.a, .b
Normal mode Twiss gamma function.

k.11b, .12a, .12b, .22a
Measured beam coupling parameters. See also bpm_k.11b,

momentum
Particle momentum amplitude.

momentum_compaction
Momentum compaction factor. Also see r56_compaction.

multi_turn_orbit.x, .y, .z, .px, .py, .pz
Used for storing the orbit over many turns. Only used for plotting purposes. See §9.10.3 for more
details.

n_particle_loss
If the reference element is not specified, n_particle_loss gives the number of particles lost at the
evaluation element. If the reference element is specified, n_particle_loss gives the cumulative
loss between the exit end of the reference element and the exit end of the evaluation element.
That is, this sum does not count any losses at the reference element itself. If neither reference nor
evaluation element is given then the total number of lost particles is given.

norm_apparent_emit.x, .y
Energy normalized apparent emittance. The normalization is the standard gamma factor:

emitnorm = γ emit (5.6)

See the apparent_emit.x, .y data type for more details.

norm_emit.a, .b, .c
Energy normalized normal mode emittance. The normalization is the standard gamma factor:

εnorm = γ ε (5.7)

5.8. TAO DATA TYPES 51

norm_emit.x, .y, .z
Energy normalized projected emittance. The normalization is the standard gamma factor:

εnorm = γ ε (5.8)

normal.h.<monomial>.{r,i,a}
Resonance driving terms à la [Bengt97]. For example: h210000. These are the coefficients of the
complex polynomial h in Eqn. 5.9. The suffix .r, .i, and .a specifies the real part, imaginary
part, or absolute value.
The order of the term is the sum of the digits in its monomial. For example, h210000 is 3rd order
and h201100 is 4th order. If the term order exceeds the map order, then the term will be populated
with zero. The map order is set in the lattice file using parameter[taylor_order] = <order>
or in tao.init using bmad_com%taylor_order = <order>. The order set in tao.init overrides
that in the lattice file.
Commonly optimized terms and their effect on the map are located in Tab. 5.2. These terms are
typically minimized for dynamic aperture optimization.

Term Effect

h110001 horizontal chromaticity
h001101 vertical chromaticity
h200001 vertical sychrobetatron resonance
h002001 horizontal synchrobetatron resonance
h100002 second order dispersion
h210000 drives Qx
h300000 drives 3Qx
h101100 drives Qx
h100200 drives Qx − 2Qy
h102000 drives Qx + 2Qy
h220000 ∂Qx/∂Jx
h111100 ∂Qx,y/∂Jy,x
h002200 ∂Qy/∂Jy
h310000 drives 2Qx
h112000 drives 2Qy
h400000 drives 4Qx
h200200 drives 2Qx − 2Qy
h201100 drives 2Qx
h202000 drives 2Qx + 2Qy
h003100 drives 2Qy
h004000 drives 4Qy

Table 5.2: Driving terms and their effect on the map.

normal.<type>.i.<monomial>
Components of the normal form decomposition of the one-turn-mapM for a ring. Possible settings
for type is
M, A, A_inv, dhdj, ReF, or ImF

i is an integer between 1 and 6, and monomial is a six digit number that specifies a monomial. For
example: 100001.
In the symplectic case:

M = A ◦ exp (: h :) ◦A−1, (5.9)

52 CHAPTER 5. DATA

where A is the nonlinear normalizing map, and h is a function of the amplitudes Ji = (1/2)(x2i +p
2
i)

only. The amplitude dependent tune shifts are given by µi = −dh/dJi, and can be accessed through
normal.dhdj. Terms of A and A−1 can be accessed through normal.A and normal.A_inv. In the
general case,

M = A1 ◦ C ◦ L ◦ exp (F · ∇) I ◦ C−1 ◦A−11 . (5.10)

Here C is the linear map to the resonance basis: h± = x± ip, L is a complex linear map, A1 is the
(real) first order normalizing map, and I is the identity map. All of the nonlinearities are therefore
in the complex vector field F . The real and imaginary parts of L and F can be accessed through
normal.ReF, normal.ImF, normal.ReL, and normal.ImL.

null
A null data type is used for data where Tao is not able to calculate a model value. Such data
cannot be used in an optimization. For example, in a linac where the beam intensity is measured
at the BPMs, Tao is not able to calculate current variations down the linac. Nevertheless, it could
be useful to read in the measured values and plot them.

orbit.amp_a, .amp_b
“Invariant” amplitude of the orbital motion.

orbit.norm_amp_a, .norm_amp_b Newline Energy normalized “invariant” amplitude of the or-
bital motion.

orbit.e_tot
The orbit.e_tot data type gives the total energy of a tracked particle (with data_source = lat)
or the average energy of a beam (with data_source = beam).

Notice that this is different from the E_tot attribute of a lattice element which is the reference
energy at that element.

orbit.x, .y, .z, .px, .py, .pz
Orbit position and momenta.

periodic.tt.ijklm . . . 1 ≤ i, j, k, . . . ≤ 6
This is like the tt. datum except here the terms are from the periodic Taylor map defined by

Tp ≡ (T0 − I4)−1 (5.11)

Here Tp is the periodic map, T0 is the one-turn map from some point back to that point, and I4 is
a linear map defined by the matrix

I4 ≡

1

1
1

1
0

0

 (5.12)

The periodic map give information about the closed orbit, dispersion, etc. For example, the zeroth
order terms are the closed orbit, the r16 term gives the horizontal dispersion, etc.

If a reference lattice element is specified, the map T0 will be the transfer map from the reference
element to the evaluation element.

Note: If the reference element is not specified, or if the reference element is the same as the
evaluation element, this data type cannot be used with a linear lattice.

5.8. TAO DATA TYPES 53

phase.a, .b
Betatron phase. If a d1_data array has a set of phase datums, and if the reference element is not
specified, the average phase used for optimizations (D in Eq. (7.1)) and plotting for all the datums
within a d1_data array are set to zero by adding a fixed constant to all the datums. This is done
since, without a reference point that defines a zero phase, the overall average phase is arbitrary
and so the average phase is taken in Tao to be zero. This can be helpful in optimizations since
one does not have to worry about arbitrary offsets between the model and measured values. If the
reference element is specified then there is no arbitrary constant in the evaluation.

phase_frac.a, .b
Fractional betatron phase. Also see the discussion under phase.a, .b.

phase_frac_diff
Fractional betatron phase difference between the a and b normal modes. −π < dφfrac < π

photon.intensity
Photon total intensity.

photon.intensity_x, .intensity_y
Photon intensity components in the horizontal and vertical planes.

photon.phase_x, .phase_y
Photon phases in the horizontal and vertical planes.

ping_a.amp_x, .phase_x, .amp_y, .phase_y, .amp_sin_y, .amp_cos_y,
.amp_sin_rel_y, .amp_cos_rel_y

Phase and amplitude response at a BPM from turn-by-turn data acquired after the beam is pinged.
Ignoring damping, the beam response will be the sum of three components, one for each beam
oscillation eigenmode. ping_a data is for the response at the a-mode frequency.
At each BPM, the response will have a component in the x (horizontal) and y (vertical) planes. If
there is no coupling, vertical response for the a-mode component is zero. The horizontal xa(s, n)
and vertical ya(s, n) a-mode response at position s and turn n is

xa(s, n) = Aax(s) cos(nωa + φax(s) + φa0)

ya(s, n) = Aay(s) cos(nωa + φay(s) + φa0) (5.13)

where ωa is the a-mode tune, Aax and Aay are the response amplitudes, φax and φay are the
horizontal and vertical phases, and φa0 is an overall phase dependent upon how turn n = 0 is
defined. In terms of Tao’s data parameters, the correspondence is

ping_a.amp_x −→ Aax
ping_a.phase_x −→ φax
ping_a.amp_y −→ Aay
ping_a.phase_y −→ φay
ping_a.amp_sin_y −→ Aay · sin(φay
ping_a.amp_cos_y −→ Aay · cos(φay
ping_a.amp_sin_rel_y −→ Aay · sin(φay − φax)
ping_a.amp_cos_rel_y −→ Aay · cos(φay − φax)

In terms of how Tao analyses ping data, only differences in phases are important so φa0 is ignorable.
The response can be related to the lattice Twiss parameters as given by Eq. (54) of reference
[Sag99]

xa(s, n) = Aa(s)
√
βa(s) cos(θax(s, n)),

ya(s, n) = −Aa(s)
√
βb(s)

(
C22 cos(θax(s, n)) + C12 sin(θax(s, n))

)
(5.14)

54 CHAPTER 5. DATA

where
θax(s, n) = nωa + φax(s) + φa0 (5.15)

Roughly, if the coupling is not large, the “in-plane” x oscillation is insensitive to any coupling so
that ping_a.amp_x and ping_a.phase_x can be directly related to the Twiss parameters com-
puted without coupling. On the other hand, the “out-of-plane” y oscillation is a direct measure
of the coupling. This can be used to measure and correct skew-quadrupole errors. For cou-
pling data, whether to use ping_a.amp_sin_y and ping_a.amp_cos_y or ping_a.amp_sin_rel_y
and ping_a.amp_cos_rel_y depends upon how the data is obtained. If the BPMs in the ma-
chine can only measure the orbit in one plane then ping_a.amp_sin_y and ping_a.amp_cos_y
is probably the better choice. One the other hand, if the BPMs can measure in both planes,
ping_a.amp_sin_rel_ymay give cleaner data due to the fact that, since the ping_a.amp_sin_rel_y
signal is out-of-phase with the main horizontal signal, the ping_a.amp_sin_rel_y data is in-
sensitive to BPM tilts and cross-talk between the horizontal and vertical signals. In fact, for
the CESR ring at Cornell University, with BPMs that can measure in both planes, best cou-
pling correction results are obtained by using the ping_a.amp_sin_rel_y data and ignoring the
ping_a.amp_cos_rel_y data.

The ping_a.amp_y and ping_a.phase_y data types are not useful for data analysis when the
coupling is small since, in the limit of no coupling, ping_a.phase_y meaningless.

For the design and model values of a datum, Eq. (5.14) is used with Aa taken to be unity. To be
able to compare the design and/or model values with the actual data stored in meas and/or ref,
the meas values will be multiplied by a constant Cm computed so that the average meas value is
equal to the average model value:

Cm
∑

ping_a.amp_xmeas =
∑

ping_a.amp_xmodel (5.16)

where the sums are over all ping_a.amp_x data points where the exists, good_model, good_user,
and good_meas components (§5.2) are all true. The ping_a.amp_y data points are not used for
the computation of Cm since, with a decoupled lattice, the model values are zero.

There is a similar multiplier defined for the reference data. The values of these two multipliers are
shown with the show data command.

ping_b.amp_y, .phase_y, .amp_x, .phase_x, .amp_sin_x, .amp_cos_x,
.amp_sin_rel_x, .amp_cos_rel_x

Similar to ping_a except this is for the b-mode component of the response. Here the design and
model values are calculated from Eq. (8) of reference [Sag00a]:

xb(n) = Ab
√
βa

(
C11 cos(nωb)− C12 sin(nωb)

)
,

yb(n) = Ab
√
βb cos(nωb). (5.17)

with A_b taken to be unity for the evaluation.

The corresponding multiplicative values are derived from ping_b.amp_y in an analogous fashion
to the multiplicative values for the a-mode ping data.

r.ij 1 ≤ i, j ≤ 6
Terms of the linear transfer map.

rad_int.i0, .i1, .i2, .i2_e4, .i3, .i3_e7, .i4a, .i4b, .i4z, .i5a, .i5b, .i5a_e6, .i5b_e6
rad_int1.i0, i1, .i2, .i2_e4, .i3, .i3_e7, .i4a, .i4b, .i4z, .i5a, .i5b, .i5a_e6, .i5b_e6

Synchrotron radiation integrals. See the Bmad manual for details. The rad_int1.xxx datums are
the radiation integrals over a single element. With the rad_int.xxx datums, the integral is from
ele_ref to ele.

5.8. TAO DATA TYPES 55

.i0 ! I0 radiation integral

.i1 ! I1 radiation integral

.i2 ! I2 radiation integral

.i2_e4 ! Energy normalized I2 radiation integral

.i3 ! I3 radiation integral

.i3_e7 ! I3 radiation integral

.i4a ! a mode I4 radiation integral

.i4b ! b mode I4 radiation integral

.i4z ! Sum of I4a, and I4b radiation integrals

.i5a ! a mode I5 radiation integral

.i5b ! b mode I5 radiation integral

.i5a_e6 ! Energy normalized I5a

.i5b_e6 ! Energy normalized I5b

r56_compaction
This datum is defined to be

M5,6 +

4∑
i=1

M5,i ηi (5.18)

where M is the transfer matrix between the reference element and the element where the datum
is evaluated and η is the dispersion vector evaluated at the reference element.

This datum is closely related to the momentum compaction. When r56_compaction is evaluated
from the start of the lattice to the end, the value of r56_compaction will be related to the
momentum compaction via:
r56_compaction = -momentum_compaction * L

where L is the length of the lattice.

ref_time
This is the time the reference particle passes the exit end of the element. If the particle is ultra-
relativistic then this is just c ∗ s where s is the longitudinal distance from the start of the lattice.

rel_floor.x, .y, .z, .theta
This is the global floor position at the exit end of the evaluation element relative to the exit end
of the reference element in a global coordinate system where the exit end of the reference element
is taken to be at x = y = z = theta = phi = 0. See the Bmad manual for details on the global
coordinate system. See also floor. and wall..

sigma.x, .y, .z, .px, .py, .pz, .Lxy, .ij 1 ≤ i, j ≤ 6
The 6×6 sigma matrix sigma.ij with 1 ≤ i, j ≤ 6 describes the beam size in phase space. That is

sigma.ij =
〈
(ri − ri) (rj − rj)

〉
(5.19)

where < . . . > is an average of the particle’s phase space vector r = (x, px, y, py, z, pz) with r being
the average position.

The datums sigma.x, sigma.px, etc., are just a shorthand notation for sigma.11, sigma.22, etc.,
and the angular momentum sigma.Lxy is shorthand for < xpy − y px >
The sigma matrix is calculated from beam tracking if the data_source is set to beam and calculated
from the linear Twiss parameters if the data_source is set to lat.

Irregardless of the setting of data_source, the beam emittance and longitudinal sigma values will
be taken from the beam_init structure (§9.5) and not any emittances or longitudinal sigma values
specified in the lattice file.

56 CHAPTER 5. DATA

spin_g_matrix.ij 1 ≤ i ≤ 2, 1 ≤ j ≤ 6
The longitudinal dependent G matrix is a 2×6 matrix that describes the coupling between orbital
motion and spin precession as discussed in the chapter on spin in the Bmad manual. Lattice design
generally involves minimizing components of this matrix.

spin.polarization_limit, .polarization_rate, .depolarization_rate
The spin depolarization limit, denoted Pdk, is calculated from the Derbenev-Kondratenko-Mane
formula as outlined in the chapter on spin in the Bmad manual. The polarization rate, denoted
Tao−1dk , and depolarization rate, denoted Tao−1dep, are also discussed in the Bmad manual.

spin.x, .y, .z, .amp
The spin.x, spin.y and spin.z datums are the spin polarization (x, y, z) components and the
spin.amp datum is the amplitude of the spin. For a beam, this is the spin averaged over the
beam. For particles with a lattice with an open geometry, the spin is calculated by propagating
the spin from the beginning of the lattice. The beginning spin is set in the lattice file by set-
ting beginning[spin_x], beginning[spin_y] and beginning[spin_z] as explained in the Bmad
manual. For a lattice with a closed geometry, the calculated spin is the closed orbit invariant spin
with the amplitude of the spin set at unity.

srdt.h<monomial>.{r,i,a}
Resonance driving term summations based on summations supplied in [Bengt97] (3rd order) and
[Wang12] (4th order). The 3rd order monomials for which summations have been implemented are
h11001, h00111, h20001, h00201, h10002, h21000, h30000, h10110, h10020, and h10200. The 4th
order monomials are h31000, h40000, h20110, h11200, h20020, h20200, h00310, h00400, h22000,
h00220, and h11110.

Suffixes .r, .i, and .a signify the real part, imaginary part, or absolute value.

For higher orders and monomials for which summations are not available, see the
normal.h.<monomial>.{r,i,a} data type. Additional details on driving terms are listed there
and in Tab. 5.2

Three tao.init tao_params are important for srdt data. They are,
global%srdt_use_cache = {.true. (default), .false.}
global%srdt_sxt_n_slices= <integer, default 20>
global%srdt_gen_n_slices= <integer, default 10>

srdt_sxt_n_slices and srdt_gen_n_slices set the number of steps to take through sextupole
and non-sextupole elements, respectively. More steps improve accuracy, but are slower and increase
the size of the srdt cache.

srdt_use_cache generates a cache of the cross-products of the linear optics quantities used for the
srdt summations. Provided the linear optics are not changing, using the cache can greatly speed up
subsequent srdt calculations (i.e. during optimization of sextupole moments). Note that whenever
the linear optics change, e.g. a quadrupole is adjusted, the cache must be regenerated. Also note
that the cache can be rather large and grows as with the squares of srdt_sxt_n_slices and
srdt_gen_n_slices. If there is insufficient RAM available, tao will generate a warning message
and revert to a srdt_use_cache=.false. state.

t.ijk, tt.ijklm . . . 1 ≤ i, j, k, . . . ≤ 6
Taylor map components between two points. The difference between t.ijk and tt.ijklm . . . is
that t.ijk is restricted to exactly three indices and tt.ijklm . . . is not. t.ijk is superfluous but
is keep for backwards compatibility.

Calculation of t.ijk and tt.ijklm . . . datums involve symplectic integration through lattice ele-
ments. One point to be kept in mind is that results will be dependent upon the integration step

5.8. TAO DATA TYPES 57

size through an element set by the ds_step attribute of that element (see the Bmad manual for
more details). When a smooth curve (§9.10.2) is plotted for t.ijk and tt.ijklm . . . data types,
and the longitudinal ("s") position is used for the x-axis, the integration step used in generating
the points that define this curve will be decreased if the s-distance between points is smaller than
the ds_step. In this case, discrepancies between the plot and datum values may be observed.

time
Time (in seconds) a particle or the bunch centroid is at the evaluation element.

tune.a, .b
Tune in radians.

unstable.orbit
The unstable.orbit datum is used for linear lattices in an optimization to avoid unstable solutions
(§7.3).

For single particle tracking, the value of an unstable.orbit datum is zero if the tracked particle
survives (has not been lost) up to the evaluation element and, if it has been lost, is set to

1 + iele − ilost +
1

2

[
tanh

(
rorbit
rlim

− 1

)
− E

]
(5.20)

where iele is the index of the evaluation element in the lattice and ilost is the index of the element
where the particle was lost. In the above equation, E is the function

E =

{
1 if the particle is lost at the exit end of the element.
0 if the particle is lost at the entrance end of the element.

(5.21)

In the abouve equation, rorbit is the particle amplitude at the point of loss and rlim is the aperture
limit. The form of the above equation has been choisen so that the datum value will be monotonic
with increasing stability.

The default for the evaluation element, if ele_name nor ix_ele is not specified, is to use the last
element in the lattice.

When tracking beams, the value of unstable.orbit is the averaged value over all particles in the
bunch.

unstable.ring
unstable.ring is used for storage rings. The value of an unstable.ring datum is zero if the
ring is stable and set to the largest growth rate of all the normal modes of oscillation if the ring is
unstable. unstable.ring is used in an optimization to avoid unstable solutions (§7.3).

velocity, velocity.x, .y, .z
The velocity normalized by the speed of light c.

wall.left_side, .right_side
The wall data data type is used to constrain the shape of a machine to fit inside a building’s walls
(§9.8). The general layout is shown in Figure 5.2. The machine centerline is projected onto the
horizontal (Z,X) plane in the Global (floor) coordinate system. Point A is an evaluation point at
the exit end of some element. z̃ is the projection of the local z-axis onto the (Z,X) plane and x̃ is
the coordinate in the (Z,X) plane perpendicular to z̃. In the typical situation, where a machine is
planer (no out-of-plane bends), the z̃-axis corresponds to the local laboratory z-axis and the x̃-axis
corresponds to the local laboratory x-axis (see the Bmad manual for an explanation of local and
global coordinate systems).

58 CHAPTER 5. DATA

Z

X

~z
~x

A

B
Wall

CLElement

Figure 5.2: A wall. datum is a measure of the distance between the centerline of a machine and the
walls of the containment building.

The distance from the machine at point A to the wall is defined to be the distance from A to a
point B on the wall where point B is along the x̃ axis (has z̃ = 0) as shown in Figure 5.2.

By definition, the “left side” of the machine corresponds to be the +x̃ side and the “right
side” corresponds to be the −x̃ side. That is, left and right are relative to someone looking in
the same direction as the beam is propagating. Correspondingly, there are two wall data types:
wall.left_side and wall.right_side. With the wall.left_side data type, the datum value is
positive if point B is on the left side and negative if on the right. Vice versa for a wall.right_side
datum. That is, there is interference with with wall when the datum value is negative. If there are
multiple wall points B, that is, if there are multiple points on the wall with z̃ = 0, the datum value
will be the minimum value. Notice that only wall sections that have a constraint matching the
datum will be used when searching for possible points B. If there are no wall points with z̃ = 0,
the datum will be marked invalid.

For wall data there can be no reference element since this does not make sense.

wire.<angle>
wire data simulates the measurement of a wire scanner. The angle specified is the angle of the
wire with respect to the horizontal axis. The measurement then measures the second moment
< uu > along an axis which is 90 degrees off of the wire axis. For example, wire.90 is a wire
scanner oriented in the vertical direction and measures the second moment of the beam along the
horizontal axis, < xx >. The resultant data is not the beam size, but the beam size squared.

Table 5.3: Predefined Data Types in Tao

Data_Type Description data_source
Can use
s_offset?

alpha.a, .b Normal-Mode alpha function lat Yes
apparent_emit.x, .y Apparent emittance beam, lat No
beta.a, .b, .c Normal-mode beta function beam, lat Yes
beta.x, .y, .z Projected beta function beam, lat No
bpm_cbar.22a, .12a, .11b, .12b Measured coupling lat Yes
bpm_eta.x, .y Measured dispersion lat Yes
bpm_orbit.x, .y Measured orbit lat Yes
bpm_phase.a, .b Measured betatron phase lat Yes

5.8. TAO DATA TYPES 59

Table 5.3: (continued)

Data_Type Description data_source
Can use
s_offset?

bpm_k.22a, .12a, .11b, .12b Measured coupling lat Yes
bunch_max.x, .px, .y, .py, .z, .pz Max relative to centroid beam No
bunch_min.x, .px, .y, .py, .z, .pz Min relative to centroid beam No
c_mat.11, .12, .21, .22 Coupling lat Yes
cbar.11, .12, .21, .22 Coupling lat Yes
chrom.a, .b Chromaticities for a ring lat No
chrom.dbeta.a, .dbeta.b Normalized Chromatic beta lat No
chrom.deta.x, .deta.y Chromatic dispersions lat No
chrom.detap.x, .detap.y Chromatic dispersion slopes lat No
chrom.dphi.a, .dphi.b Chromatic betatron phase lat No
damp.j_a, .j_b, .j_z Damping partition number lat No
dpx_dx, dpx_dy, etc. Bunch <x px> / <x2> & Etc... beam No
e_tot_ref Lattice reference energy (eV) lat No
element_attrib.<attrib_name> lattice element attribute lat No
emit.a, .b, .c Emittance beam, lat No
eta.x, .y, .z Lab Frame dispersion beam, lat Yes
eta.a, .b Normal-mode dispersion beam, lat Yes
etap.x, .y Lab Frame dispersion derivative beam, lat Yes
etap.a, .b a & b-mode dispersion derivative beam, lat Yes
expression:<expression> See text above lat No
floor.x, .y, .z Element global (“floor”) position lat Yes
floor.theta, .phi, .psi Element global (“floor”) orientation lat Yes
floor_actual.x, .y, .z Element misaligned global position lat Yes
floor_actual.theta, .phi, .psi Element misaligned global orientation lat Yes
floor_orbit.x, .y, .z global (“floor”) position of orbit beam, lat Yes
gamma.a, .b Normal-mode gamma function lat Yes
k.11b, .12a, .12b, .22a Coupling lat Yes
momentum Momentum: P*C_light (eV) lat Yes
momentum_compaction Momentum compaction factor lat No
multi_turn_orbit.x, .y, .z
multi_turn_orbit.px, .py, .pz

Store orbit over many turns lat No

n_particle_loss Number of particles lost beam No
norm_apparent_emit.x, .y Normalized apparent emittance beam, lat No
norm_emit.a, .b, .c Normalized beam emittance beam, lat No
norm_emit.x, .y, .z Normalized projected emittance beam, lat No
normal.<type>.i.<monomial> Normal form map component lat No
normal.h.<monomial> Normal form driving term lat No
null Data without model evaluation lat, beam No
orbit.e_tot Beam energy (eV) beam, lat Yes
orbit.x, .y, .z Orbit position beam, lat Yes
orbit.px, .py, .pz Orbit Momenta beam, lat Yes
orbit.amp_a, .amp_b Orbit amplitude lat Yes
orbit.norm_amp_a, .norm_amp_b Energy normalized amplitude lat Yes
periodic.tt.ijklm . . .
1 ≤ i, j, k, . . . ≤ 6

Taylor term of the periodic map lat No

phase.a, .b Betatron phase lat Yes

phase_frac.a, .b
Fractional betatron phase
−π < φfrac < π

lat No

phase_frac_diff Phase diff between a and b modes lat No

60 CHAPTER 5. DATA

Table 5.3: (continued)

Data_Type Description data_source
Can use
s_offset?

photon.intensity Photon total intensity beam, lat No
photon.intensity_x,
photon.intensity_y

Photon intensity components beam, lat No

photon.phase_x, .phase_y Photon phase beam, lat No
ping_a.amp_x, .phase_x,
ping_a.amp_y, .phase_y
ping_a.amp_sin_y, .amp_cos_y
ping_a.amp_sin_rel_y, .amp_cos_rel_y

a-mode response of a pinged beam lat No

ping_b.amp_x, .phase_x
ping_b.amp_y, .phase_y
ping_b.amp_sin_x, .amp_cos_x
ping_b.amp_sin_rel_x, .amp_cos_rel_x

b-mode response of a pinged beam lat No

r.ij 1 ≤ i, j ≤ 6 Term in linear transfer map lat No
r56_compaction R56 like compaction factor. lat No
rad_int.i1, .i2, etc. Lattice Radiation integrals lat No
rad_int1.i1, .i2, etc. Element radiation integrals lat No
ref_time Reference time beam, lat Yes
rel_floor.x, .y, .z, .theta Relative global floor position lat No
s_position longitudinal length constraint lat Yes
sigma.x, .y, .z
sigma.px, px, .pz
sigma.ij 1 ≤ i, j ≤ 6,
sigma.Lxy

Bunch size beam, lat No

spin.x, .y, .z Particle spin beam, lat No
spin.depolarization_rate Spin depolarization rate. lat No
spin.polarization_rate Spin polarization rate. lat No
spin.polarization_limit Spin polarization limit. lat No
spin_g_matrix.ij 1 ≤ i ≤ 2, 1 ≤ j ≤ 6

Spin G-matrix components lat No

srdt.h<monomial>.{r,i,a}
Normal form driving terms
calculated by summation

lat No

time Particle time (sec) beam, lat Yes
t.ijk 1 ≤ i, j, k ≤ 6 Term in 2nd order transfer map lat No
tt.ijklm . . . Term in nth order transfer map lat No
tune.a, .b Tune lat No

unstable.orbit
Nonzero if particles are
lost in tracking

lat No

unstable.ring Nonzero if a ring is unstable lat No
velocity, velocity.x, .y, .z Velocity normalized by c beam, lat Yes
wall.left_side, .right_side Building wall constraint lat No
wire.<angle> Wire scanner at <angle> beam No

Chapter 6

Plotting

Some definitions:

Curve
A curve is a set of (x,y) points to be plotted.

Graph
A graph consists of horizontal and vertical axes along with a set of curves that are plotted within
the graph.

Region

Graph 1

x-axis

y-axis

curve 1

curve 2

Graph 2

x-axis

y-axis

curve 1

curve 2

Plot

Page

Figure 6.1: A plot has a collection of graphs and a graph has a collection of curves. A plot becomes
visible when it is associated with some region on the page using the place command. Note that on the
actual page the plot/region border is not visible.

61

62 CHAPTER 6. PLOTTING

Plot
A plot is essentially a collection of graphs.

Page
The page refers to the X11 window where graphics are displayed or the corresponding printed
graphics page.

Region
The page is divided up into a number of rectangles called regions. Regions may overlap.

The plot initialization file (cf. Chapter 9) defines a set of template plots. A template defines what
type of data is to be plotted (orbit, beta function, etc.), how many graphs there are, what the scales
are for the graph axes, how the graphs are laid out, etc. The plot initialization file also defines a set of
regions within the page. Any template plot can be placed in any region. Using the place command
(see Chapter 10 for a full descriptions of all commands) one can assign a particular template plot to
a particular region for plotting. The relationship between region, plot, graph, and curve is shown
graphically in Figure 6.1.

Figures 6.2 and 6.3 show examples of a plot page. Figure 6.2 was generated by defining two regions
called top and bottom in the plot initialization file. The top region was defined to cover the upper half
of the page and the bottom region was defined to cover the bottom half. Template plots were defined
to plot phase and orbit data from a defined set of detector elements in the lattice. Each template
plot defined two graphs which in both cases where assigned the names x and y. The orbit template
plot was placed in the top region and the phase template plot was placed in the bottom region.
The horizontal axis numbering is by detector index. Displayed plots are referred to by the region
name (top and bottom in this case). Individual graphs and curves are referred to using the nomencla-
ture region.graph.curve. Thus, in this example, the horizontal orbit graph would be referred to as
top.x. Using the set plot, set graph, or set curve commands (§10.26) one can then specify what
components are plotted. “component” refers to measured, reference, model, base, and/or design data
(§9.10.3). Notice that the same template plot can be assigned to different regions and the plots in
different regions can have different scales for their axes or different components. In the example in
Figure 6.2, the component for the top plot is model and for the bottom plot it is model - design.

Plots may be referred to by their template name or by the name of the region they are placed in. For
example, the orbit plot in Figure 6.2 may be referred to using the region name (top) or the template
name (orbit). A template may be placed in multiple regions. For example, you may wish to plot the
model data for the orbit in one region and the design data for the orbit in another region. In this case
the command scale orbit would scale the plots in both regions while to scale the plot in only one of
the regions you would need to use the region name.

A graph of a plot is specified using the format plot_name.graph_name where plot_name is a template
or region name and graph_name is the name of the graph. For example, if the horizontal orbit graph
of the orbit plot is named x then it would be referred to as orbit.x or top.x. If a plot has only one
graph, the graph may be specified by just using the plot name.

A curve within a graph is specified using the format plot_name.graph_name.curve_name. If a graph
has only one curve, the curve may be specified using only the graph name plot_name.graph_name.
Additionally, if the there is only one curve in a plot, the curve can be specified by just using the
plot_name.

The use, veto, restore, and clip commands are used to control what data is used in fitting the model
to the data in the optimization process (see Chapter 7). The general rule is that these commands only
affect measured and reference data. If plotting model, design and/or base data then the data will be
displayed irregardless. If plotting meas and/or ref data then the data displayed will vary with these

63

commands. meas or ref data vetoed for display is also vetoed for fitting. However, measured data that
is off the vertical or horizontal scale may still be used by the optimizer unless vetoed with the veto
or clip command. If there are data points off the vertical scale then “**Limited**” will appear in the
upper right-hand corner of the graph. If plotting measured data then these points off scale will still be
used by the optimizer.

The x_axis and x_scale commands are used to set the axis type and scale for each graph. The axis
type can be either index, ele_index or s which corresponds to the data index number, element index
number and longitudinal position in the lattice (from element 0) respectively.

Figure 6.3 shows another example of a plot page. In this case the page was generated by again defining
two vertically stacked regions but in this case the regions have different heights. A template plot
with a single graph was placed in the bottom most region. This graph contains a key_table. A
key_table is used in conjunction with single mode and is explained in Chapter §11. A template plot
containing five graphs was placed in the uppermost region. The uppermost graph of this template plot
contains a lat_layout which shows the placement of lattice elements. What elements are displayed in a
lat_layout and what shapes they are represented by is specified in the initialization file. The horizontal
scale is longitudinal position (s). The remaining four graphs show dispersion and beta data from two
different universes representing the low energy and high energy transport in an energy recovery linac.
The individual data points here (hard to see in this example) have been slaved to the lat_layout and
represent the beta and dispersion at the edges of the displayed elements in the lat_layout.

64 CHAPTER 6. PLOTTING

Figure 6.2: Example of a plot page

65

Figure 6.3: Another example of a plot page.

66 CHAPTER 6. PLOTTING

Chapter 7

Optimization: Lattice Correction and
Design

This chapter covers the process of optimization which involves minimization of a Merit Function.
Optimization can be used to correct or to design lattices. Examples of lattice corrections include
flattening the orbit and adjusting quadrupoles to correct the measured betatron phase. Lattice design
involves creating a lattice that conforms to a set of desirable properties. For example, requiring that the
beta function in a certain region never exceeds a given value. In this chapter, Section §7.1 presents the
merit function in the context of lattice corrections while Section §7.2 discuses the merit function in the
context of lattice design. Since the concepts used in lattice corrections and lattice design are
similar, Tao combines the two into one generalized process as discussed in Section §7.3.

7.1 Lattice Corrections

Consider the problem of problem of modifying the orbit of a beam through a lattice to conform to
some desired orbit (typically a “flat” orbit running through the centers of the quadrupoles). The process
generally goes through three stages: First the orbit is measured, then corrections to the steering elements
are calculated and finally the corrections are applied to the machine. Since these are necessarily machine
specific, Tao has no specific routines to measure orbits or to load steering corrections but they could
be implemented with some custom coding as discussed in Chapter §13. What Tao does, however, is
to implement a generalized algorithm procedure for minimizing a merit function which can be used
to calculate the corrections. The idea is to vary a set of variables (steerings in the case of an orbit
correction) within the model lattice (§2.3) with the aim to make the measured data (position data for
an orbit correction) correspond to the values as calculated from the model lattice. Once the model
lattice the model and measured data agree, the difference between the model, which represents the state
of the machine when the measurement is made, and the design, which represents the desired state of
the machine, is used to calculate corrections. In the case of flattening an orbit, the difference between
the model steering strengths and the design steering strengths (typically the design steering strengths
are zero) is what the real steerings need to be changed by to flatten the orbit.

The merit function M that is a measure of how well the data as calculated from the model, fits the
measured data. Tao uses a merit function of the form

M≡
∑
i

wi
[
δDi

]2
+
∑
j

wj
[
δVj
]2 (7.1)

67

68 CHAPTER 7. OPTIMIZATION: LATTICE CORRECTION AND DESIGN

where

δD = data_model− data_meas
δV = var_model− var_meas (7.2)

data_model is the data as calculated from the model and data_meas is the measured data. var_model is
the value of a variable in the model and var_meas is the value as measured at the time the data was taken
(for example, by measuring the current through a steering and using a calibration factor to calculate the
kick) and the sum j runs over all variables that are allowed to be varied to minimize M. The second term
in the merit function prevents degeneracies (or near degeneracies) in the problem which would allow Tao
to find solutions where data_model matches data_measured with the var_model having “unphysical”
values (values far from var_meas). The weights wi and wj need to be set depending upon how accurate
the measured data is relative to how accurate the calibrations for measuring the var_meas values are.
With the second term in the merit function, the number of constraints (number of terms in the merit
function) is always larger than the number of variables and degeneracies can never occur.

In a correction one wants to change the machine variables so that the measured data corresponds to the
design values data_design. Thus the change in the data that one wants is
data_change = data_design - data_meas

Once a fit has been made, and presuming that the data_model is reasonably close to the data_meas
this data change within the model lattice can be accomplished by changing the variables by
var_change = var_design - var_model

This assumes the system is linear. For many situations this is true since typically var_change is “small”.
Since the variables have a measured value of var_meas the value that the variables should be set to is
var_final = var_meas + (var_design - var_model)

Notice that the fitting process is independent of the design lattice. It is only when calculating the
corrections to the variables that the design lattice plays a role.

Sometimes it is desired to fit to changes in data as opposed to the absolute value of the data. For
example, when closing an orbit bump knob what is important is the difference in orbits before and after
the bump knob is varied. Designating one of these orbit the reference, the appropriate deltas to be
used in Eq. (7.1) are

δD = (data_model− data_design)− (data_meas− data_ref)
δV = (var_model− var_design)− (var_meas− var_ref) (7.3)

where data_ref and var_ref refer to the reference measurement. These deltas are acceptable if the
reference data is taken with the machine reasonably near the design setup so that nonlinearities can be
ignored. If this is not the case then the fitting becomes a two step process: The first step is to fit the
model to the reference data using the deltas of Eq. (7.2). The base lattice is then set equal to the
model lattice. The second step is to fit the model using the deltas

δD = (data_model− data_base)− (data_meas− data_ref)
δV = (var_model− var_base)− (var_meas− var_ref) (7.4)

Control of what data and what variables are to be used in the fitting process is controlled by the use,
veto, restore, and clip commands.

7.2 Lattice Design

Lattice design is the process of calculating variable strengths to meet a number of criteria called
constraints. For example, one constraint could be that the beta function in some part of the lattice not

7.3. GENERALIZED DESIGN 69

exceed a certain value. In this case we can proceed as was done for lattice corrections and use Eq. (7.1).
In this case, the deltas are computed to limit values to some range so a typical delta would be of the
form

δD or δV =

{
model− limit model > Limit
0 otherwise

(7.5)

or a constraint is used to keep the model at a certain value so the form of the constraint would be

δD or δV = model− target (7.6)

Here model is the value as calculated from the model lattice. target and limit are given numbers.
Part of the optimization process is in deciding what the values should be for any target or limit.

7.3 Generalized Design

The form of the deltas used in the merit function is determined by two global logicals called opt_with_ref
and opt_with_base (§9.4) as shown in Table 7.1. An exception occurs when using a common root

Opt_with_ref Opt_with_base delta

F F model - meas
T F model - meas + ref - design
F T model - meas - base
T T model - meas + ref - base

Table 7.1: The form of delta

lattice (§7.7). In this case, the common universe does not have base or reference values associated
with it. Thus all data and variables that are associated with the common universe calculate their delta
as if both opt_with_ref and opt_with_base were set to False.

Another exception occurs with data when the datum value cannot be computed (§5.5). In this case, the
datum’s invalid value is used for the delta. This is useful, for example, in a linear lattice when the
particle trajectory results in the particle being lost.

The Non-Zero-Condition needed for a non–zero Di is dependent upon the merit_type of the datum
(§5.2). There are five merit_type constraint types as given in Table 7.2.

Merit_Type Non-zero-Condition

target, average Any delta
max-min Any delta
min, abs_min delta < 0
max, abs_max delta > 0

Table 7.2: Constraint Type List.

For variables, the form of the terms Vi is determined by its merit_type. Here the merit_type may be:
target
limit

70 CHAPTER 7. OPTIMIZATION: LATTICE CORRECTION AND DESIGN

A target merit_type for a variable is the same as for datum. In this case model is just the value of
the variable. A limit merit_type has the form

δV =

model− high_lim model > high_lim
model− low_lim model < low_lim
0 Otherwise

(7.7)

The default merit_type for a variable is limit.

Note: when doing lattice design opt_with_ref and opt_with_base are both set to False and the
target and limit values are identified with Meas.

When optimizing a storage ring, If the ring is unstable so that the twiss parameters, closed orbit, etc.
cannot be computed, the contribution to the merit function from the corresponding datums is set to
zero. This tends to lower the merit function and in this case an optimizer will never leave the unstable
region. To avoid this, an unstable_ring constraint (§5.8) must be set.

To see a list of constraints when running Tao use the show constraints command (§10.27). To see how
a particular variable or datum is doing use the show data or show variable commands. See §5.5 for
details on how datums are chosen to be included in an optimization.

7.4 Variable Limits and Optimization

High (high_lim) and low (low_lim) limiting values can be set for any variable (§9.6). If not explicitly
set, high_lim defaults to 1030 and low_lim defaults to −1030. When running the optimizer, if the
(model) value of a variable is outside of the range set by the limits, the value will be set to the value
of the appropriate limit and the variable’s good_user parameter (§4) is set to False so that no further
variation by the optimizer is done.

If the parameter global%var_limits_on (§9.4) is set to False, limit settings are ignored.

By default, any variable value outside of the limit range will reset. Even those variables that are not
varied by the optimizer. If this behavior is not desired, the parameter global%only_limit_opt_vars
may be set to True. If this is done, only variables that the optimizer is allowed to vary are restricted.

The global%optimizer_var_limit_warn parameter controls whether a warning is printed when a vari-
able value goes past a limit. The default is True.

7.5 Optimizers in Tao

The algorithm used to vary the model variables to minimize M is called an optimizer. In command line
mode the run command is used to invoke an optimizer. In single mode the g key starts an optimizer. In
both modes the period key (“.”) stops the optimization (however, the global%optimizer_allow_user_abort
parameter (§9.4) can be set to False to prevent this). Running an optimizer is also called “fitting” since
one is trying to get the model data to be equal to the measured data. With orbits this is also called
“flattening” since one generally wants to end up with an orbit that is on–axis.

The optimizer that is used can be defined when using the run command but the default optimizer can
be set in the Tao input file by setting the global%optimizer component (§9.4).

When the optimizer is run in Tao, the optimizer, after it initializes itself, takes a number of cycles.
Each cycle consists of changing the values of the variables the optimizer is allowed to change. The

7.5. OPTIMIZERS IN TAO 71

number of steps that the optimizer will take is determined by the parameter global%n_opti_cycles
(§9.4). When the optimizer initializes itself and goes through global%n_opti_cycles, it is said to have
gone through one loop. After going through through global%n_opti_loops loops, the optimizer will
automatically stop. To immediately stop the optimizer the period key “.” may be pressed. Note: In
single_mode (§11), n_opti_loops is ignored and the optimizer will loop forever.

There are currently three optimizers that can be used:

lm
lm is an optimizer based upon the Levenburg-Marquardt algorithm as implemented in Numerical
Recipes[NR92]. This algorithm looks at the local derivative matrix of dData/dVariable and takes
steps in variable space accordingly. The derivative matrix is calculated beforehand by varying all
the variables by an amount set by the variable’s step component (§9.6). The step size should be
chosen large enough so that round-off errors will not make computation of the derivatives inaccurate
but the step size should not be so large that the derivatives are effected by nonlinearities. By
default, the derivative matrix will be recalculated each loop but this can be changed by setting the
global%derivative_recalc global parameter (§9.4). The reason to not recalculate the derivative
matrix is one of time. However, if the calculated derivative matrix is not accurate (that is, if the
variables have changed enough from the last time the matrix was calculated and the nonlinearities
in the lattice are large enough), the lm optimizer will not work very well. In any case, this method
will only find local minimum.

lmdif
The lmdif optimizer is like the lm optimizer except that it builds up the information it needs on
the derivative matrix by initially taking small steps over the first n cycles where n is the number
of variables. The advantage of this is that you do not have to set a step size for the variables.
The disadvantage is that for lmdif to be useful, the number of cycles must be greater than the
number of variables. Again, like lm, this method will only find local minimum.

de
The de optimizer stands for differential evolution[Sto96]. The advantage of this optimizer
is that it looks for global minimum. The disadvantage is that it is slow to find the bottom of
a local minimum. A good strategy sometimes when trying to find a global minimum is to use
de in combination with lm or lmdif one after the other. One important parameter with the de
optimizer is the step size. A larger step size means that the optimizer will tend to explore larger
areas of variable space but the trade off is that this will make it harder to find minimum in the
locally. One good strategy is to vary the step size to see what is effective. Remember, the optimal
step size will be different for different problems and for different starting points. The step size
that is appropriate of the de optimizer will, in general, be different from the step size for the lm
optimizer. For this reason, and to facilitate changing the step size, the actual step size used by
the de optimizer is the step size given by a variable’s step component multiplied by the global
variable global%de_lm_step_ratio. This global variable can be varied using the set command
(§10.26). The number of trial solutions used in the optimization is
population = number_of_variables * global%de_var_to_population_factor

There are also a number of parameters that can be set that will affect how the optimizer works.
See Section §9.4 for more details.

svd
The svd optimizer uses a singular value decomposition calculation. See the description of svdfit
from Numerical Recipes[NR92] for more details. With the svd optimizer, the setting of the
global%n_opti_cycles parameter is ignored. One optimization loop consists of applying svd
to the derivative matrix to locate a new set of variable values. If the merit function decreases
with the new set, the new values are retained and the optimization loop is finished. If the merit

72 CHAPTER 7. OPTIMIZATION: LATTICE CORRECTION AND DESIGN

function increases, and if the global variable global%svd_retreat_on_merit_increase is True
(the default), the variables are set to the original variable settings. In either case, an increasing
merit function will stop the execution of additional loops.

The global%svd_cutoff variable can be used to vary the cutoff that SVD uses to decide what
eigenvalues are sigular. See the documentation for the Numerical Recipes routine svdfit for more
details.

7.6 Optimization Troubleshooting Tips

Optimizations can behave in strange ways. Here are some tips on how to diagnose problems.

The show optimizer (§10.27.23) command will show global parameters associated with optimizations.
This will show some of the parameters that can be varied to get better convergence. One quick thing to
do is to increase the number of optimization loops and/or optimization cycles:
set global n_opti_loops = ...
set global n_opti_cycles = ...

One of the first things to check is the merit function, the top contributors can be seen with the command
show merit (§10.27.21). And individual contributions can be viewed using the show variable and show
data commands.

If using an optimizer that uses the derivative matrix (lm, geodesic_lm and svd optimizers), The variable
step sizes that are used to calculate the derivative should be checked to make sure that the step is not
too small so that roundoff is a problem but yet not too large so that nonlinearities make the calculation
inaccurate. One way to check that the step size is adequate for a given variable is to vary the variable
using the command change var (§10.3). This command will print out the the change in the merit
function per change in variable which can be compared to the derivatives as shown with the show merit
-derivative (§10.27.21) or the show derivative (§10.27.9) command.

7.7 Common Root Lattice (CRL) Analysis

Some data analysis problems involve varying variables in a both the model and base lattices simultane-
ously. Such is the case with Orbit Response Matrix (ORM) analysis[Saf97]. With ORM, the analysis starts
with a set of difference orbits. A given difference orbit is generated by varying a given steering by a
known amount and the steering varied is different for different difference orbits. Typically, The number
N of difference orbits is equal to the number of steering elements in the machine. In Tao, this will result
in the creation of N universes, one for each difference measurement. The model lattice in a universe will
correspond to the machine with the corresponding steering set to what it was when the data was taken.
Conversely, the base lattices in all the universes all correspond to the common condition without any
steering variation.

In Tao, this arrangement is called Common Root Lattice (CRL) analysis. To do a CRL analysis, the
common_lattice switch must be set at initialization time (§9.3). With CRL, Tao will set up a “common”
universe with index 0. The model lattice of this common universe will be used as the base lattice for all
universes.

The variables (fit parameters) in a CRL analysis can be divided into two classes. One class consists of
the parameters that were varied to get the data of the different universes. With ORM, these are the
steering strengths. At initialization (§9.6), variables must be set up that control these parameters. A

7.7. COMMON ROOT LATTICE (CRL) ANALYSIS 73

single variable will control that particular parameter in a particular universe, that was varied to create
the data for that universe.

The second class of variables consists of everything that is to be varied in the common root lattice. With
ORM, this generally will include such things as quadrupole and BPM error tilts, etc. That is, parameters
that did not change during data taking. The Tao variables that are created for these parameters will
control parameters of the model lattice in the common universe.

To cut down on memory usage when using CRL (the number of data sets, hence the number of universes,
can be very large), Tao does not, except for the common model lattice, reserve separate memory for
each model lattice. Rather, it reserves memory for a single “working” lattice and the model lattice for
a particular universe is created by first copying the common base lattice to the working lattice and
then applying the variable(s) (a steering in the case of ORM) appropriate for that universe. As a result,
except for the common model lattice, it is not possible to vary a parameter of a model lattice unless that
parameter has a Tao variable that associated with it. The change command (§10.3) is thus restricted
to always vary parameters in the common model lattice.

With CRL, the opt_with_base and opt_with_ref (§7.3) global logicals are generally set to True. Since
opt_with_base, and opt_with_ref do not make sense when applied to the data in the common universe,
The contribution to the merit function from data in this universe is always calculated as if opt_with_base
and opt_with_ref were set to False.

With opt_with_base set to True, the base value for a datum is evaluated by looking for a corresponding
datum in the common universe and using its model value. To simplify the bookkeeping, it is assumed
that the structure of the data arrays is identical from universe to universe. That is, the show data
command gives identical results independent of the default universe.

74 CHAPTER 7. OPTIMIZATION: LATTICE CORRECTION AND DESIGN

Chapter 8

Wave Analysis

8.1 General Description

A “wave analysis” is method for finding isolated “kick errors” in a machine by analyzing the appropriate
data. Types of data that can be analyzed and the associated error type is shown in Table 8.1.

The analysis works on difference quantities. For example, the difference between measurement and
theory or the difference between two measurements, etc. Orbit and vertical dispersion measurements
are the exception here since an analysis of, say, just an orbit measurement can be considered to be the
difference between the measurement and a perfectly flat (zero) orbit.

Measurement Type Error Type

Orbit Steering errors
Betatron phase differences Quadrupolar errors
Beta function differences Quadrupolar errors
Coupling Skew quadrupolar errors
Dispersion differences Sextupole errors

Table 8.1: Types of measurements that can be used in a wave analysis and the types of errors that can
be diagnosed.

The formulation of the wave analysis for quadrupolar and skew quadrupolar errors is presented by
Sagan[Sag00b]. Although not discussed in the paper, the wave analysis for orbit and dispersion mea-
surements is similar to the beta function analysis that is presented.

The wave analysis is similar for all the measurement types. How the wave analysis works is illustrated in
Figure 8.1. Figure 8.1a shows the difference between model and design values for the a-mode betatron
phase for the Cornell’s Cesr storage ring. In this example, one quadrupole in the model has been varied
from it’s design value. The horizontal axis is the detector index.

For the wave analysis, two regions of the machine, labeled A and B in the figure, are chosen (more on
this later). For each region in turn, the data in that region is fit using a functional form that assumes
that there are no kick errors in the regions. For phase differences, this functional form is

δphi(s) = D sin(2φ(s) + φ0) + C (8.1)

where φ is the phase advance and the quantities C, D and φ0 are varied to give the best fit. Once C, D,

75

76 CHAPTER 8. WAVE ANALYSIS

A

A

B

B

z
z

z

Figure 8.1: Example wave analysis for betatron phase data.

and φ0 are fixed, Eq. (8.1) can be evaluated at any point. Figure 8.1b shows the orbit of 8.1a with the
fit to the A region subtracted off. Similarly, Figure 8.1c shows the orbit of Figure 8.1a with the fit to the
B region subtracted off. Concentrating on Figure 8.1b, since there are no kick errors in the A region,
the fit is very good and hence the difference between the data and the fit is nearly zero. Moving to the
right from the A region in Figure 8.1b, this difference is nearly zero up to where the assumption of no
kick errors is violated. That is, at the location of the quadrupole error near detector 47. Similarly, since
there are no kick errors in region B, the difference between the data and the B region fit is nearly zero
in Figure 8.1c and this remains true moving leftward from region B up to the quadrupole near detector
47.

By taking the fitted values for C, D, and φ0 for the regions A and B, the point between the regions
where the kick is generated and the amplitude of the kick can be calculated. This calculation is similar to
that used to find quadrupolar errors from beta data8.1. The one difference is a factor of 2 that appears
in the beta calculation due to the fact that a freely propagating beta wave oscillates at 2φ(s).

The success of the wave analysis in finding a kick error depends upon whether there are regions of
sufficient size on both sides of the kick that are kick error free. That is, whether the kick error is
“isolated”. The locations of the A and B regions are set by the user and the general strategy is to try
to find, by varying the location of the regions, locations where the data is well fit within the regions.
The data is well fit if the difference between data and fit is small compared to the data itself. If there
are multiple isolated kick errors, then each error in turn can be bracketed and analyzed. If there are
multiple errors so close together that they cannot be resolved, this will throw off the analysis, but it may
still be possible to give bounds for the location where the kicks are at and an “effective” kick amplitude
can be calculated.

For circular machines, to be able to analyze kicks near the beginning or end of the lattice, the wave
analysis can be done by “wrapping” the data past the end of the lattice for another 1/2 turn. This is

8.2. WAVE ANALYSIS IN TAO 77

illustrated in Figure 8.1. In the Cesr machine, there are approximately 100 detectors labeled from 0 to
99. The detectors from 100 to 150 are just the detectors from 0 to 50 shifted by 100. Thus, for example,
the detector labeled 132 in the figure is actually detector 32.

8.2 Wave Analysis in Tao

Performing a wave analysis in Tao is a three step process:
1) Plot the data to be analyzed.
2) Use the wave command to select the data.
3) Use the set wave command to vary the fit regions.

In general, the accuracy of the wave analysis depends upon the accuracy with which the beta function
and phase advances are known in the baseline lattice used. Tao uses the model lattice for the baseline.
If possible, One strategy to improve the accuracy of the wave analysis is first use a measurement to
calculate what the quadrupole strengths in the model lattice should be. Possible measurements that can
give this information include an orbit response matrix (ORM) analysis, fits to beta or betatron phase
measurements, etc.

8.2.1 Preparing the Data

At present (due to limited manpower to do the coding), the wave analysis is restricted to data that
is stored in a d1_data array (§5). That is, the plotted curve to be analyzed must have its data_type
parameter set to “data” (§9.7). The possible data types that can be analyzed are:
orbit.x, orbit.y
beta.a, beta.b
phase.a, phase.b
eta.x, eta.y
cbar.11, cbar.12, cbar.21 ! Analysis not possible for cbar.21
ping_a.amp_x, ping_a.phase_x
ping_a.sin_y, ping_a.cos_y
ping_b.amp_y, ping_b.phase_y
ping_b.sin_x, ping_b.cos_x

The curve to be analyzed must be visible. Any combination of data components may be used:. "meas",
"meas-ref", "model", etc.

If data from a circular machine is being analyzed, the data is wrapped past the end of the lattice for
another 1/2 turn. The translation from the data index in the wrapped section to the first 1/2 section
of the lattice is determined by the values of ix_min_data and ix_max_data of the d1_data array under
consideration (§9.7):
index_wrap −→ index_wrap - (ix_max_data - ix_min_data + 1)

For example, for the Cesr example in the previous section, ix_min_data was 0 and ix_max_data was
99 to the translation was
index_wrap −→ index_wrap - 100

8.2.2 Wave Analysis Commands and Output

The wave command (§10.33) sets which plotted data curve is used for the wave analysis. The set wave
command (§10.26) is used for setting the A and B region locations. Finally the show wave command
(§10.27) prints analysis results.

Example wave analysis output with show wave:

78 CHAPTER 8. WAVE ANALYSIS

ix_a: 35 45
ix_b: 55 70
A Region Sigma_Fit/Amp_Fit: 0.018
B Region Sigma_Fit/Amp_Fit: 0.015
Sigma_Kick/Kick: 0.013
Sigma_phi: 0.019
Chi_C: 0.037 [Figure of Merit]

Normalized Kick = k * l * beta [dimensionless]
where k = quadrupole gradient [rad/m^2].

After Dat# Norm_K phi
46 0.0705 30.431
49 0.0705 33.573
53 0.0705 36.715

This output is for analysis of betatron phase data but the output for other types of data is similar. The
first two lines of the output show where the A and B regions are. The next two lines show σa/Aa and
σb/Ab where σa and σb are given by Eq. (42) of Sagan[Sag00b] and

Aa ≡
√
ξ2a + η2a (8.2)

with a similar equation for Ab. σa/Aa and σb/Ab are thus a measure of how well the data is fit in the A
and B regions with a value of zero being a perfect fit and a value of one indicating a poor fit. Notice that
a poor fit of one of the regions may simply be a reflection that the wave amplitude being there. The next
three lines of the output are σδk/δk, σφ, and ξC , and are given by Eq. (39), (43), and (44) respectively
of [Sag00b]. The last three lines of the analysis tell where the wave analysis predicts the kicks are and
what the normalized kick amplitudes are. Thus the first of these three lines indicates that the kick may
be somewhere after the location of datum #46 (but before the location of datum #47), The normalized
quadrupole kick amplitude is 0.0705, and the betatron phase at the putative kick is 30.431 radians.

Chapter 9

Tao Initialization

Tao is customized for specific machines and specific calculations using input files and custom software
routines. Writing custom software is covered in the programmer’s guide section. This chapter covers the
input files.

In general, the input files tell Tao:
* What Bmad lattice or lattices to use (§9.3).
* What the variables and data should be when running optimizations (§7).
* What to plot and how plots should be laid out in the plotting window (§9.10).
* What kind of calculations are to be done. EG: a dynamic aperture calculation, etc.
* Etc.

Example initialization files can be found in the Tao distribution in sub-directories of the directory:
tao/examples

9.1 Namelist Syntax

Parameters are read in from an initialization file using Fortran namelist input. Fortran namelist breaks
up the input file into blocks. The first line of a namelist block starts with an ampersand “&” followed
by the block identifying name. Variables are assigned using an equal sign “=” and the end of the block
is denoted by a slash “/” For example:
&namelist_block_name
var1 = 0.123 ! exclamation marks are used for comments
var2 = 0.456

/

Variables that have default values can be omitted from the block. The order of the variables inside a block
is irrelevant except if the same variable appears twice in which case the last occurrence is determinative.
In between namelist blocks all text is ignored. Inside a block comments may be included by using an
exclamation mark “!”.

Care must be taken when setting arrays in a namelist as the following example shows:
&namelist_name
var_array(8:11) = 34 ! Only sets var_array(8)
var_array(8:11) = 34 34 81 81 ! OK. Sets all 4 values
var_array(8:11) = 34, 34, 81, 81 ! OK. Same as above

79

80 CHAPTER 9. TAO INITIALIZATION

var_array(8:11) = 34, 34, ! Lines may be continued ...
81, 81 ! ... like this.

var_array(8:11) = 2*34 2*81 ! Equivalent to the preceding examples
var_array(8:) = 2*34 2*81 ! Also equivalent
var_array(1:2) = 1 2 3 ! Error: Too many RHS values.
string_arr = ’1st’ "2nd" ’3rd’ ! Setting a string array.
string_arr(1:3) = 1st 2nd 3rd ! Same as above. [Not accepted by all compilers.]
string_arr(1:3) = 1st,2nd,3rd ! Same as above. [Not accepted by all compilers.]
string_arr = ’A B’ "2/" "&" ! Quotes needed here.

/

The first line to set the var_array may look like it is setting the four values var_array(8:11) but the
general rule is that with n values on the RHS, only n values in the array are set. Notice the notation
n*number does not denote multiplication but instead can be used to denote multiple values. Also note
that the compiler may be picky about blanks so that “2*34” will be accepted but “2 * 34” may not.

For string input it is always best to use quotes. Some compilers will accept strings without quotes. Even
those that do will generally not accept strings with special characters. Thus the following characters
should not be used in unquoted strings:

Blank or Tab character.
Period if it is the first character in the string.
& , / ! % * () = ? ’ "

Note: While there are exceptions, in general Tao string variables are case sensitive.

Logical variables should be set to T or TRUE when true and F or FALSE when false. This is case insensitive.
It is possible to use the words .true. and .false. for logicals, however this may not always work. The
reason for this is that a variable that is documented to be a logical may actually be a string variable! In
this case a beginning period will cause problems. Why use string variables? String variables are used in
place of logical variables when Tao needs to know if the variable has been explicitly set.

When setting an array in a namelist where the array components are a structure, the set can be struc-
tured in several ways. To make this clear, consider the ele_shape(:) array that can be set in the
lat_layout_drawing namelist as explained in §9.10.8. Each component of the ele_shape(:) array is
a structure and the elements of this structure are:

ele_shape(i) = "<ele_id>" "<shape>" "<color>" "<size>" "<label>" <draw> <multi> <line_width>

Setting a given ele_shape(:) array component looks like:

&lat_layout_drawing
! ele_id Shape Color Size Label ..etc..
ele_shape(2) = "quadrupole::*" "xbox" "red" 0.75 "none"

/

This sets the ele_id component of ele_shape(2) to "quadrupole::*", etc.

Alternatively, a given structure component can be set for multipole array components. Example:

&lat_layout_drawing
ele_shape(5:6)%line_width = 5, 6
ele_shape(3)%multi = T

/

Here the line_width structure component for ele_shape(5) and ele_shape(6) is set along with the
multi structure component for ele_shape(3).

9.2. BEGINNING INITIALIZATION 81

9.2 Beginning Initialization

The initialization starts with the root Tao initialization file. The default name for this file is tao.init
but this default may be overridden when Tao is started using the -init_file switch (§1.3). The first
namelist block read in from the root initialization file is a tao_start namelist. This block is optional
(in which case the defaults are used). This namelist contains the variables:
&tao_start
beam_file = "<file_name>" ! Default = Tao root init file.
building_wall_file = "<file_name>" ! No Default.
data_file = "<file_name>" ! Default = Tao root init file.
var_file = "<file_name>" ! Default = Tao root init file.
plot_file = "<file_name1> {<file_name2>} ..."

! Default = Tao root init file.
single_mode_file = "<file_name>" ! Default = Tao root init file.
startup_file = "<file_name>" ! Default = "tao.startup"
hook_init_file = ’<file_name>’ ! Default = ’tao_hook.init’
init_name = "<init_name>" ! Default = "Tao"

/
Rule: A file name obtained from the Tao root initialization file (as opposed to being present on the
command line) is always relative to the directory that the Tao root initialization file lives in. Example:
If Tao is started from the system command line like:

tao -data data.cl -init ../tao.init
And if the tao_start namelist in ../tao.init looks like:
&tao_start
data_file = "dat.in"
plot_file = "plot.in"
var_file = "/nfs/var.in"

/
Then, relative to the current working directory, the files used will be
data_file: "data.cl" ! Command line arguments have preference
plot_file: "../plot.in" ! Relative to ../tao.init.
var_file: "/nfs/var.in" ! Absolute paths are never modified.

init_name is for naming the initialization. This is useful to distinguish between multiple initialization
files with custom versions of Tao. The other parameters specify which files to find the other initialization
namelists. The plot_file variable can be an array of plot files.

Tao will open an execute a command file (§1.7) at startup if it exists. The default name is tao.startup
but this name can be changed by setting the startup_file component in the tao_start namelist.

The following sections describe each of these initialization namelists and their locations are listed in
table 9.1. Note: If plot_file specifies multiple files, the tao_plot_page, lat_layout_drawing and
floor_plan_drawing namelists are taken from the first file on the list. All files, however, can contain
tao_template_plot and tao_template_graph namelists.

9.3 Lattice Initialization

In the tao_start namelist (§9.2), the lattice_file variable gives the name of the file that contains
the tao_design_lattice namelist. The default, if lattice_file is not present is to look in the Tao
root initialization file. The tao_design_lattice namelist defines where the lattice input files are. The
variables that are set in the tao_design_lattice namelist are:

82 CHAPTER 9. TAO INITIALIZATION

Namelist Type of Parameters Initialized Section

lat_layout_drawing Plotting §9.10.8
floor_plan_drawing Plotting §9.10.8
tao_beam_init Particle beams §9.5
building_wall_section Building Walls §9.8
tao_design_lattice Lattice Files §9.3
tao_d1_data Data §9.7
tao_d2_data Data §9.7
tao_params Global Variables §9.4
tao_plot_page Plotting §9.10
tao_template_graph Plotting §9.10
tao_template_plot Plotting §9.10
tao_var Variables §9.6

Table 9.1: Table of tao Initialization Namelists.

&tao_design_lattice
n_universes = <integer> ! Number of universes. Default = 1.
unique_name_suffix = "<string>"
combine_consecutive_elements_of_like_name = <logical>
common_lattice = <logical> ! Default = False
design_lattice(i) = "<lattice_file>", {"<lattice2_file>"}
design_lattice(i)%one_turn_map_calc = <logical> ! Default = False
design_lattice(i)%dynamic_aperture_calc = <logical> ! Default = False
design_lattice(i)%reverse_tracking = <logical> ! Default = False
design_lattice(i)%slice_lattice = "<element_list>"

/
n_universes is the number of universes to be created not counting the possible common universe created
when using CRL analysis. The default is 1. design_lattice(i) gives the lattice file name for universe
i. The syntax for <lattice_file> is:
{<parser>::}<lattice_file>{@<use_line>}

Possible choices for the <parser> are:
bmad ! For a standard bmad lattice file. This is the default.
xsif ! For an xsif lattice file.
digested ! For a digested BMAD file.

The @<use_line> optional suffix is used to specify what line in the lattice file to use as a basis for
constructing the lattice. This overrides the use statement in the lattice file.

If the %reverse_tracking logical is present, tracking will be in the reverse direction from the end of
the lattice to the beginning. The sign of the charge of the tracked particle will also be reversed from the
setting in the lattice file. This is useful for simulating beams that go in the backward direction.

The %slice_lattice parameter specifies a list of elements to be used to pare down the lattice so that
the only elements that appear in the list are keept in the lattice. In addition, any lord elements that
control elements in the list are also retianed. This is identical to putting a slice_lattice command
directly in the lattice file. For example:
design_lattice(1)%slice_lattice = "Q1:35"

In this example, everthing outside of the range from element Q1 to the element with index 35 will be
discarded. See the Bmad manual for more details about the slice_lattice command. Note: There is
also a -slice_lattice initalization argument (§1.3 that can be used.

9.3. LATTICE INITIALIZATION 83

Example:
&tao_design_lattice
n_universe = 4
design_lattice(1) = "this.lat" ! Default: Bmad format lattice file.
design_lattice(1)%slice_lattice = "Q1:Q2" ! Discard element outside range [Q1:Q2]
design_lattice(2) = "xsif::that.lat", "floor_coords.bmad"

! XSIF file. For universe #2
design_lattice(3) = "third.lat@my_line" ! Specify a different line.
design_lattice(3)%one_turn_map_calc = True ! Calculate higher order maps.

/

In this example, the lattice of universe 1 is given by the file this.lat and the lattice of universe 2 is
given by the file that.lat. The "xsif::" prefix for design_lattice(2) indicates that the xsif parser is
to be used. Alternatively, a ".xsif" suffix signals that a file uses the xsif format. design_lattice(2)
in the example also specifies a “secondary lattice file” called floor_coords.bmad which will be parsed
after the “primary” that.lat file is read. This secondary lattice file must only have statements that
are valid post lattice expansion. See the Bmad manual manual for a discussion of lattice expansion. A
secondary lattice file must be in Bmad standard format. This can be especially useful if lattice_file
is not a bmad file. For example, a lattice2_file can be used to set non-zero floor coordinates to an
XSIF lattice file. Note: If a %slice_lattice parameter is used with a secondary lattice file then the
paring specified by %slice_lattice is applied before the secondary lattice file is parsed.

If there is no design_lattice specified for a given universe then the last design_lattice is used. Thus,
in the above example, universes 4 use the same lattice as universe 3.

The design_lattice(i)%one_turn_map_calc sets whether a one-turn-map calculation for a ring using
PTC will be done. If the calculation is made, the normal. data type is populated. See Eq. 5.9
and Eq. 5.10. After startup, the map calculation can be toggled on/off by using the set universe
one_turn_map_calc command (§10.26).

The design_lattice(i)%dynamic_aperture component sets whether the dynamic aperture calculation
(§9.9) will be done. After startup, this calculation can be toggled on/off by using the set universe
dynamic_aperture_calc command (§10.26).

Normally, a lattice file will specify which “line” will be used to specify the lattice. Occasionally, it is
convenient to override this specification and to use a different line. To do this in Tao, the name of the
line to be used to specify the lattice can be appended to the lattice file name. Thus, in the example
above, universe 3 will have the lattice specified by the line “my_line” from the lattice “third.lat”.

global%combine_consecutive_elements_of_like_name takes a lattice and combines all pairs of con-
secutive elements that have the same name and attributes. Why is this useful? Some programs, not
based on Bmad, cannot generate the Twiss parameters inside the element. If the Twiss parameters at
the center of an element are desired, a lattice where the element has been split into two identical pieces
is needed. This, however, makes tasks like setting up lattice optimization cumbersome. Note: The
recombination of like elements happens when the lattice is read in during initialization.

unique_name_suffix is used to append a unique character string to element names that are not unique.
unique_name_suffix uses element list format (§3.1). The class is used to restrict which elements can
have their names changed. The name part is used as a suffix. This suffix must have a single “?” character.
When this suffix is applied to an element’s name, a unique integer is inserted in place of the “?”. For
example, if unique_name_suffix is "quad::##?", and if the following quadrupoles are in the lattice:

QA QB QX QA QB QB

then after initialization, the names will be:
QA##1 QB##1 QX QA##2 QB##2 QB##3

84 CHAPTER 9. TAO INITIALIZATION

Using ##?" as the suffix is convenient since it corresponds to the Bmad standard convention for distin-
guishing elements of the same name. See the Bmad manual for more details on this.

Setting aperture_limit_on to False will turn off the aperture limits set in all lattices. This overrides
the setting of parameter[aperture_limit_on] in a lattice file.

The common_lattice switch can be used when there is a baseline lattice that is common to all universes.
See §7.7 for more details.

9.4 Initializing Globals

Global variables are initialized in the root initialization file using a namelist named tao_params.

The syntax of this block is:
&tao_params
global = <tao_global_struct> ! global parameters. §9.4.1
bmad_com = <bmad_com_struct> ! Bmad global parameters. §9.4.2
csr_param = <csr_parameter_struct> ! CSR global parameters. §9.4.3
opti_de_param = <opti_de_param_struct> ! de optimizer parameters. §9.4.4

/

Example:
&tao_params
global%optimizer = "lm" ! Set the default optimizer.

/

9.4.1 tao_global_struct Structure

The tao_global_struct structure contains Tao global parameters.
type tao_global_struct
real(rp) lm_opt_deriv_reinit = -1 ! Derivative matrix cutoff. -1 => ignore this.
real(rp) de_lm_step_ratio = 1 ! Step sizes between DE and LM optimizers.
real(rp) de_var_to_population_factor = 5
real(rp) lmdif_eps = 1e-12 ! tolerance for lmdif optimizer.
real(rp) svd_cutoff = 1e-5 ! SVD singular value cutoff limit.
real(rp) unstable_penalty = 1e-3 ! Used in unstable_ring datum merit calculation.
real(rp) merit_stop_value = -1 ! Value below which an optimizer will stop.
real(rp) dmerit_stop_value = 0 ! Fractional change below which an optimizer will stop.
real(rp) random_sigma_cutoff = -1 ! Cut-off in sigmas.
real(rp) delta_e_chrom = 0 ! delta E used from chromaticity calc.
integer n_opti_cycles = 20 ! number of optimization cycles
integer n_opti_loops = 1 ! number of optimization loops
integer n_lat_layout_label_rows = 1 ! How many rows with a lat_layout
integer phase_units = radians$! Phase units on output.
integer bunch_to_plot = 1 ! Which bunch to plot
integer random_seed = 0 ! use system clock by default
integer n_top10_merit = 10 ! Number of top constraints to print.
character(16) random_engine = "pseudo" ! Random number engine to use
character(16) random_gauss_converter = "exact" ! Uniform to gauss conversion method
character(16) track_type = "single" ! "single" or "beam"
character(16) prompt_string = "Tao"

9.4. INITIALIZING GLOBALS 85

character(16) prompt_color = ’DEFAULT’ ! See read_a_line routine for possible settings.
character(16) optimizer = "de" ! optimizer to use.
character(40) print_command = "lpr"
character(80) var_out_file = "var#.out"
logical beam_timer_on = F ! For timing the beam tracking calculation.
logical concatenate_maps = F ! False => tracking using DA.
logical command_file_print_on = T ! Toggle printing when using a command file.
logical derivative_recalc = T ! Recalc derivatives before each optimizer loop?
logical derivative_uses_design = F ! Derivative matrix uses the design lattice?
logical disable_smooth_line_calc = F ! Disable the plotting smooth line calc?
logical draw_curve_off_scale_warn = T ! Display warning on graphs when any part of the

! curve is out-of-bounds
logical label_lattice_elements = T ! For lat_layout plots
logical label_keys = T ! For lat_layout plots
logical lattice_calc_on = T ! Turn on/off beam and single particle calculations.
logical opt_with_ref = F ! use reference data in optimization?
logical opt_with_base = F ! use base data in optimization?
logical optimizer_var_limit_warn = T ! Warn when vars reach a limit when optimizing?
logical plot_on = T ! Do plotting?
logical force_plot_data_calc = F ! Always calc plot curve points even with %plot_on = F?
logical rf_on = F ! RF cavities on?
logical svd_retreat_on_merit_increase = T
logical var_limits_on = T ! Respect the variable limits?
logical only_limit_opt_vars = F ! Apply limits only if variable is used in optimization?
logical silent_run = F ! Suppress terminal output when running a command file?
logical single_step = F ! Single step through a command file?
logical stop_on_error = T ! For debugging: True -> Tao will not exiting on an error.
logical optimizer_allow_user_abort = T ! See below.
logical optimizer_var_limit_warn = T ! Warn when vars reach a limit with optimization.
logical quiet = F ! Print commands on terminal when running a command file?

end type

All global parameters can be changed from their initial value using the set command (§10.26).

global%command_file_print_on
This switch controls whether printing to the terminal is suppressed when a command file is called.

global%concatenate_maps
When constructing transfer Taylor maps the default method, used with global%concatenate_maps
= False, is to use Differential Algebra (DA) to integrate the map from the starting point to
the ending point. Alternatively, with global%concatenate_maps = True, if an element within
the integration region has an associated map, that map is concatenated with the map under
construction. This saves time but the potential drawback is a loss of accuracy. Note that a lattice
element will only have an associate map if the tracking_method or make_mat6_method components
of the lattice element are such that a map is needed for tracking (see the Bmad manual for more
details).

global%derivative_recalc
The global%derivative_recalc logical determines whether the derivative matrix is recalculated
every optimization loop. The global%derivative_uses_design logical determines if the design
lattice is used in the derivative matrix calculation instead of the model lattice.

86 CHAPTER 9. TAO INITIALIZATION

global%disable_smooth_line_calc
The global%disable_smooth_line_calc is used to disable computation of the “smooth curves”
used in plotting. This can be used to speed up Tao as discussed in §9.10.3.

global%dmerit_stop_value
When optimizing, if the fractional change in the merit function over one loop (set by global%n_opti_loops)
is below the value of global%dmerit_stop_value, optimization will stop. The default value is
zero. Also see global%merit_stop_value.

global%lattice_calc_on
global%lattice_calc_on controls whether lattice calculations are done when there are changes in
the lattice. Lattice calculations include the calculation of orbits, Twiss parameters, beam tracking,
etc. This switch is useful in controlling unnecessary calculational overhead. A typical scenario
where this switch is used involves first setting %lattice_calc_on to False (using the set com-
mand (§10.26)), then executing a set of commands, and finally setting %lattice_calc_on back
to True. This saves some of the calculational overhead that each command generates. Similarly,
global%plot_on can be toggled to save even more time. Also see the set universe command
(§10.26.23) for ways to suppress certain types of calculations (for example, calculating the Twiss
parameters) that are not needed.

global%force_plot_data_calc
Sometimes it is convenient to have Tao calculate plotting curve points even when Tao is not doing
any plotting (that is, global%plot_on = F). For example, when Tao is run as a server by a client
(such as a graphic user interface) program where the client program is taking care of the plotting but
the data to be plotted is calculated by Tao. In this case by setting global%force_plot_data_calc
to True will force Tao to always calculate curve data points even when global%plot_on = F.

global%merit_stop_value
The global%merit_stop_value establishes a point such that, during optimization, if the merit
function falls below that value, the optimization stops. If the value is negative (the default),
global%merit_stop_value is ignored. Also see global%dmerit_stop_value.

global%optimizer_allow_user_abort
Normally optimizer_allow_user_abort defaults to True which allows the optimizer, when it is
run, to look for user input from the terminal (§7.5). If the user types a period “.”, the optimization
is aborted cleanly. However, if Tao is started with standard input redirected from a file (using
the “<” character) Tao will not be able to distinguish between input meant as a Tao command
and input meant for aborting the optimization. In this case, optimizer_allow_user_abort will
default to False so that the optimizer will not do any checking.

global%random_engine
global%random_engine selects the algorithm used for generating the random numbers. "pseudo"
causes Tao to use a pseudo-random number generator. "quasi" uses Sobel quasi-random num-
ber generator which generates a distribution that is smoother then the pseudo-random number
generator. "pseudo" is the default.

global%random_gauss_converter
global%random_gauss_converter selects the algorithm used in the conversion from a uniform
distribution to a Gaussian distribution. "exact" is an exact conversion and "limited" has a cut-
off so that no particles are generated beyond. This cutoff is set by global%random_sigma_cutoff.

global%random_sigma_cutoff
See global%random_gauss_converter.

9.4. INITIALIZING GLOBALS 87

global%random_seed
global%random_seed sets the seed number for the pseudo-random number generator. A value of
0 (the default) causes the seed number to be picked based upon the system clock. Use the show
global command to see what the seed number is.

global%rf_on
The rf cavities in circular lattices can be be toggled on or off using the global%rf_on switch. The
default is False. Notice that with the RF off, the beam energy will be independent of the closed
orbit which is not the case when the RF is on. Note: If you want to see orbit changes with RF
frequency changes then you will need to set parameter[absolute_time_tracking] to True. See
the “Relative Versus Absolute Time Tracking” section in theBmad manual for more details.

global%silent_run
For use with command files. If set True, output to the terminal during command file running will
be suppressed (except for warning and error messages) until the command file (or files) returns to
the command line level at wich point global%silent_run is automatically reset to False. That is,
global%silent_run must be set to True each time it is desired to run a command file(s) silently.

global%single_step
For use with command files. If set True, this is equivalent to putting a "pause -1" after each line
in a command file. Useful for debugging or for talk demonstrations.

global%track_type
The setting of the global%track_type parameter can be
"single"
"beam"

The "single" setting is used when single particle tracking is desired and "beam" is used when
tracking with a beam of particles. Note that with "single" tracking, synchrotron radiation fluc-
tuations (but not damping) is always turned off.

global%var_limits_on
The global%var_limits_on switch controls whether a variable’s model value is limited by the
variable’s high_lim and low_lim settings (§9.6). This is particularly important during optimiza-
tion. If a variable’s model value moves outside of the limits, the value is set at the limit and the
variable’s good_user parameter is set to False so it will not be further varied in the optimization.

global%only_limit_opt_vars
The global%only_limit_opt_vars switch controls whether only the variables being optimized
are limited or whether all variables are limited. The global%optimizer_var_limit_warn switch
controls whether a warning is printed when a variable value goes past a limit.

Random number generation in Tao is divided into two categories: Random numbers used for gener-
ating the initial coordinates of the particles in a beam and random numbers used for everything else.
As explained below, there are four parameters that govern how random numbers are generated. For
beam particle generation, three of the four (everything except the random number seed) are accessed
through the beam_init structure (§9.5). For everything else, these parameters are accessed through the
tao_global_struct.

9.4.2 bmad_com_struct Structure

The bmad_com_struct holds bmad global variables.

88 CHAPTER 9. TAO INITIALIZATION

type bmad_com_struct
real(rp) max_aperture_limit = 1e3
real(rp) d_orb(6) = 1e-5 ! for the make_mat6_tracking routine
real(rp) default_ds_step = 0.2_rp ! Integration step size.
real(rp) significant_length = 1e-10 ! meter
real(rp) rel_tol_tracking = 1e-8
real(rp) abs_tol_tracking = 1e-10
real(rp) rel_tol_adaptive_tracking = 1e-8 ! Adaptive tracking relative tolerance.
real(rp) abs_tol_adaptive_tracking = 1e-10 ! Adaptive tracking absolute tolerance.
real(rp) init_ds_adaptive_tracking = 1e-3 ! Initial step size
real(rp) min_ds_adaptive_tracking = 0 ! Min step size to take.
real(rp) fatal_ds_adaptive_tracking = 1e-8 ! particle lost if step size is below this.
real(rp) autoscale_amp_abs_tol = 0.1_rp ! Autoscale absolute amplitude tolerance (eV).
real(rp) autoscale_amp_rel_tol = 1d-6 ! Autoscale relative amplitude tolerance
real(rp) autoscale_phase_tol = 1d-5 ! Autoscale phase tolerance.
real(rp) electric_dipole_moment = 0 ! Particle’s EDM.
real(rp) ptc_cut_factor = 0.006 ! Cut factor for PTC tracking
real(rp) sad_eps_scale = 5.0d-3 ! Used in sad_mult step length calc.
real(rp) sad_amp_max = 5.0d-2 ! Used in sad_mult step length calc.

integer space_charge_mesh_size(3) = [32, 32, 64] ! Gird size for fft_3d space charge calc.
integer sad_n_div_max = 1000 ! Used in sad_mult step length calc.
integer runge_kutta_order = 4 ! Runge Kutta order.
integer default_integ_order = 2 ! PTC integration order.
integer ptc_max_fringe_order = 2 ! PTC max fringe order (2 = > Quadrupole !).

! Must call set_ptc after changing.
integer max_num_runge_kutta_step = 10000 ! Maximum number of RK steps before particle is considered lost.
logical rf_phase_below_transition_ref = F ! Autoscale uses below transition stable point for RFCavities?
logical use_hard_edge_drifts = T ! Insert drifts when tracking through cavity?
logical sr_wakes_on = T ! Short range wakefields?
logical lr_wakes_on = T ! Long range wakefields
logical mat6_track_symmetric = T ! symmetric offsets
logical auto_bookkeeper = T ! Automatic bookkeeping?
logical csr_and_space_charge_on = F ! Space charge switch
logical spin_tracking_on = F ! spin tracking?
logical backwards_time_tracking_on = F ! Track backwards in time?
logical spin_sokolov_ternov_flipping_on = F ! Spin flipping during synchrotron radiation emission?
logical radiation_damping_on = F ! Damping toggle.
logical radiation_fluctuations_on = F ! Fluctuations toggle.
logical conserve_taylor_maps = T ! Enable bookkeeper to set ele%taylor_map_includes_offsets = F?
logical absolute_time_tracking_default = F ! Default for lat%absolute_time_tracking
logical twiss_normalize_off_energy = F
logical convert_to_kinetic_momentum = F ! Cancel finite vector potential edge kicks with symplectic tracking?
logical aperture_limit_on = T ! use apertures in tracking?
logical ptc_print_info_messages = F ! Allow PTC to print informational messages?
logical debug = F ! Used for code debugging.

integer taylor_order = 3 ! 3rd order is default

9.4. INITIALIZING GLOBALS 89

integer default_integ_order = 2 ! PTC integration order.
integer ptc_max_fringe_order = 2 ! PTC max fringe order (2 => Quadrupole !).

! Must call set_ptc after changing.
logical use_hard_edge_drifts = T ! Insert drifts when tracking through cavity?
logical sr_wakes_on = T ! Short range wakefields?
logical lr_wakes_on = T ! Long range wakefields
logical mat6_track_symmetric = T ! symmetric offsets
logical auto_bookkeeper = T ! Automatic bookkeeping?
logical space_charge_on = F ! Space charge switch
logical coherent_synch_rad_on = F ! Longitudinal csr
logical spin_tracking_on = T ! Do particle spin tracking
logical radiation_damping_on = F ! Damping toggle.
logical radiation_fluctuations_on = F ! Fluctuations toggle.
logical conserve_taylor_maps = T ! Enable bookkeeper to set ele%map_with_offsets = F?
logical absolute_time_tracking_default = F ! Default for lat%absolute_time_tracking
logical rf_auto_scale_phase_default = T ! Default for lat%rf_auto_scale_phase
logical rf_auto_scale_amp_default = T ! Default for lat%rf_auto_scale_amp
logical use_ptc_layout_default = F ! Default for lat%use_ptc_layout

end type
See the Bmad manual for more details.

9.4.3 csr_param_struct Structure

The csr_parameter_struct holds global variables for the coherent synchrotron radiation calculations.
type csr_parameter_struct
real(rp) ds_track_step = 0 ! Tracking step size
real(rp) beam_chamber_height = 0 ! Used in shielding calculation.
real(rp) sigma_cutoff = 0.1 ! Cutoff for the lsc calc. If a bin sigma

! is < cutoff * sigma_ave then ignore.
integer n_bin = 0 ! Number of bins used
integer particle_bin_span = 2 ! Longitudinal particle length / dz_bin
integer n_shield_images = 0 ! Chamber wall shielding. 0 = no shielding.
integer sc_min_in_bin = 10 ! Min number of particles in a bin for sigmas to be valid.
logical print_taylor_warning = True ! Print warning if Taylor element is present?
logical write_csr_wake = False ! Write the CSR wake? For diagnostics.
logical lsc_kick_transverse_dependence = F

end type
See the Bmad manual on the csr_parameter_struct for more details. In Tao, Besides setting the
csr_parameter_struct components, the following must be done to enable CSR computations:

• The global%track_type (see above this section) must be set to "beam" and the appropriate beam
initialization parameters (§9.5) must be set.

• The parameter bmad_com%coherent_synch_radiation (see above this section) must be set to
True.

• In the Bmad lattice file, csr_calc_on must be set for the elements where CSR tracking is to be
done (see the Bmad manual).

9.4.4 opti_de_param_struct Structure

The opti_de_param_struct holds parameters that influence the behavior of the de optimizer (§7.5)

90 CHAPTER 9. TAO INITIALIZATION

Default
real(rp) CR 0.8 ! Crossover Probability.
real(rp) F 0.8 !
real(rp) l_best 0.0 ! Percentage of best solution used.
logical binomial_cross False ! IE: Default = Exponential.
logical use_2nd_diff False ! use F * (x_4 - x_5) term
logical randomize_F False !
logical minimize_merit True ! F => maximize the Merit func.

See the Bmad manual for more details.

If ix1_ele_csr and ix2_ele_csr are set, The effect of coherent synchrotron radiation is only included in
tracking in the region from the exit end of the lattice element with index ix1_ele_csr through the exit
end of the lattice element with index ix2_ele_csr. By restricting the CSR calculation, the calculational
time to track through a lattice is reduced.

See §7.1 for more details on global%n_opti_cycles and global%n_opti_loops.

9.5 Initializing Particle Beams

A particle beam is initialized in the tao_beam_init namelist block. The file that Tao looks in to find
this namelist is set by the beam_file component of the tao_start namelist (§9.2). The default, if
beam_file is not set, is the root initialization file.

The syntax of the tao_beam_init namelist is:
&tao_beam_init
ix_universe = <integer> ! Universe to apply to.
beam_all_file = <string> ! File used in place of beam tracking.
beam_saved_at = "<ele_list>" ! Where to save the beam info.
beam_track_start = "<ele_name>" ! Beam tracking start element name or index.
beam_track_end = "<ele_name>" ! Beam tracking end element name or index.
beam_init%position_file = <string> ! Beam position init file.
beam_init%distribution_type(3) = "<type>" ! "ELLIPSE", "KV", "GRID", "" (default)
beam_init%ellipse(3)%... = ... ! Parameters for an ellipse type distribution.
beam_init%KV%... = ... ! Parameters for a KV distribution
beam_init%grid(i)%... = ... ! Parameters for a grid distribution.
beam_init%a_norm_emit = <real> ! A-mode energy normalized emittance
beam_init%b_norm_emit = <real> ! B-mode energy normalized emittance
beam_init%a_emit = <real> ! A-mode emittance
beam_init%b_emit = <real> ! B-mode emittance
beam_init%dPz_dZ = <real> ! Energy-Z correlation
beam_init%center = <real>*6 ! Bunch center offset relative to

! reference particle (BMAD coords)
beam_init%sig_e = <real> ! e_sigma in dE/E0
beam_init%sig_z = <real> ! Z sigma in m
beam_init%n_bunch = <integer> ! Number of bunches
beam_init%dt_bunch = <real> ! Time between bunches (meters)
beam_init%n_particle = <real> ! Number of particles per bunch
beam_init%bunch_charge = <real> ! charge per bunch (Coulombs)
beam_init%renorm_center = <logical> ! Default is T
beam_init%renorm_sigma = <logical> ! Default is F
beam_init%center_jitter = <real>*6 ! Bunch center rms jitter (meters)

9.5. INITIALIZING PARTICLE BEAMS 91

beam_init%emit_jitter = <real>*2 ! Emittance rms jitter (dε/ε)
beam_init%sig_z_jitter = <real> ! bunch length rms jitter (dz/z)
beam_init%sig_e_jitter = <real> ! bunch energy spread rms jitter (dE/E)
beam_init%spin(3) = <real>*3 ! (x, y, z) spin components.
beam_init%init_spin = <logical> ! Initialize the spin (default: False)
beam_init%preserve_dist = <logical> ! Use the same particle distribution.
beam_init%random_engine = "pseudo" ! random number engine to use
beam_init%random_gauss_converter = "exact" ! Uniform to gauss conversion method
beam_init%random_sigma_cutoff = 4.0 ! Cut-off in sigmas.
beam_init%use_t_coords = <logical> ! Use time coords (for e_guns)?
beam_init%use_z_as_t = <logical> ! Use time instead of z (for e_guns)?

/

The beam_init parameter is an instance of a beam_init_struct structure which holds parameters (for
example, the beam emittances) from which a distribution of particles can be constructed. Documen-
tation on this can be found in the Bmad manual in the Beam Initialization chapter. In particular,
beam_init%position_file if it is non-blank, specifies a file (which can be created with the write beam
-at <ele_name> command) which contains a beam’s particle coordinates which are to be used at the
start of the lattice. Note: The file name can be overridden by using the -beam_init_position_file
argument on the command line (§1.3). The file can either be in binary format (binary files can be created
by the write beam command), or written in ASCII. Note: When the particle coordinates are read in from
the beam_init%position_file file, the centroid will be shifted by the setting of beam_init%center. To
vary the centroid of the beam on the Tao command line, the set beam_init center command (§10.26)
can be used.

ix_universe refers to the universe index. See the Bmad documentation on the beam_init_struct for
what the beam_init parameters refer to. The charge per particle is set to bunch_charge/n_particle
and is used when calculating wakefield effects.

The emittances used construct to the beam’s particle distribution can be set using the energy normalized
emittances %a_norm_emit and %b_norm_emit or the unnormalized (“geometric”) %a_emit and %b_emit.
If not set, the emittances set in the lattice file are used. These emittances are also used as the initial
emittance in a linear lattice for the emittance calculation using the radiation integrals.

The beam_all_file component specifies a beam data file (which can be created with the write beam
command) which contains the particle coordinates of the tracked beam at every element. This causes Tao
to use the data from the file in lieu of actual tracking. This can be helpful when the time for Tao to track
a bunch through the lattice becomes long. The file name can be overridden by using the -beam_all_file
argument on the command line (§1.3). Note: Tao will set the variable use_saved_beam_in_tracking
to True to prevent actual tracking. Note: A beam_all_file will supersede beam_init%position_file

When beam_init%position_file is blank, the Twiss parameters at the beginning of the lattice are used
in initializing the beam distribution. For circular lattices the Twiss parameters will be found from the
closed orbit, and the emittance will be calculated using the Bmad routine radiation_integrals.

beam_track_start and beam_track_end are used when it is desired to only track the beam through
part of the root lattice branch. beam_track_start gives the starting element name or index. Tracking
will start at the exit end of this element so the beam will not be tracked through this element. The
tracking will end at the exit end of the lattice element with name or index beam_track_end. The
default, if beam_track_start and beam_track_end are not present, is to track through the entire root
lattice branch. beam_track_start and beam_track_end is ignored for lattice branches other than the
root branch (branch 0). After initialization, the set beam_init (§10.26.2) command can be used to
set beam_track_start and beam_track_end. Note: Deprecated names for beam_track_start and
beam_track_end are track_start and track_end respectively.

92 CHAPTER 9. TAO INITIALIZATION

If spin tracking is desired then beam_init%init_spin must be set to true. If it is desired to use the exact
same distribution of particles for each time the beam is tracked then set beam_init%preserve_dist to
True. Otherwise, a new random distribution will be generated. The initialization routine does attempt
to renormalize the beam to the specified parameters, nevertheless if tracking a small number of particles
the distribution is subject to small random fluctuations unless beam_init%prserve_dist is True.

Tao re-tracks the beam through the lattice every time a lattice parameter is changed. For example, during
optimizations or when the set command (§10.26) is used. For the re-tracking, the particle distribution
at the beginning of the lattice is fixed. That is, the a new random distribution is not generated. To
force a new distribution, use the reinitialize beam command (§10.23).

The default is single particle tracking. To turn on particle tracking the global%track_type parameter
must be set to "beam". This can be placed in the tao_params namelist above, for example,
&tao_params
global%optimizer = "lm" ! Set the default optimizer.
global%track_type = "beam"

/

beam_saved_at is used to specify at what elements the beam particle positions are saved at. Note
that, independent of the setting of beam_saved_at, beam statistics (like the beam sigma matrix) are
always saved at each lattice element. Element list format, as explained in §3.1, is used to specify a list
of elements for beam_saved_at. The beam is automatically saved at the beginning position and end
position of beam tracking and at fork and photon_fork elements.
&tao_beam_init
beam_saved_at = "marker::m* *34w*" ! Save beam at all markers starting with "m"

! and all elements that have "34w" in their name.
/

The elements where the beam is saved may be modified while Tao is running by using the set beam
saved_at or set beam not_saved_at commands (§10.26.1).

The three random number generator parameters (%random_engine, %random_gauss_converter, and
%random_sigma_cutoff) used for initializing the beam are set in the tao_global_struct (§9.4). They
may, however, be overridden for beam particle generation by setting the corresponding parameters in
the beam_init structure. That is, separate parameters may be setup for beam particle generation verses
everything else. These parameters are explained in Section §9.4.

9.6 Initializing Variables

Tao variables (§4 are used in lattice correction or design (§7).

The file that Tao looks in to find information on Tao variables is set by the var_file component of the
tao_start namelist (§9.2). The default, if data_file is not set, is the root initialization file.

Variables are initialized using the tao_var namelist. The format for this is
&tao_var
v1_var%name = "<var_array_name>" ! Variable array name.
use_same_lat_eles_as = "<d1_name>" ! Reuse a previous element list.
search_for_lat_eles = "<element_list>" ! Find elements by name.
default_universe = "<integer>" ! Universe variables belong in.
default_attribute = "<attribute_name>" ! Attribute to control.
default_weight = <real> ! Merit_function weight.

! default = 0.0

9.6. INITIALIZING VARIABLES 93

default_step = <real> ! Small step value.
! default = 0.0

default_merit_type = "<merit_type>" ! Sets how the merit is calculated.
! default = "limit"

default_low_lim = <real> ! Lower variable value limit.
! default = -1e30

default_high_lim = <real> ! Upper variable value limit.
! default = 1e30

default_key_bound = <logical> ! Variables to be bound?
default_key_delta = <real> ! Change when key is pressed.
ix_min_var = <integer> ! Minimum array index.
ix_max_var = <integer> ! Maximum array index.
var(i)%ele_name = "<ele_name>" ! Element to be controlled.
var(i)%attribute = "<attrib_name>" ! Attribute to be controlled.
var(i)%universe = "<uni_list>" ! Universe containing variable to

! be controlled. "*" => All.
var(i)%weight = <real> ! Merit function weight.
var(i)%step = <real> ! Small step size.
var(i)%low_lim = <real> ! Lower variable value limit
var(i)%high_lim = <real> ! Upper variable value limit
var(i)%merit_type = "<merit_type_name>" ! Sets how the merit is calculated.
var(i)%good_user = <logical> ! Good optimization variable?
var(i)%key_bound = <logical> ! Variable bound to a key
var(i)%key_delta = <real> ! Change when key is pressed.

/

Example:
&tao_var
v1_var%name = "v_steer" ! vertical steerings
default_universe = "clone 2,3"
default_attribute = "vkick" ! vertical kick attribute
default_weight = 1e3
default_step = 1e-5
ix_min_var = 0
ix_max_var = 99
var(0:99)%ele_name = "v00w", "v01w", "v02w", " ", "v04w", ...

/

A tao_var block is needed for each variable array to be defined. v1_var%name is the name of the
array to be used with Tao commands. The var(i) array of variables has an index i that runs from
ix_min_var to ix_max_var. A lattice element name var(i)%ele_name and the element’s attribute to
vary var(i)%attribute needs to specified. Not all elements need to exist and the element names of
non–existent elements should be undefined or set to a name with only spaces in it. For those variables
where var(i)%attribute is not specified in the namelist the default_attribute will be used.

var(i)%key_bound and var(i)%key_delta are used to bind variables to keys on the keyboard. The
default values for these parameters are set by default_key_bound and default_key_delta. If not set,
default_key_bound is set to False and default_key_delta is set to 0. See §11.1 for more details.

var(i)%step establishes what a “small” variation of the variable is. This is used, for example, by some
optimizers when varying variables. If var%step(i) is not given for a particular variable then the default
default_step is used.

var(i)%good_user is a logical that the user can toggle when running Tao (§4). The initial default value

94 CHAPTER 9. TAO INITIALIZATION

of %good_user is True.

var(i)%universe gives the universe that the lattice element lives in. Multiple universes can be specified
using a comma delimited list. For example:
var(10)%universe = "2, 3"

If var(i)%universe is not present, or is blank, the value of default_universe is used instead. If both
var(i)%universe and default_universe are not present or blank then all universes are assumed. In
addition to a number (or numbers), default_universe can have values:
"gang" -- Multiple universe control (default).
"clone" -- Make a var array block for each universe.

"gang"means that each variable will control the given attribute in each universe simultaneously. "clone"
means that the array of variables will be duplicated, one for each universe. To differentiate variables
from different universes _u<n> will be appended to each v1_var%name where <n> is the universe number.
For example, if v1_var%name is quad_k1 then the variable block name for the first universe will be
quad_k1_u1, second universe will be quad_k1_u2, etc. With "clone", individual var(i)%universe may
not be set in the namelist. The default if both default_universe and all var(i)%universe are not
given is for default_universe to be "gang". Examples:
default_universe = "gang" ! Gang all universes together.
default_universe = "gang 2, 3" ! Gang universes 2 and 3 together.
default_universe = "2, 3" ! Same as "gang 2, 3".
default_universe = "clone 2, 3" ! Make two var arrays.

! One for universe 2 and one for universe 3.
var(i)%weight gives the weight coefficient for the contribution of a variable to the merit function. If
not present then the default weight of default_weight is used. var(i)%low_lim and var(i)%high_lim
give the lower and upper bounds outside of which the value of a variable should not go. If not present
default_low_lim and default_high_lim are used. If these are not present as well then by default
low_lim = -1e30
high_lim = 1e30

var(i)%merit_type determines how the merit contribution is calculated. Possible values are:
"limit" ! Default
"target"

For details on limit and target constraints see Chapter 7 on Optimization.

If elements in the var array do not exist the corresponding var%ele_name should be left blank. Lists of
names can be reused using the syntax:
use_same_lat_eles_as = "<d1_name>" ! Reuse a previous element list.

For example:
&tao_var
v1_var%name = "quad_tilt"
default_attribute = "tilt"
...
use_same_lat_eles_as = "quad_k1"

/
Instead of specifying a list of lattice element names for var(:)%ele_name, Tao can be told to search for
the elements by name using the syntax:

search_for_lat_eles = "-no_grouping <element_list>"
Where <element_list> is a list of elements using the element list format (§3.1). The searching will
automatically exclude any superposition and multipass slaves elements. If the -no_grouping flag is
not present, the default behavior is that all matched elements with the same name are grouped under
a single variable. That is, a single variable can control multiple elements. On the other hand, if the
-no_grouping flag is present, each element will be assigned an individual variable. For example:

9.7. INITIALIZING DATA AND CONSTRAINTS 95

search_for_lat_eles = "sbend::b*"

will search for all non-lord bend lattice elements whose names begins with "B" followed by any set of
characters. In this example, if, for example, two bends have the name, say "bend0", then a single
variable will be set up to control these two bends.

Warning: Generally -no_grouping should be used with unique_name_suffix (§9.3) to avoid the prob-
lem that if different lattice elements have the same name but differing parameter values, the write
bmad_lattice command (§10.34) will not produce a valid lattice.

Note: search_for_lat_eles and use_same_lat_eles_as cannot be used together.

9.7 Initializing Data and Constraints

Tao data (§5) is used with lattice correction or design (§7). A set of data is initialized using a
tao_d2_data namelist block and one or more tao_d1_data namelist blocks.

The file that Tao looks in to find these two namelists is set by the data_file component of the tao_start
namelist (§9.2). The default, if data_file is not set, is the root initialization file.

The format of the tao_d2_data namelist is
&tao_d2_data
d2_data%name = "<d2_name>" ! d2_data name.
universe = "<list>" ! Universes data belong in.

! "*" => all universes (default).
default_merit_type = "<merit_type>" ! Sets how the merit is calculated.
n_d1_data = <integer> ! Number associated d1_data arrays.

/

For example: For example:
&tao_d2_data
d2_data%name = "orbit"
universe = "1,3:5" ! Apply to universes 1, 3, 4, and 5
n_d1_data = 2

/

A tao_d2_data block is needed for each d2_data structure defined. The d2_data%name component
gives the name of the structure. The universe component gives a list of the universes that the data is
associated with. A value of "*" means that a d2_data structure is set up in each universe. Ranges of
universes can be specified in the list using a :.

The default_merit_type component determines how the merit function terms are calculated for the
individual datum points. Possibilities are:
"target"
"max"
"min"
"abs_max"
"abs_min"
"average" ! Only used when datum specifies a range of elements.
"max-min" ! Only used when datum specifies a range of elements.

The average and max-min merit types are used when there is a range of elements associated the the
datum. That is, ele_start is specified (see below). For the average data type, the datum value is the
average of the values computed for all lattice elements in the specified range. With max-min, the value of

96 CHAPTER 9. TAO INITIALIZATION

the datum is the difference between the maximum value in the range minus the minimum in the range.
See Chapter 7 on optimization for more details.

The associated tao_d1_data namelists must come directly after their associated tao_d2_data namelist.
The n_d1_data parameter in the tao_d2_data namelist defines how many d1_data structures are asso-
ciated with the d2_data structure. For each n_d1_data structure there must be a tao_d1_data namelist
which has the form:
&tao_d1_data
ix_d1_data = <integer> ! d1_data index
use_same_lat_eles_as = "<d1_name>" ! Reuse previous element list.
search_for_lat_eles = "<element_list>" ! Find elements by name.
d1_data%name = "<d1_name>" ! d1_data name.
default_data_type = <type_name> ! Eg: orbit.x, e_tot, etc...
default_weight = <real> ! Merit function weight. Dflt: 0.0
default_data_source = "<source>" ! "lat" (dflt), "data", "var", or "beam".
ix_min_data = <integer> ! Minimum array index.
ix_max_data = <integer> ! Maximum array index.
datum(j)%data_source = "<source>" ! "lat" (dflt), "data", "var", or "beam".
datum(j)%data_type = "<type_name>" ! Eg: "orbit.x", etc.
datum(j)%ele_name = "<ele_name>" ! Lattice element name.
datum(j)%ele_start_name = "<ele_start_name>" ! Start element name.
datum(j)%ele_ref_name = "<ele_ref_name>" ! Reference element names.
datum(j)%merit_type = "<merit_type>" ! Sets how the merit is calculated.
datum(j)%meas = "<real> " ! Datum "measured" value
datum(j)%weight = "<weight>" ! Merit function weight.
datum(j)%good_user = <logical> ! Use for optimization and plotting?
datum(j)%ix_bunch = <integer> ! Bunch index. Dflt: 0 = all bunches.
datum(j)%eval_point = "<where>" ! "beginning", "center", or "end" (dflt).
datum(j)%s_offset = <real> ! Default: 0.

/

For example:
&tao_d1_data
ix_d1_data = 1
d1_data%name = "x"
default_weight = 1e6
ix_min_data = 0
ix_max_data = 99
datum(0:)%ele_name = "DET_00W", " ", "DET_02W", ...

/

Alternatively, one can specify a datum in a single line. For example,
&tao_d1_data
ix_d1_data = 1
d1_data%name = "t"
! data_ ele_ref ele_start ele merit meas weight good
! type name name name type value user ..
datum(1) = "beta.a" "S:2.3" "" "Q16_1" "max" 30 0.1 T ...
datum(2) = "phase.b" "Q09_1" "B22" "Q16_1" "max" 30 0.1 T ...
datum(3) = "floor.x" "" "" "end" "target" 3 0.01 T ...
datum(4) = "floor.x" "B1" "" "B2" "target" 3 0.01 T ...
... etc. ...

/

9.7. INITIALIZING DATA AND CONSTRAINTS 97

When specifying data one line at a time, the columns are
data_type
ele_ref_name
ele_start_name
ele_name
merit_type
meas_value
weight
good_user
data_source
eval_point
s_offset
ix_bunch

Default values will be used if an individual line does not include all columns.

ix_min_data and ix_max_data give the bounds for the datum(i) structure array that is associated with
the d1_data structure. datum(:)%ele_name gives the lattice element names associated with the data
points.

datum(i)%good_user is a logical that the user can toggle when running Tao (§5.2). The initial default
value of %good_user is True.

A range of elements can be specified by giving an ele_start_name that is not a blank string. Thus,
in the above example, the value of datum(2) is the maximum horizontal beta in the range between the
end of element B22 to the end of element Q16_1. Elements can be specified by name (Eg: Q16_1) or
by longitudinal position using the notation "S:<s_distance>". This will match to the element whose
longitudinal position at the exit end is closest to <s_distance>.

The datum(:)%data_source component specifies where the data is coming from. Possible values are:
"beam" ! Value is from multiparticle beam tracking.
"data" ! Used with expressions.
"lat" ! Value is from the lattice.
"var" ! Used with expressions.

With %data_source set to "beam", the particular bunch that the data is extracted from can be specified
via datum(:)%ix_bunch. The default is 0 which combines all the bunches for the datum calculation.
If the %data_source is not set, the value of the default_data_source is used. If both %data_source
and default_data_source are not specified, "lat" is the default. A %data_source of "data" or "var"
establishes the default data source for evaluating expressions (see "expression:" in §5.8).

If elements in the data array do not exist the corresponding data%ele_name should be left blank. Lists
of names can be reused using the syntax:
use_same_lat_eles_as = "<d1_name>" ! Reuse previous element list.

For example:
&tao_d1_data
ix_d1_data = 2
d1_data%name = "y"
...
use_same_lat_eles_as = "orbit.x"

/

Tao can search for the elements in the lattice to be associated with each data type by using the syntax:
search_for_lat_eles = "{-no_lords} {-no_slaves} <element_list>"

98 CHAPTER 9. TAO INITIALIZATION

<element_list> specifies elements using the standard element list format (§3.1). The -no_lords and
-no_slaves switches, if present, are used to restrict the counting of lord or slave elements. The
-no_lords switch excludes all group, overlay, and girder elements. The -no_slaves switch vetoes
superposition or multipass slave elements. For example:

search_for_lat_eles = "-no_lords sbend::b*

This will search for all non-lord bend lattice elements whose names begins with "B" followed by any set
of characters. search_for_lat_eles and use_same_lat_eles_as cannot be used together.

If datum(j)%data_type is not given, and default_data_type is not specified, then the d2_data name
and the d1_data name are combined for each datum to form the datum’s type. For example, if the
d2_data name is orbit, and the d1_data name is x, then the data_type is orbit.x. The data_types
recognized by Tao. are given by Table 7.2. Custom data types not specified in this table must have a
corresponding definition in tao_hook_load_data_array.f90. See Chapter 13 for details.

datum(:)%weight gives the weight coefficient for a datum in the merit function. If not present then the
default weight of default_weight is used.

9.7.1 Old Data Format

In the present data format there are three elements that are associated with a given datum: ele_ref,
ele_start, and ele. There exists an old, deprecated, data format where only two elements are given
for a given datum. These elements are called ele0 and ele. In this old format, data is used in place of
datum. For example:

&tao_d1_data
! OLD SYNTAX. DO NOT USE!
! data_ ele0_ ele_ merit_ meas_ weight good_
! type name name type value user
data(1) = "beta.a" "S:12.3" "Q16_1" "max" 30 0.1 T
data(2) = "phase.b" "Q09_1" "Q16_1" "max" 30 0.1 T
data(3) = "floor.x" " " "end" "target" 3 0.01 T
data(4) = "floor.x" "B1" "B2" "target" 3 0.01 T
... etc. ...

/

The interpretation of ele0 was dependent upon the data type. With data types denoted as “relative”,
ele0 was interpreted as ele_ref. For non-relative data types, ele0 was interpreted as being equivalent
to ele_start. The relative data types where:

floor.x, floor.y, floor.z, floor.theta
momentum_compaction
periodic.tt.ijklm . . .
phase.a, phase.b
phase_frac.a, phase_frac.b
phase_frac_diff
r.ij
rel_floor.x, rel_floor.y,
rel_floor.z, rel_floor.theta
s_position
t.ijk
tt.ijklm . . .

9.8. INITIALIZING A BUILDING WALL 99

point(1)

point(N)

Figure 9.1: Floor plot showing the walls of the building (along with a section of a recirculation arc).
Defining building walls can be useful for such things as floor plots and designing a machine to fit in an
existing building.

9.8 Initializing a Building Wall

A two dimensional outline of the building containing the machine under simulation may be defined in
Tao. This may be useful when drawing floor plans of the machine (§9.10.7) or to design a machine to
fit within an existing building by using optimization (§7).

The walls of a building are defined by a set of “sections” which are just curves that mark the wall
boundaries. One such section is highlighted in Figure 9.1 starting at the point marked “point(1)” and
ending at the point marked “point(N)”. Each section is defined by a set of points which are connected
together using straight lines or circular arcs.

The name of the file containing the building wall definition is given by the building_wall_file variable
in the tao_start namelist (§9.2). In general, this file will contain a number of building_wall_section
namelists. Each building_wall_section namelist defines a single wall section. The syntax of this
namelist is
&building_wall_section
{name = <string>}
{constraint = <type>}
point(1) = <z1>, <x1>
point(2) = <z2>, <x2>, {<r2>}
point(3) = <z3>, <x3>, {<r3>}
... etc ...
point(N) = <zN>, <xN>, {<rN>}

/

The optional name component allows for matching wall sections to floor_plan shapes (§9.10.8) so that
different portions of the wall can be drawn in different colors.

The global coordinate system in Bmad (see the Bmad manual) defines the (Z,X) plane as being horizon-
tal. [Note: (Z,X) is used instead of (X,Z) since (Z,X, Y) forms a right handed coordinate system.] The
points that define a wall section are specified in this coordinate system. In the building_wall_section
namelist, the (Z,X) position of each point defining a wall section is given along with an optional radius
r. If a non-zero radius is given for point j, then the segment between point j − 1 and j is a circular arc
of the given radius. If no radius is given, or if it is zero, the segment is a straight line. A radius for the

100 CHAPTER 9. TAO INITIALIZATION

first point, number 1, cannot be specified since this does not make sense. Additionally, a radius must be
at least half the distance between the two points that define the end points of the arc.

In general, given two end points and a radius, there are four possible arcs that can be drawn. The arc
chosen follows the following convention:

1. The angle subtended by the arc is 180 degrees or less.

2. If the radius for the arc from j − 1 to j is positive, the arc curves in a clockwise manner. If the
radius is negative, the arc curves counterclockwise. This convention mimics the convention used
for rbend and sbend elements.

To define a wall that is circular, use three points with two 180 degree arcs in between.

When designing a machine to fit within the walls of a building, the constraint variable of the namelist is
used to designate whether the given wall section is on the +x (left) side of the machine or the −x (right)
side. Here x is the local reference frame transverse coordinate. See the write up of the wall.right_side
and wall.left_side constraints in §5.8 for more details. Possible values for constraint are:
"right_side" ! Section is to be used with wall.right_side constraints
"left_side" ! Section is to be used with wall.left_side constraints
"none" ! Default. Section is ignored in any constraint calculation.

Using "none" for constraint is convenient for drawing building components on a floor_plan that are
not used as a optimization constraint.

Example:
&building_wall_section
constraint = "left_side"
point(1) = 23.2837, 8.2842
point(2) = -10.9703, 13.8712, 107.345
point(3) = -10.8229, 14.7737

/

In this example, point 1 is at (Z,X) = (23.2837, 8.2842), the segment between points 1 and 2 is an arc
with a radius of 107.345 meters, and the segment between points 2 and 3 is a straight line. Also this
wall section is to be used when evaluating any wall.x+ constraint.

If the machine varies vertically (y-direction), vertical constraints may be imposed using the floor.y
data type (§5.8).

Note: To position a machine in the global coordinate system, the starting point and starting orientation
can be adjusted using beginning[...] statements as explained in the Bmad manual.

9.9 Initializing Dynamic Aperture

For rings, the dynamic aperture can be calculated if tao_dynamic_aperture is defined:
&tao_dynamic_aperture
da_init(ix_uni)%ix_branch = 1 ! Lattice branch to use. 0 = default value.
da_init(ix_uni)%pz = 0, 0.01, ... ! List of particle energies to use
da_init(ix_uni)%n_angle = 64 ! Number of angles in scan of each energy
da_init(ix_uni)%min_angle = 0 ! Starting scan angle.
da_init(ix_uni)%max_angle = 3.14159 ! Ending scan angle.
da_init(ix_uni)%n_turn = 100 ! Number of turns a particle must survive

9.9. INITIALIZING DYNAMIC APERTURE 101

da_init(ix_uni)%x_init = 1e-3_rp ! initial estimate for horizontal aperture
da_init(ix_uni)%y_init = 1e-3_rp ! initial estimate for vertical aperture
da_init(ix_uni)%accuracy = 1e-5_rp ! resolution of bracketed aperture (meters)
/

where ix_uni indicates the universe number. Here pz is a list of relative momenta to calculate the
aperture for. If the RF is off, then a new closed orbit will be calculated for each of these momenta.

Currently the dynamic aperture assumes that tracking is to be done with the root lattice branch (branch
0).

Optionally parameters n_angle, min_angle, and max_angle can be set to indicate the angle in the x−y
plane to scan about the closed orbit.

By default, the dynamic aperture calculation is off for all universes. To turn it on, use the set command
(§10.26):
set universe 1 dynamic_aperture_calc on

If Tao is compiled with the appropriate OpenMP flags, then this calculation will be done in parallel.

The results can be plotted. See §9.10.9.

Example input files are at:
$ACC_ROOT_DIR/tao/examples/dynamic_aperture

102 CHAPTER 9. TAO INITIALIZATION

9.10 Initializing Plotting

9.10.1 Plot Window

Plotting is defined by an initialization file whose name is defined by the plot_file component of the
tao_start namelist (§9.2). The first namelist block in the file has a block name of tao_plot_page.
This block sets the size of the plot window (also called the plot page) and defines the “regions” where
plots go. The syntax of this block is:
&tao_plot_page
plot_page%plot_display_type = <string> ! Display type: ’X’ or ’TK’
plot_page%size = <x_size>, <y_size> ! size in POINTS
plot_page%border = <x1b>, <x2b>, <y1b>, <y2b>, "<units>"
plot_page%text_height = <real> ! height in POINTS. Def = 12
plot_page%main_title_text_scale = <real> ! Relative to text_height. Def = 1.3
plot_page%graph_title_text_scale = <real> ! Relative to text_height. Def = 1.1
plot_page%axis_number_text_scale = <real> ! Relative to text_height. Def = 0.9
plot_page%axis_label_text_scale = <real> ! Relative to text_height. Def = 1.0
plot_page%legend_text_scale = <real> ! Relative to text_height. Def = 0.8
plot_page%key_table_text_scale = <real> ! Relative to text_height. Def = 0.9
plot_page%floor_plan_shape_scale = <real> ! Floor_plan shape size scaling.
plot_page%lat_layout_shape_scale = <real> ! Lat_layout shape size scaling.
plot_page%title(i) = <string>, <x>, <y>, "<units>", "<justify>"
plot_page%n_curve_pts = <int> ! Num points used to construct a

! smooth curve. Default = 401
= <T/F> ! Used with "show plot" command.

plot_page%box_plots = <T/F> ! For debugging. Default = F.
include_default_plots = <T/F> ! Include default templates? Def = T.
region(i) = "<region_name>" <x1r>, <x2r>, <y1r>, <y2r>
place(i) = "<region_name>", "<template_name>"
default_plot%... ! See below.
default_graph%... ! See below.

/

For example:
&tao_plot_page
plot_page%plot_display_type = "X" ! X11 window. "TK" is alternative.
plot_page%size = 700, 800 ! Points
plot_page%border = 0, 0, 0, 50, "POINTS"
plot_page%text_height = 12.0
plot_page%title(1) = "CESR Lattice", 0.5, 0.996, "%PAGE", "CC"
region(1) = "top" 0.0, 1.0, 0.5, 1.0
region(2) = "bottom" 0.0, 1.0, 0.0, 0.5
place(1) = "top", "orbit"
place(2) = "bottom", "phase"
default_plot%x%min = 100
default_plot%x%max = 200

/

plot_page%size sets the horizontal and vertical size of the plot window in points units (72 points = 1
inch. Roughly 1 point = 1 pixel).

plot_page%text_height sets the overall height of the text that is drawn. Relative to this, various
parameters can be used to scale individual types of text:

9.10. INITIALIZING PLOTTING 103

Plot Window

Region 1

Region 2 x2b

y1b

y2b

x1b

Plot Area

x1r

x2r

y1r

y2r

Figure 9.2: The plot window has a boarder whose position is determined by the plot_page%border
parameter in the tao_plot_page namelist. Plots are placed in “regions” whose location is determined
by the setting of the region(i) parameters in the same namelist. Regions may overlap.

plot_page%main_title_text_scale = 1.3 ! Main title height.
plot_page%graph_title_text_scale = 1.1 ! Graph title height.
plot_page%axis_number_text_scale = 0.9 ! Axis number height
plot_page%axis_label_text_scale = 1.0 ! Axis label height.
plot_page%key_table_text_scale = 0.8 ! Key Table text (§9.10.12).
plot_page%legend_text_scale = 0.9 ! Lat Layout or floor plan text.

The default values for these scales are given above.

The plot_page%plot_display_type component sets the type of plot display window used. possibilities
are:
"X" X11 window
"TK" tk window
"QT" Available only when using PLPLOT (and not the default PGPLOT)

Note: The environmental variable ACC_PLOT_DISPLAY_TYPE sets the default display type. You can set
this variable in your login file to avoid having to setup a Tao init file to set this.

plot_page%border sets a border around the edges of the window. As shown in Figure 9.2 x1b, x2b are
the right and left border widths and y1b and y2b are the bottom and top border widths respectively.
The rectangle within this border is called the plot area.

plot_page%title(i) set the page title. There are two title areas (i = 1,2). If only the title string is
given then the other variables are set to the defaults x = 0.5, y = 0.995, justify = "CC" and units =
"%PAGE". See the quickplot documentation for the justify variable syntax.

The plot area is divided up into rectangular regions where plots may be placed (what defines a plot is
discussed below). region(i) in the tao_plot_page namelist is an array of five elements that defines
the ith region. The first element of this array is the name of the region. This name may not contain a
dot “.”. The last four elements of the retion(i) array, x1r, x2r, y1r and y2r define the location of the
region as illustrated in Figure 9.2. x1r and x2r are normalized to the width of the plot area and y1r
and y2r are normalized to the height of the plot area. That is, these four number should be in the range
[0, 1]. Regions may overlap any one can define as many regions as one likes.

104 CHAPTER 9. TAO INITIALIZATION

Besides the regions that the user sets up in the tao_plot_page namelist, Tao defines a number of default
regions whose names begin with the letter ’r’. Use the show plot command (§10.15) to view a list of
these plots.

When plot_page%delete_overlapping_plots is True (the default), Placing a plot (using the place
command §10.14) causes any existing plots that overlap the placed plot to become invisible.

The plot_page%n_curve_pts parameter sets the default number of points to use for drawing “smooth”
curves. The default is 401. This default may be overridden for individual plots by setting the plot%n_curve_pts
component of a plot (§9.10.2). If plot%n_curve_pts is set for an individual plot, that value overrides
the value of plot_page%n_curve_pts. Warning: Tao will cache intermediate calculations used to com-
pute a smooth curve to use in the computation of other smooth curves. Tao will only do this for
curves that have plot_page%n_curve_pts number of points. Depending upon the circumstances, set-
ting plot%n_curve_pts for individual plots may slow down plotting calculations significantly.

place(i) determines the initial placement of plots.

default_plot sets the defaults for any plots defined in the tao_template_plot namelists (§9.10.2).
Similarly, default_graph sets defaults for the graph structure defined in the tao_template_graph
namelist (§9.10.2). In the example above, the default x-axis min and max are set to 100 and 200
respectively.

If include_default_plots is set to False, the collection of default template plots (§9.10.2) that Tao
uses by default are not used along with the template plots defined in the plotting file.

9.10.2 Plot Templates

As shown in Figure 6.1, a “plot” is made up of a collection of “graphs” and a graph consists of axes plus
a set of “curves”. To define custom plots, there needs to be defined a set of “template plots”. A template
plot specifies the layout of a plot: How the graphs are placed within a plot, what curves are associated
with what graphs, etc. When running Tao, the information in a template plot may then be transferred
to a region using the place command and this will produce a visible plot.

The file that Tao looks in to find plotting information is set by the plot_file component of the
tao_start namelist (§9.2). The default, if plot_file is not set, is the root initialization file.

Template plots are defined using namelists with a name of tao_template_graph. The general syntax
is:
&tao_template_plot
plot%name = "<plot_name>"
plot%x = <qp_axis_struct>
plot%x_axis_type = "<x_axis_type>" ! "index", "ele_index" "s", "lat", or "var".

! Default is "index".
plot%n_graph = <n_graphs>
plot%autoscale_gang_x = <logical> ! Default: True.
plot%autoscale_gang_y = <logical> ! Default: True.
plot%autoscale_x = <logical> ! Default: False.
plot%autoscale_y = <logical> ! Default: False.
plot%n_curve_pts = <integer> ! Used to override plot_page%n_curve_pts.
default_graph%... ! See below

/

For example:
&tao_template_plot

9.10. INITIALIZING PLOTTING 105

plot%name = "orbit"
plot%x%min = 0
plot%x%max = 100
plot%x%major_div_nominal = 10
plot%x%label = "Index"
plot%n_graph = 2
default_graph%y%max = 10

/

default_graph sets defaults for the graph structure defined in the tao_template_graph namelist
(§9.10.2). This overrides default_graph settings made in the tao_template_plot namelist (§9.10)
but only for graphs associated with the tao_template_plot the default_graph is defined in.

plot%x sets the properties of the horizontal axis. For more information see the Quick Plot documen-
tation on the qp_axis_struct in the Bmad manual. The major components are
min ! Left edge value.
max ! Right edge value.
major_div ! Number of major divisions.

! Number of major tick marks is one less.
major_div_nominal ! Nominal number of major divisions
minor_div ! Number of minor divisions. 0 = auto choose.
label ! Axis label.

If min and max are absent, then Tao will autoscale the axis. If it is desired to have differing scales for
different graphs, the graph%x component can be used (see below).

Both major_div and major_div_nominal set the number of major divisions in the plot. The difference
between the two is that with major_div the number of major divisions is fixed at the set value and
with major_div_nominal the number of major divisions can vary from the set value when Tao scales a
graph. If major_div_nominal is set, this will override any setting of major_div. If neither major_div
nor major_div_nominal is set, a value will be chosen for major_div_nominal by Tao. If you are unsure
which to set, it is recommended that major_div_nominal be used.

Plots with plot%autoscale_x and/or plot%autoscale_y logicals, set to true will automatically rescale
after any calculation. The plot%autoscale_gang_x and plot%autoscale_gang_y components set how
the x_scale (§10.36) and scale (§10.25) commands behave when autoscaling entire plots. See these
individual commands for more details.

The plot%n_plot_pts parameter sets the number of points to use for drawing “smooth” curves. This
overrides the setting of plot_page%n_plot_pts (§9.10). Warning: Tao will cache intermediate calcula-
tions used to compute a smooth curve to use in the computation of other smooth curves. Tao will only do
this for curves that have plot_page%n_curve_pts number of points. Depending upon the circumstances,
setting plot%n_curve_pts for individual plots may slow down plotting calculations significantly.

plot%name is the name that is used with Tao commands to identify the plot. It is important that this
name not contain any blank spaces since Tao uses this fact in parsing the command line.

plot%x_axis_type sets what is plotted along the x_axis. Possibilities are:
"index" ! Data Index
"ele_index" ! Element lattice number index
"s" ! Longitudinal position in the lattice.
"data" ! From a data array
"lat" ! Lattice variable. See §9.10.5.
"var" ! Tao variable value. See §9.10.5.

106 CHAPTER 9. TAO INITIALIZATION

The ele_index switch is used when plotting data arrays. In this case the index switch refers to the
index of the data array and ele_index refers to the index of the lattice element that the datum was
evaluated at.

n_graph sets the number of graphs associated with the plot and each one needs a tao_template_graph
namelist to define it. These namelists should be placed directly after their respective tao_template_graph
namelists. The general format of the tao_template_graph namelist is:
&tao_template_graph
graph_index = <integer>
graph%name = "<string>" ! Default is "g<n>" <n> = graph_index.
graph%type = "<string>" ! "data", "floor_plan", etc.
graph%box = <ix>, <iy>, <ix_tot>, <iy_tot>
graph%title = "<string>" ! Title above the graph.
graph%margin = <ix1>, <ix2>, <iy1>, <iy2>, "<Units>"
graph%scale_margin = <ix1>, <ix2>, <iy1>, <iy2>, "<Units>"
graph%x = <qp_axis_struct> ! Horizontal axis.
graph%y = <qp_axis_struct> ! Left axis.
graph%x2 = <qp_axis_struct> ! Top axis (only used for floor_plan plots).
graph%y2 = <qp_axis_struct> ! Right axis.
graph%clip = <logical> ! Clip curves at boundary? Default = T
graph%draw_axes = <logical> ! Default = T
graph%draw_grid = <logical> ! Default = T
graph%allow_wrap_around = <logical> ! Wrap curves around lattice ends?
graph%component = "<string>" ! Eg: "model - design"
graph%symbol_size_scale = <real> ! Phase_space plots symbol scale factor
graph%correct_xy_distortion = <logical> ! For Floor Plan plots: Default = F
graph%ix_universe = <integer> ! Default = -1 => Use default universe
graph%floor_plan_rotation = <real> ! Rotation of floor plan plot: 1.0 -> 360 deg.
graph%floor_plan_view = <string> ! View plane for floor plan plot. default = ’zx’
graph%floor_plan_orbit_scale = <real> ! Scale for drawing orbits. Default: 0 -> Do not draw.
graph%floor_plan_orbit_color = <string> ! Color of orbit. Default = ’RED’
graph%floor_plan_flip_label_side = <logical> ! Draw element label on other side of element?
graph%floor_plan_size_is_absolute = <logical> ! Shape sizes scaled to absolute dimensions?
graph%floor_plan_draw_only_first_pass = <logical> ! Draw only first pass with multipass elements?
graph%draw_only_good_user_data_or_vars ! Veto data or variables with good_user = F?

= <logical> ! Default = T.
graph%x_axis_scale_factor = <factor> ! Scale the x-axis by this.
graph%n_curve = <integer> ! number of curves
curve(i)%name = "<string>" ! Default is "c<i>", <i> = curve num.
curve(i)%data_source = "<string>" ! Source for the data curve points
curve(i)%data_type_x = "<string>" ! Used with plot%x_axis_type = "data" or "var".
curve(i)%data_type = "<string>" ! Default = plot%name.graph%name
curve(i)%component = "<string>" ! Eg: "model - design". Overrides graph%component.
curve(i)%data_index = "<string>" ! Index number for data points.
curve(i)%legend_text = "<string>" ! Text for curve legend.

! Default is the data_type.
curve(i)%y_axis_scale_factor = <factor> ! Scale the y-axis by this.
curve(i)%use_y2 = <logical> ! Use left-axis scale?
curve(i)%draw_line = <logical> ! Connect data with lines?
curve(i)%draw_symbols = <logical> ! Draw data symbols?
curve(i)%draw_symbol_index = <logical> ! Print index number next to the data symbol?
curve(i)%ix_universe = <integer> ! Default = -1 => Use graph%ix_universe.

9.10. INITIALIZING PLOTTING 107

curve(i)%ix_branch = <integer> ! Default = 0 => Use main lattice.
curve(i)%ix_bunch = <integer> ! Bunch index. Default = 0 (all bunches).
curve(i)%line = <qp_line_struct> ! Line spec (color, width, etc.)
curve(i)%symbol = <qp_symbol_struct> ! Symbol spec (color size, etc.)
curve(i)%symbol_every = <integer> ! Plot symbol every # datums
curve(i)%ele_ref_name = "<string>" ! Name of reference element.
curve(i)%ix_ele_ref = <integer> ! Index number of reference element.
curve(i)%smooth_line_calc = <Logical> ! Calc data between symbol points?
curve(i)%units = "<string>" ! Data units

/

For example:
&tao_template_graph
graph_index = 1
graph%name = "x"
graph%type = "data"
graph%box = 1, 1, 1, 2
graph%title = "Horizontal Orbit (mm)"
graph%margin = 60, 200, 30, 30, "POINTS"
graph%y%label = "X"
graph%y%max = 4
graph%y%min = -4
graph%y%major_div_nominal = 4
graph%n_curve = 1
graph%component = "model - design"
curve(1)%data_source = "data"
curve(1)%data_type = "orbit.x"
curve(1)%units_factor = 1000
curve(1)%use_y2 = F

/

See the Quick Plot chapter of the Bmad manual for description of the qp_symbol_struct and the
qp_line_struct.

graph%title is the string just above the graph. The full string will also include information about what
is being plotted and the horizontal axis type. To fully suppress the title leave it blank.

If there are multiple curves drawn with a graph then a curve legend showing what lines are associated
with what data will be drawn. The default is to draw this legend in the upper left hand corner of the
graph. By default, the data_type of each curve will be used as the text for that curve’s line in the
legend. This default can be changed by setting a curve’s curve%legend_tex.

graph%name and curve%name define names to be used with commands. The default names are just the
letter g or c with the index of the graph or curve. Thus, in the example above, the name of the curve
defaults to c1 and it would be referred to as orbit.x.c1. It is important that these names do not
contain any blank spaces since Tao uses this fact in parsing the command line.

graph%box sets the layout of the box which the graph is placed in. For a definition of what a box is see
the Quick Plot documentation in the Bmad reference manual. In the above example the graph divides
the region into two vertically stacked boxes and places itself into the bottom one.

graph%allow_wrap_around sets if, for a lattice with closed geometry, the curves contained in the graph
are “wrapped” around the ends of the lattice. The default is True.

graph%margin sets the margin between the graph and the box it is drawn in.

108 CHAPTER 9. TAO INITIALIZATION

graph%scale_margin is used to set the minimum space between what is being drawn and the edges of
the graph when a scale, x_scale, or a xy_scale command is issued. Normally this is zero but is useful
for floor plan drawings.

graph%type is the type of graph. Tao knows about the following types:
"data" ! Data and/or variable plots (default) (§9.10.3).
"floor_plan" ! A 2-dimensional birds-eye view of the machine (§9.10.7).
"histogram" ! Histogram of plot (§9.10.10).
"key_table" ! Key binding table for single mode (§9.10.12).
"lat_layout" ! Schematic showing placement of the lattice elements (§9.10.6).
"phase_space" ! Phase space plots (§9.10.13).

With graph%type set to "beam_chamber_wall" (§9.10.11), the beam chamber wall is drawn if it has
been defined in the Bmad lattice file.

With graph%type set to "data" (§9.10.3), data such as orbits and/or variable values such as quadrupole
strengths are plotted. Here “data” can be data from a defined data structure (§5) or computed directly
from the lattice, beam tracking, etc. A "data" graph type will contain a number of curves and multiple
data and variable curves can be drawn in one graph.

With graph%type set to floor_plan (§9.10.7), the two dimensional layout of the machine is drawn.

With graph%type set to histogram (§9.10.10), such things such as beam densities can be histogrammed.

With graph%type set to "key_table" (§9.10.12), the key bindings for use in single mode (§11.1) are
displayed. Note: The "key_table" graph type does not have any associated curves.

With graph%type set to lat_layout (§9.10.6), the elements of the lattice are symbolical drawn in a one
dimensional line as a function of the longitudinal distance along the machine centerline.

With graph%type set to phase_space (§9.10.13), phase space plots are produced.

9.10.3 Data and Variable plotting

A graph (§9.10.2), with graph%type equal to "data", is used to draw “data” such as orbits and/or
variable values such as quadrupole strengths. A data graph will have a number of associated curves
with each curve defining a particular data type to plot.

The data values will depend upon where the data comes from. This is determined, in part, by the setting
of graph%component and curve%component. graph%component and curve%component may be one of:

"model" ! model values. Default.
"design" ! design values.
"base" ! Base values
"meas" ! data values.
"ref" ! reference data values.
"beam_chamber_wall" ! Beam chamber wall

Additionally, graph%component may be set to plot a linear combination of the above. For example:
graph%component = "model - design"

This will plot the difference between the model and design values.

If curve%component is set, it will override graph%component. If graph%component is not set in the
initialization file, and if there are curves of the graph that have not been set, graph%component will be
given a default setting of model.

9.10. INITIALIZING PLOTTING 109

The curve structure is used to define the data that is plotted in each graph. curve%data_source is the
type of information for the source of the data points. curve%data_source must be one of:
"data" ! A d1_data array is the source of the curve points.
"var" ! A v1_var array is the source of the curve points.
"lat" (Default) ! The curve points are computed directly from the lattice.
"beam" ! The curve points are computed tracking a beam of particles.
"multi_turn_orbit" ! Computation is from multi-turn tracking.

The default for curve%data_source is "lat". With curve%data_source set to data, the values of the
curve points come from the d1_data array structure named by curve%data_type. Thus in the above
example the curve point values are obtained from orbit.x data. To be valid the data structure named
by curve%data_type must be set up in an initialization file. If not given, the default curve%data_type
is
<plot%name>.<graph%name>

If curve%data_source is set to var, the values of the curve points come from a v1_var array structure.
If it is set to lat the curve data points are calculated from the lattice without regard to any data
structures. curve%data_source can be set to beam when tracking beams of particles. In this case, the
curve points are calculated from the tracking. With beam, the particular bunch that the data is extracted
from can be specified via curve%ix_bunch. The default is 0 which combines all the bunches of the beam
for the calculation.

Example: With curve%data_type set to beta.x, the setting of curve%data_source to lat gives the
beta as calculated from the lattice and beam gives the beta as calculated from the shape of the beam.

curve%draw_symbols determines whether a symbol is drawn at the data points. The size, shape and
color of the symbols is determined by curve%symbol. A given symbol point that is drawn has three
numbers attached to it: The (x, y) position on the graph and an index number to help identify it. The
index number of a particular symbol is the index of the datum or variable corresponding the symbol
in the d1_data or v1_var array. These three numbers can be printed using the show curve -symbol
command (§10.27). curve%draw_symbol_index determines whether the index number is printed be-
sides the symbol. Use the set curve command (§10.26) to toggle the drawing of symbols. The de-
fault value for curve%draw_symbol is False if plot%x_axis_type is "s" and True otherwise. The
defaultcurve%draw_symbol_index is always False.

curve%draw_line determines whether a curve is drawn through the data point symbols. The thick-
ness, style (solid, dashed, etc.), and color of the line can be controlled by setting curve%line. If
plot%x_axis_type is "s", and graph%component does not contain "meas" or "ref", Tao will attempt
to calculate intermediate values in order to draw a smooth, accurate curve is drawn. Occasionally, this
process is too slow or not desired for other reasons so setting curve%smooth_line_calc to False will
prevent this calculation and the curve will be drawn as a series of lines connecting the symbols. The
default of curve%smooth_line_calc is True. Use the set curve command (§10.26) to toggle the draw-
ing of lines. Alternatively, the -disable_smooth_line_calc switch can be used on the command line
(§1.3) or the global variable global%disable_smooth_line_calc can be set in the Tao initialization file
(§9.4).

The graph%draw_only_good_user_data_or_vars switch determines whether datums (§9.7) or variables
(§9.6) with a good_user component set to False are drawn. The default is to not draw them which
means that data or variables not used in an optimization are not drawn.

A graph has two vertical axes. The one on the left is called "y" and the one on the right is called "y2".
For example, graph%y%label sets the axis label for the y axis and graph%y2%label sets the axis label
for the y2 axis. Normally there is only one vertical scale for a graph and this is associated with the y
axis. However, if any curve of a given graph has curve%use_y2 set to True then the y2 axis will have
an independent second scale. In this case, the y2 axis numbers will be drawn. Notice that simply giving
the y2 axis a label does not make the y2 axis scale independent of the y axis scale.

110 CHAPTER 9. TAO INITIALIZATION

Typically, a graph’s horizontal scale is set by the plot%x component. If it is desired to have differing
scales for different graphs, the graph%x component can be used.

9.10.4 Graphing a Data Slice

The standard data graph, as presented in the previous subsection, plots data from a given d1_data array.
It is also possible to graph data that has been “sliced” in other ways. For example, suppose a number
of universes have been established, with each universe representing the same machine but with different
steerings powered. If in each universe an orbit d2_data structure has been defined, an example of a
data slice is the collection of points (x, y) where:
(x, y) = (<n>@orbit.x[23], <n>@orbit.y[23]), <n> = 1, ..., n_universe

When defining a template for graphing a data slice, the plotbe set to "data", the curve(:)%data_source
must be set to "data" and the curve(:)%data_type_x and curve%data_type are used to define the
x and y axes respectively. In the strings given by <curve%data_type_x or <curve%data_type, all
substrings that look like #ref are eliminated and the string given by curve%ele_ref_name is substituted
in its place. Similarly, a #comp string is used as a place holder for the graph%component Example:
&tao_template_plot
plot%name = "at_bpm"
plot%x%label = "x"
plot%x_axis_type = "data"
plot%n_graph = 1

/

&tao_template_graph
graph_index = 1
graph%title = "Orbit at BPM"
graph%y%label = "y"
graph%component = "meas - ref"
graph%type = "data"
graph%n_curve = 1
graph%x_axis_scale_factor = 1000
curve(1)%data_source = "data"
curve(1)%data_type_x = "[2:57]@orbit.x[#ref]|#comp"
curve(1)%data_type = "[2:57]@orbit.y[#ref]|#comp"
curve(1)%data_index = "[2:57]@orbit.y[#ref]|ix_uni"
curve(1)%y_axis_scale_factor = 1000
curve(1)%ele_ref_name = "23"
curve(1)%draw_line = F

/
In this example, curve(1)%data_type_x expands to "[2:57]@orbit.x[23]|meas-ref". That is, the
meas - ref values of orbit.x[23] from universes 2 through 57 is used for the x-axis. Similarly,
orbit.y[23] is used for the y-axis. The set command (§10.26) can be used to change curve%ele_ref_name
and graph%component strings.

curve%data_index sets the index number for the symbol points (§9.10.2). In the above example,
curve%data_index is set to "[2:57]@orbit.y[#ref]|ix_uni". The |ix_uni component will result
in the symbol index number being the universe number. Additionally, the component |ix_d1 can be
used to specify the index in the d1_data array, and the component |ix_ele can be used to specify the
lattice element index. Setting the symbol index number is important when curve%draw_symbol_index
is set to True so that the symbol index is drawn with the curve. Additionally, the command show curve
-symbol (§10.27) will print the symbol index number along with the (x, y) coordinates of the symbols.

9.10. INITIALIZING PLOTTING 111

Arithmetic expressions (§3.2) may be mixed with explicit datum components in the specification of
curve(:)%data_type_x and curve(:)%data_type. Example:
curve(1)%data_type_x = "[#ref]@orbit.x|model"
curve(1)%data_type = "[#ref]@orbit.x|meas-ref"
curve(1)%ele_ref_name = "3"

The plots the model values of orbit.x verses meas - ref of orbit.x for the data in universe 3. Note:
Whenever explicit components are specified, the graph%component settings are ignored for that expres-
sion.

9.10.5 Plotting With a Variable Parameter on the X-Axis

Data can be plotted as a function of a lattice parameter by setting plot%x_axis_type to "lat" (for
lattice variables) or "var" (for Tao variables) and setting curve(:)%data_type_x to the name of the
variable. In this case, the curve(:)%data_type must evaluate to a single number.

Example:
&tao_template_plot
plot%x_axis_type = "lat"
plot%n_curve_pts = 50
...

/

&tao_template_graph
...
curve(1)%data_type_x = "particle_start[x]" ! X-axis values.
curve(1)%data_type = "orbit.x[10]" ! Y-axis values.
...

/

Here the number of curve points has been set to 50 to reduce the evaluation overhead.

Note: Tao treats the design and base lattices as static so that varying a variable will not affect these
lattices. Thus, constructing a plot with graph%component set to, for example, "model - design" will
not produce a plot that is the difference between varying a variable in both model and design lattices.
In the case where such a plot is desired, a second universe needs to be established. In this case, one
would set curve(:)%data_type to something like

curve(1)%data_type = "1@orbit.x[10] - 2@orbit.x[10]"

where the universe #2 model lattice would be setup to be equal to the universe #1 design lattice.

9.10.6 Drawing a Lattice Layout

A lattice layout plot draws the lattice along a straight line with colored rectangles representing the
various elements. An example is shown in Figure 9.3. The tao_template_plot needed to define a
lattice layout looks like:
&tao_template_plot
plot%name = "<plot_name>"
plot%x%min = <real>
plot%x%max = <real>
plot%n_graph = <integer>
plot%x_axis_type = "s"

112 CHAPTER 9. TAO INITIALIZATION

250
300

Figure 9.3: A lattice layout plot (top) above a data plot (middle) which in turn is above a key table
plot (bottom). The points on the curves in the data plot mark the edges of the elements displayed in
the lattice layout. Elements that have attributes that are varied as shown in the key table have the
corresponding key table number printed above the element’s glyph in the lattice layout.

/
&tao_template_graph
graph_index = <integer>
graph%name = <name>
graph%type = "lat_layout"
graph%title = "Layout Title"
plot%box = <ix>, <iy>, <ix_tot>, <iy_tot>
graph%ix_universe = <integer> ! -1 => use current default universe
graph%ix_branch = <integer> ! 0 => use main lattice.
graph%margin = <ix1>, <ix2>, <iy1>, <iy2>, "<Units>"
graph%y%min = <real> ! Default: -100
graph%y%max = <real> ! Default: 100

/

Example:
&tao_template_plot
plot%name = "layout"
plot%x%min = 0
plot%x%max = 100
plot%n_graph = 1
plot%x_axis_type = "s"

/

&tao_template_graph
graph_index = 1

9.10. INITIALIZING PLOTTING 113

Figure 9.4: Example Floor Plan drawing.

graph%name = "u1"
graph%type = "lat_layout"
graph%box = 1, 1, 1, 1
graph%ix_universe = 1
graph%margin = 0.12, 0.12, 0.30, 0.06, "%BOX"

/

Which elements are drawn is under user control and is defined using an lat_layout_drawing namelist.
See Section §9.10.8 for more details.

The longitudinal distance markers at either end of the lattice layout can be suppressed by setting
graph%x%draw_numbers = F

9.10.7 Drawing a Floor Plan

A floor plan drawing gives a display of the machine projected onto the horizontal plane. An example
is shown in Figure 9.4. Like a Lattice Layout (§9.10.6), Elements are represented by colored rectangles
and which elements are drawn is determined by an floor_plan_drawing namelist (see §9.10.8).

The placement of an element in the drawing is determined by the element’s coordinates in global
reference system. See the Bmad manual for more information on the global reference system. In
the global reference system, the (Z,X) plane is the horizontal plane.

What plane a floor plan is projected onto is determined by the setting of the graph%floor_plan_view
switch. This switch is a two character string. Each character is either ’x’, ’y’, or ’z’ and the characters
must not be both the same. Default is ’zx’. The first character determines which global coordinate are
mapped to the horizontal axis of the graph and the second character determines which global coordinate
is mapped to the vertical axis of the graph. There are six possible two character combinations. The
default ’zx’ setting represents looking at the horizontal plane from above. A setting of ’xz’ represents
looking at the horizontal plane from below. Etc.

Documentation on graph%floor_plan_size_is_absolute is in section §9.10.8

An overall rotation of the floor plan can be controlled by setting graph%floor_plan_rotation. A
setting of 1.0 corresponds to 360◦. Positive values correspond to counter-clockwise rotations. Example:
(§9.10)
&tao_plot_page

114 CHAPTER 9. TAO INITIALIZATION

...
graph%floor_plan_rotation = 0.5 ! Rotate 180 degrees

/

If element labels are to be drawn, on which side the labels are drawn can be flipped by setting
graph%floor_plan_flip_label_side to True.

The beam orbit can be drawn upon the floor plan. This is done by setting graph%floor_plan_orbit_scale
to something nonzero. A value of zero suppresses the drawing of the orbit. This scale is used to scale the
distance between the centerline of the elements and the orbit. So a with a value of 100.0, a 1 cm orbit is
drawn 1 meter from the centerline. Note: If graph%floor_plan_orbit_scale is not unity, the plotted
orbit when going through a patch element with a finite transverse offset will show a discontinuity due
to the discontinuity of the reference orbit.

The color of a drawn beam orbit is controlled by graph%floor_plan_orbit_color. The default color
is ’RED’.

Alternatively, the global coordinates at the start of the lattice can be defined in the lattice file and
this can rotate the floor plan. Unless there is an offset specified in the lattice file, a lattice will start
at (x, y) = (0, 0). Assuming that the machine lies in the horizontal plane with no negative bends, the
reference orbit will start out pointing in the negative x direction and will circle clockwise in the (x, y)
plane.

If graph%ix_universe is set to -1 the current viewed universe is used. If graph%ix_universe is set to
-2, all universes are plotted.

Example Floor Plan template:
&tao_template_plot
plot%name = "floor"
plot%x%min = -12
plot%x%max = 0
plot%x%major_div_nominal = 4
plot%x%minor_div = 3
plot%n_graph = 1

/

&tao_template_graph
graph_index = 1
graph%name = "1"
graph%type = "floor_plan"
graph%box = 1, 1, 1, 1
graph%margin = 0.10, 0.10, 0.10, 0.10, "%BOX"
graph%ix_universe = -2 ! Draw all universes.
graph%x%label = "SMART LABEL"
graph%y%label = "SMART LABEL"
graph%y%max = 2
graph%y%min = -1
graph%correct_xy_distortion = T
graph%floor_plan_size_is_absolute = T
graph%floor_plan_view = ’xz’ ! Looking from beneath
graph%floor_plan_orbit_scale = 100

/

Having graph%x%label and graph%y%label set to “SMART LABEL” means that the actual axis labels will
be picked appropriately based upon the setting of graph%floor_plan_view.

9.10. INITIALIZING PLOTTING 115

To prevent the drawing of the axes set graph%draw_axes to False. To prevent the drawing of a grid at
the major division points set graph%draw_grid to False.

By default, the horizontal or vertical margins of the graph will be increased so that the horizontal scale
(meters per plotting inch) is equal to the vertical scale. If graph%correct_xy_distortion is set to
False, this scaling will not be done.

Note: The show ele -floor command (§10.27) can be used to view an element’s global coordinates.

9.10.8 Defining Shapes for Lat_layout and Floor_plan Drawings

Floor plan (§9.10.7) and lattice layout drawings use various shapes, sizes, and colors to represent
lattice elements. The association of a particular element with a given shape is determined via two
namelists: lat_layout_drawing for the lattice layout and floor_plan_drawing for floor plan drawings.
Two different namelists are used since, for example, a size that is good for a layout will not necessarily
be good for a floor plan.

The file that Tao looks in to find these two namelists is set by the first file specified in the plot_file
array set in the tao_start namelist (§9.2). The default, if plot_file is not set, is the root initialization
file.

The namelist syntax is the same for both:
&lat_layout_drawing
ele_shape(i) = "<ele_id>" "<shape>" "<color>" "<size>" "<label>" <draw>

<multi> <line_width>
/

&floor_plan_drawing
... same as lat_layout_drawing ...

/

For Example:
&floor_plan_drawing
! ele_id Shape Color Size Label ..etc..
ele_shape(1) = "quadrupole::q*" "box" "red" 0.75 "name"
ele_shape(2) = "quadrupole::*" "xbox" "red" 0.75 "none"
ele_shape(3) = "sbend::sb*" "box" "blue" 0.37 "none"
ele_shape(4) = "sbend::*" "box" "blue" 0.37 "none"
ele_shape(5) = "wiggler::*" "xbox" "green" 0.50 "name"
ele_shape(6) = "var::quad_k1" "circle" "purple" 0.25 "name"
ele_shape(7) = "data::orbit.x|design" "vvar_box" "orange" 0.25 "name"
ele_shape(8) = "building_wall::*" "-" "black" 0 "-"
ele_shape(3)%multi = T
ele_shape(5:6)%line_width = 5, 6

/

A figure is drawn for each lattice element in the lattice that matches the <ele_id> specification (§3.1)
of any ele_shape(:). Thus, in the example above, ele_shape(1) will match to all quadrupoles whose
name begins with “q” and ele_shape(2) will match all quadrupoles. If an element matches more than
one shape, what is drawn depends upon the setting of <multi>. If <multi> is False (the default) for the
first shape matched in the list of shapes, only this shape will be used. If <multi> is True, Tao will draw
this shape and then look for additional matches. Each time an additional match is found, the shape is
drawn and the setting of <multi> for that shape will be used to determine whether additional shapes

116 CHAPTER 9. TAO INITIALIZATION

are searched for. Thus <multi> can be use to draw, for example, a circle shape superimposed upon a
bow_tie shape.

For a floor plan, for wigglers or undulators that have an x_ray_line_len attribute (see the Bmad
manual), The X-ray line will be drawn if an ele_shape for a photon_branch is present.

Use the show plot -shape command to see the defined shapes. use the set shape command (§10.26))
to set shape parameters on the command line.

Data and variables can also be specified to be drawn by using a <ele_id> beginning with data:: for
drawing data and var:: for drawing variable locations. In the above example, it is assumed that a
quad_k1 variable array and a orbit.x data array have been setup. A circle will be drawn at each
element under control of a quad_k1 variable. For the orbit.x data, an “x” will de drawn where the data
is being evaluated but only for datums whose useit_opt parameter is True.

For floor_plan drawings, the building wall (§9.8) can be drawn by specifying an ele_shape whose
name is "building_wall::<name>" where <name> is used to match to the building wall section name.
Use “*” to for <name> to match to all names. For the building wall, the only ele_shape attribute that
is relevant is the color.

The width of a drawn shape is the width of the associated element. The exception is the "x" shape
whose width is always the same as the height determined by the <size> setting.

<size> is the half height of the shape. That is, the size transverse to the longitudinal dimension.
For lat_layout drawings, <size> = 1.0 corresponds to full scale if the default graph%y%min = -1
and graph%y%max = 1 are used. For floor_plan drawings, to determine the size of a shape, <size> is
combined with the graph parameter
floor_plan_size_is_absolute ! Default: False.

If floor_plan_size_is_absolute is False (the default), <size> is taken to be the size of the shape in
points (1 point is approximately 1 pixel). If floor_plan_size_is_absolute is True, <size> is taken
to be the size in meters. That is, if floor_plan_size_is_absolute is False, zooming in or out will not
affect the size of an element shape while if floor_plan_size_is_absolute is True then the size of an
element will scale with the zoom.

The graph%floor_plan_draw_only_first_pass logical, if set True, suppresses drawing of multipass_slave
lattice elements that are associated with the second and higher passes. This logical defaults to False.
Setting to True is only useful in some extreme circumstances where the plotting of additional passes
leads to large pdf/ps file sizes.

The overall size of all the shapes can be scaled using the plot_page (§9.10) parameters
floor_plan_shape_scale ! For floor_plan drawings. Default = 1
lat_layout_shape_scale ! For lat_layout drawings. Default = 1

The text size in both floor_plan and lat_layout plots can be scaled by using the plot_page parameter

legend_text_scale ! Default = 1

Use the show plot command to view these parameters. Use the set plot_page command to set these
parameters.

<color> is the color of the shape. Good colors to use are:
"black"
"blue"
"cyan"
"green"
"magenta"

9.10. INITIALIZING PLOTTING 117

"orange"
"purple"
"red"
"yellow"

The <line_width> parameter is an integer that specifies the width of the lines drawn. The default is 1.

The <label> indicates what type of label to print next to the corresponding element glyph. Possibilities
are:
name -- The element name (default).
none -- No label is drawn.
s -- Draw longitudinal s position.

The default is "name"

The <draw> field determines if a shape is drawn or not. The default is T. This can be useful for toggling
on and off the drawing of shapes using the set shape command (§10.26).

Note: There is an old, deprecated syntax where both the lattice layout and floor plan drawings are
specified via one element_shapes namelist.

The <shape> parameter is the shape of the figure drawn. Valid Shapes are:
"asym_var_box" -- Like var_box but is not symmetric about the center line.
"asym_vvar_box" -- Like asym_var_box except scaled to associated variable or datum.
"box" -- Rectangular box
"var_box" -- Rectangular box with variable height.

The box is symmetric about the center line.
"vvar_box" -- Like var_box except scaled to associated variable or datum.
"bow_tie" -- Bow-tie shape.
"circle" -- Circle centered at center of element.
"diamond" -- Diamond shape.
"pattern:<pattern_name>"

-- Custom curve specified by <name>.
"x" -- "X" centered at center of element
"xbox" -- Rectangular box with an x through it.

If an element’s shape is set to var_box or asym_var_box, the drawn size of the element is proportional
to the element’s magnetic or electric strength. The associated <size> setting is the multiplier used
to scale from element strength to height. For example, for a quadrupole the height is proportional to
the K1 focusing strength. The difference between var_box or asym_var_box is that with var_box the
drawn box is symmetric with respect to the centerline with a size independent of the sign of the element
strength. On the other hand, with asym_var_box, the drawn box will terminate with one side on the
centerline and the side on which it is drawn will depend upon the the sign of the element strength. Note:
Not all lattice elements can be used with a var_box or asym_var_box.

A vvar_box shape is like a var_box and a asym_vvar_box is like a asym_var_box. The difference is that
vvar_box and asym_vvar_box shapes may only be used when the <ele_id> is associated with data or
variables. That is, when the <ele_id> string starts with “data::” or “var::”. In this case, the height of
the box, instead of being proportional to the strength of the element, is proportional to the value of the
associated datum or variable. If no datum or variable component is specified in the ele_id, the model
value will be used. Thus, in the above example, where <ele_id> was set to "data::orbit.x|design",
the design value is used.

The pattern:<pattern_name> shape allows for a custom pattern to be specified. Custom patterns are
specified by a shape_pattern namelist:
&shape_pattern

118 CHAPTER 9. TAO INITIALIZATION

name = "<curve_name>"
pt(1) = <s>, <x>
pt(2) = <s>, <x>
pt(3) = ...
line%width = <line_width>
scale = "none"

/
Example:
&floor_plan_drawing
...
ele_shape(2) = "quadrupole::*" "pattern:q_pat" "red" 0.75 "none"
...

/

&shape_pattern
name = "q_pat"
pt(1) = 0, -1
pt(2) = 1, -1
pt(3) = 0.9, 1
pt(4) = 0.1, 1
pt(5) = 0, -1

/
The name of the shape_pattern namelist (in this example it is "q_pat") must match the name given
by "pattern:<pattern_name>". The pattern is specified by a number of points. Between the points, a
line segment is drawn. In the above example, the pattern is an isosceles trapezoid. When drawn, the s
coordinate is scaled so that s = 0 corresponds to the entrance end of the element and s = 1 corresponds
to the exit end. The x coordinate is scaled by the size attribute of the ele_shape.

9.10.9 Drawing a Dynamic Aperture

A dynamic_aperture drawing displays the results of the dynamic aperture calculation. Example plot
setup:
&tao_template_plot
plot%name = ’da’
plot%x%min = -20
plot%x%max = 20
plot%x%major_div_nominal = 10
plot%x%label = ’x (mm)’
plot%x_axis_type = ’phase_space’
plot%n_graph = 1

/

&tao_template_graph
graph%name = ’g1’
graph%type = ’dynamic_aperture’
graph_index = 1
graph%title = ’dynamic aperture’
graph%margin = 0.15, 0.06, 0.12, 0.12, ’%BOX’
graph%x_axis_scale_factor = 1000
graph%y%label = ’y (mm)’

9.10. INITIALIZING PLOTTING 119

Figure 9.5: Example dynamic aperture plot.

graph%y%label_offset = .2
graph%y%max = 0
graph%y%min = 0
graph%y%major_div = 4
graph%n_curve = 3
curve(1)%y_axis_scale_factor = 1000
curve(2)%y_axis_scale_factor = 1000
curve(3)%y_axis_scale_factor = 1000
curve(1)%draw_symbols = F
curve(2)%draw_symbols = F
curve(3)%draw_symbols = F
curve(3)%data_type = ’physical_aperture’
curve(3)%line%color = 2
curve(3)%line%width = 5

/
This produces the plot on Fig. 9.5. Each curve represents a single momentum calculation according to
§9.9. If there are more momenta than curves (as in this case), additional curves will automatically be
created using the styles of the previous curves. Note that apertures are calculated at element 0.

If there is a curve with %data_type set to "physical_aperture", and if there is a lattice element at
s = 0 that has an aperture set, this physical aperture will be drawn. Example: In the Bmad lattice file
define a marker element with an aperture and superimpose the marker at the beginning of the lattice:
m: marker, x_limit = 0.045, y_limit = 0.025, superimpose

Dynamic aperture curves can have the following %data_type:
’dynamic_aperture’ or ’’ ! (default) points include the reference orbit
’dynamic_aperture_centered’ ! points are centered (relative to) the reference orbit

120 CHAPTER 9. TAO INITIALIZATION

’physical_aperture’ ! draws the physical aperture based on x1_limit, etc.

9.10.10 Drawing a Histogram

A histogram drawing displays a histogram of phase space beam density. Histogram plotting is associated
with a graph by setting graph%type equal to "histogram". The concepts here are similar to phase
space plotting (§9.10.13). An example is shown in Fig. 9.6, using the example histogram template:
&tao_template_plot
plot%name = ’zhist’
plot%x%min = -6
plot%x%max = 6
plot%x%label = ’z (mm)’
plot%n_graph = 1

/

&tao_template_graph
graph_index = 1
graph%name = ’z’
graph%type = ’histogram’
graph%box = 1, 1, 1, 1
graph%title = ’Bunch Histogram: Z’
graph%margin = 0.15, 0.06, 0.12, 0.12, ’%BOX’
graph%y%label = ’Current (A)’
graph%n_curve = 1
graph%y%label_offset = .1
graph%x_axis_scale_factor = 1000.00 !m->mm

curve1%hist%density_normalized = T
curve1%hist%weight_by_charge = T
curve1%hist%number = 100
curve1%line%color = 4
curve1%line%pattern = 2
curve1%y_axis_scale_factor = 299792458 !Q/m * c_light
curve1%data_type = ’z’
curve1%data_source = ’beam_tracking’
curve1%ele_ref_name = "BEGINNING"
curve1%symbol%type = 1

/
For a "histogram" type graph, curve%data_type determines what coordinate is plotted along the x-axis.
Valid curve%data_type values are:
"x"
"px"
"y"
"py"
"z"
"pz"
"intensity" -- Photon total intensity
"intensity_x" -- Photon intensity along x-axis
"intensity_y" -- Photon intensity along y-axis
"phase_x" -- Photon phase along x-axis
"phase_y" -- Photon phase along y-axis

9.10. INITIALIZING PLOTTING 121

Figure 9.6: Example histogram plot.

In this example above, the x-axis of the plot will correspond to the z phase space coordinate.

The maximum and minimum of the bins is set automatically to fit the data. The curve%hist%number
establishes the number of bins. Alternatively, if curve%hist%number = 0, then curve%hist%width
establishes the width of the histogram bins and sets the number automatically.

If curve%hist%density_normalized = T, then the height of a bin will be divided by its width. If
curve%hist%weight_by_charge = T, then the particle charge will be used to bin, otherwise the particle
count will be used to bin.

The curve%hist%center will insure that a bin will be centered at this location.

To change the place in the lattice where the data for the histogram is evaluated, use the set curve
ele_ref_name or set curve ix_ele_ref commands.

If graph%type is "histogram" then curve%data_source must be either:
"beam"
"multi_turn_orbit"

"beam" indicates that the points of the histogram plot will be obtained correspond to the positions of
the particles within a tracked beam. multi_turn_orbit" is used for rings where a single particle is
tracked multiple turns and the position of this particle is recorded each turn. In this case, a d2_data
structure must have been set up to hold the turn–by–turn orbit. This d2_data structure must be called
multi_turn_orbit and must have d1_data data arrays for the histogram planes to be plotted. For
example, if the histogram plot is x versus px, then there must be d1_data arrays named "x" and "px".
The number of turns is determined by the setting of ix_max_data in the tao_d1_data namelist (§9.7).

9.10.11 Drawing the Beam Chamber Wall

If a beam chamber wall has been defined in the lattice file, This wall can be drawn in a curve by setting
curve%type to "beam_chamber_wall".

Beam chamber walls are drawn, like a lat_layout, on a one dimensional line as a function of longitudinal
position along the machine centerline.

Note: Use the command show ele -wall to print information about the beam chamber wall for a

122 CHAPTER 9. TAO INITIALIZATION

(a) Horizontal phase space (b) Longitudinal phase space

Figure 9.7: Example Phase Space plot, with points colored by the pz coordinate.

particular element.

9.10.12 Drawing a Key Table

The key table is explained more fully in Section §11.1. An example is shown in Figure 9.3. A template
to create a key table looks like:
&tao_template_plot
plot%name = "table"
plot%n_graph = 1

/

&tao_template_graph
graph%type = "key_table"
graph_index = 1
graph%n_curve = 0

/
The number in the upper left corner, to the left of the first column, (1 in Fig. 9.3) shows the active key
bank. The columns in the Key Table are:
Ix ! Key index.
Name ! Element name whose attribute is bound.
Attrib ! Name of the element attribute that is bound.
Value ! Current value of bound attribute.
Value0 ! Initial value of bound attribute.
Delta ! Change in value when the appropriate key is pressed.
Uni ! Universe that contains the element.
Opt ! Shows if bound attribute is used in an optimization.

Note that in a Lattice Layout, if a displayed element has a bound attribute, then the key index number
will be displayed just above the element’s glyph.

The key_table is drawn with respect to the upper left hand corner of the region in which it is placed.

9.10.13 Phase Space Plotting

A phase space plot displays a particle or particles phase space coordinates at a given location. Phase
space plotting is associated with a graph by setting graph%type equal to "phase_space". The concepts

9.10. INITIALIZING PLOTTING 123

here are similar to data plotting (§9.10.3). An example is show in Figure 9.7. Example Phase Space
template:
&tao_template_plot
plot%name = "xphase"
plot%x%min = -2.5
plot%x%max = 0.5
plot%x%label = "x (mm)"
plot%n_graph = 1

/

&tao_template_graph
graph_index = 1
graph%name = "x"
graph%type = "phase_space"
graph%box = 1, 1, 1, 1
graph%title = "X-Px"
graph%margin = 0.15, 0.06, 0.12, 0.12, "%BOX"
graph%x_axis_scale_factor = 1000.00 !m->mm
graph%y%label = "p\dx\u/p\d0\u (mrad)"
graph%y%major_div = 4
graph%n_curve = 1
graph%y%label_offset=.4
curve(1)%data_type = "x-px"
curve(1)%y_axis_scale_factor = 1000 !rad->mrad
curve(1)%data_source = "beam_tracking"
curve(1)%ele_ref_name = "END"
curve(1)%symbol%type = 1
curve(1)%data_type_z = "pz"
curve(1)%use_z_color = T
/

For a "phase_space" type graph, curve%data_type_x determines what phase space coordinate is plotted
along the x-axis and curve%data_type determines what phase space coordinate is plotted along the y-
axis. The phase space coordinates are:
"x"
"px"
"y"
"py"
"z"
"pz"
"intensity" -- Photon total intensity
"intensity_x" -- Photon intensity along x-axis
"intensity_y" -- Photon intensity along y-axis
"phase_x" -- Photon phase along x-axis
"phase_y" -- Photon phase along y-axis

In this example above, the x-axis of the plot will correspond to the z phase space coordinate and the
pz-axis will correspond to the px coordinate.

To change the place in the lattice where the data for the phase_space curve is evaluated, use the set
curve ele_ref_name or set curve ix_ele_ref commands.

Points can be colored by another phase space coordinate by activating use_z_color = T. The available
curve options and defaults are:

124 CHAPTER 9. TAO INITIALIZATION

use_z_color = F
data_type_z = ""
z_color0 = 0
z_color1 = 0
autoscale_z_color = T

These can be the init file, or in Tao using the set curve command. The data_type_z can be set to any
of the available phase space coordinates. z_color0 and z_color1 specify the minimum and maximum
of this coordinate to be used in the color range. Values above or below this range will be colored Black
or Grey, respectively. If autoscale_z_color=T, then these will be set automatically based on the limits
of the data_type_z coordinate.

If graph%type is "phase_space" then curve%data_source must be either:
"beam"
"multi_turn_orbit"
"twiss"

"beam" indicates that the points of the phase space plot will be obtained correspond to the positions
of the particles within a tracked beam. multi_turn_orbit" is used for rings where a single particle is
tracked multiple turns and the position of this particle is recorded each turn. In this case, a d2_data
structure must have been set up to hold the turn–by–turn orbit. This d2_data structure must be called
multi_turn_orbit and must have d1_data data arrays for the phase space planes to be plotted. For
example, if the phase space plot is x versus px, then there must be d1_data arrays named "x" and "px".
The number of turns is determined by the setting of ix_max_data in the tao_d1_data namelist (§9.7).
Using "twiss" as the curve%data_source indicates that the phase space plot will be an ellipse whose
shape is based upon the Twiss and coupling parameters, and the normal mode emittances. If the normal
mode emittances have not been computed then a nominal value of 1e-6 m-rad is used.

Chapter 10

Tao Commands

Tao has two modes for entering commands. In Line Mode, described in this chapter, Tao waits until the
return key is depressed to execute a command. That is, a command consists of a single line of input.
Conversely, Single Mode, which is described in Chapter §11, interprets each keystroke as a command.
Single Mode is useful for quickly varying parameters to see how they affect a lattice but the number
of commands in Single Mode is limited. To put Tao into single mode use the single_mode command
(§10.28).

Commands are case sensitive. The list of commands is shown in Table 10.1. Multiple commands may
be entered on one line using the semicolon “;” character as a separator. [However, a semicolon used
as as part of an alias (§10.1) definition is part of that definition.] An exclamation mark “!” denotes
the beginning of a comment and the exclamation mark and everything after it to the end of the line is
ignored. Example:
set default uni = 2; show global ! Two commands and a comment

This chapter uses the following special characters to define the command line syntax:
{} ! Identifies an optional argument.

! Arguments now enclosed in brackets are required
<> ! Indicates a non-literal argument.

Example:
change {-silent} variable <name>[<locations>] <number>

Here the -silent argument is optional while the variable argument is mandatory. Appropriate values
for <name>, <locations>, and <number> must be substituted. A possible
change var steering[34:36] @1e-3 ! set the steering strength #34-36 to 0.001

When running Tao, use the help (§10.11) command to show documentation on any command. For
example, help plot will show documentation on the plot command.

125

126 CHAPTER 10. TAO COMMANDS

Command Section Command Section

alias §10.1 re_execute §10.20
call §10.2 read §10.21
change §10.3 restore §10.22
clip §10.4 reinitialize §10.23
continue §10.5 run_optimizer §10.24
derivative §10.9 scale §10.25
do, enddo §10.6 set §10.26
end_file §10.7 show §10.27
exit §10.8 single_mode §10.28
flatten §10.10 spawn §10.29
help §10.11 timer §10.30
misalign §10.12 use §10.31
pause §10.13 veto §10.32
place §10.14 wave §10.33
plot §10.15 write §10.34
ptc §10.16 x_axis §10.35
python §10.17 x_scale §10.36
quiet §10.18 xy_scale §10.37
quit §10.19

Table 10.1: Table of Tao commands.

10.1 alias

The alias command defines command shortcuts. Format:
alias {<alias_name> <string>}

Alias is like Unix aliases. Using the alias command without any arguments results in a printout of
the aliases that have been defined. When using an alias up to 9 arguments may be substituted in the
<string>. The ith argument is substituted in place of the sub-string “[[i]]” or “[<i>]”. Arguments that
do not have a corresponding “[[i]]” or “[<i>]” are placed at the end of <string>. The difference between
“[[i]]” and “[<i>]” is that “[[i]]” is a required argument while “[<i>]” defines an optional argument. For
example
alias aaa show element [[1]] [[2]]
alias zzz show element [[1]] [<2>]

This defines “aaa” as an alias for the show element command with two required arguments while “zzz”
has only one requred argument.

Aliases can be set up for multiple commands using semicolons.

Examples:
alias xyzzy plot [[1]] model ! Define xyzzy
alias ! Show all aliases
xyzzy top ! Use an alias
plot top model ! Equivalent to "xyzzy top"
xyzzy top abc ! Equivalent to "plot top model abc"
alias foo show uni; show top ! "foo" equivalent to "show uni; show top"

In the above example “xyzzy” is the alias for the string “plot [[1]] model”. When the command xyzzy is
used “top” is substituted for “[[1]]” in the string.

10.2. CALL 127

10.2 call

The call command opens a command file (§1.7) and executes the commands in it. Format:

call <filename> {<arg_list>}

call -ptc <filename>

The call command without -ptc is for running a set of Tao commands. Up to 9 arguments may be
passed to the command file. The ith argument is substituted in place of the string “[[i]]” in the file.
Nesting of command files (command files calling other command files) is allowed. There is no limit to
the number of nested files. See Section §1.7 for more details.

The call -ptc command passes the command file to PTC for processing. Previous to such a call, the
command ptc init must be issued.

If the command file has the quiet command in it, output to the terminal is suppressed (but only for
the duration of the execution of the file).

If a command file calls another command file, and the name of the second command file has a relative
(as oposed to absolute) path name, Tao will look for the second command file relative to the directory of
the first command file. To have Tao look relative to your current working directory (where you started
Tao), use the prefix $PWD/. For example, to call a command file that is one level up from your current
working directory use
call $PWD/../second.cmd

Command loops can be implemented in a command file. See Section §10.6 for more details.

Other useful commands to put in a command file to speed up execution are:
set global lattice_calc_on = F ! Stop lattice calculations (§2.6).
set global plot_on = F ! Halt replotting

If set then at the end of the command file these logicals should be toggled back to True.

To suppress the output when running a command file use the command:
set global silent_run = T

Note: silent_run is automatically set to False at the end when a command file exits back to the
command line level.

Examples:
call my_cmd_file abc def

In the above example the argument “abc” is substituted for any “[[1]]” appearing the file and “def” is
substituted for any “[[2]]”.

10.3 change

The change command changes element attribute values or variable values in the model lattice. Format:

change element <element_list> <attribute> {prefix>} <number>
change {-silent} variable <name>[<locations>] {<prefix>} <number>
change {n@}particle_start <coordinate> {prefix>} <number>

128 CHAPTER 10. TAO COMMANDS

The change is used for changing real (as opposed to integer or logical) parameters. Also see the set
command (§10.26) which is more general.

If <prefix> is not present, <number> is added to the existing value of the attribute or variable. That
is:
final_model_value = initial_model_value + <number>

If <prefix> is present, it may be one of
@ final_model_value = <number>
d final_model_value = design_value + <number>
% final_model_value = initial_model_value * (1 + <number> / 100)

Element list format (§3.1), without any embedded blanks, is used for the <element_list> argument.

For change particle_start, The optional n@ universe specification (§2.3) may be used to specify the
universe or universes to apply the change command to.

For lattices with an open geometry, change particle_start <coordinate> <number> can be used to
vary the starting coordinates for single particle tracking. If the use_particle_start_for_center of
the beam_init structure (§9.5) is set to True, particle_start will also vary the centroid coordinates
for beam tracking. Here <coordinate> is one of:
x, px, y, py, z, pz, t

For photons, <coordinate> may also be:
field_x, field_y, phase_x, phase_y

For closed lattices only the pz component is applicable. For lattices that have an e_gun (which necessarily
implies that the lattice has an open geometry), the time t coordinate must be varied instead of pz.

For open lattices, change element beginning <twiss> can be used to vary the starting Twiss param-
eters where <twiss> is one of:
beta_a, beta_b, alpha_a, alpha_b
eta_a, eta_b,etap_a, etap_b

The -silent switch, if present, suppresses the printing of what variables are changed.

Examples:
change ele 3@124 x_offset 0.1 ! Offset element #124 in universe 3 by 0.1
change ele 1,3:5 x_offset 0.1 ! Offset elements 1, 3, 4, and 5 by 0.1
change ele q* k1 d 1.2e-2 ! Set the k1 strength of all elements starting with

! the letter "q" relative to the design
change ele quadrupole::* k1 d 1.2e-2 ! Set the k1 strength of all quadrupole elements.
change var steering[34:36] @1e-3 ! set the steering strength #34-36 to 0.001
change var steering[*] %10 ! vary all steering strengths by 10%
change 2@particle_start x @0.001 ! set beginning x position in universe 2 to 1 mm.

10.4 clip

The clip command vetoes data points for plotting and optimizing. That is, the good_user logical of
the data associated with the out-of-bound plotted points are set to False. Format:
clip {-gang} {<where> {<limit1> {<limit2>}}}

Which graphs are clipped is determined by the <where> switch. If <where> is not present, all graphs
are clipped. If where is a plot name, then all the graphs of that plot are clipped. If where is the name

10.5. CONTINUE 129

of a d2_data (for example, orbit) or a d1_data (for example, orbit.x) structure, then those graphs
that display this data are clipped.

The points that are clipped those points whose y values are outside a certain range defined by <limit1>
and <limit2>. If neither <limit1> nor <limit2> are present, the clip range is taken to be outside
the graph minimum and maximum y–axis values. If only <limit1> is present then the clip range is
outside the region from -<limit1> to +<limit1>. If both are present than the range is from <limit1>
to <limit2>.

The -gang switch is apply a clip to corresponding data in a d2_data structure. For example

clip -g orbit.x ! Clips both orbit.x and orbit.y

Here the orbit.x data is clipped and the corresponding data in orbit.y is also vetoed. For example, if
datum number 23 in orbit.x is clipped, datum number 23 in orbit.y will be vetoed.

Examples:

clip top.x -3 7 ! Clip the curves in the x graph in the region named "top".
clip bottom ! Clip the graphs in the "bottom" region
clip -g orbit.x ! Clip the orbit.x graph and also veto corresponding points

! in other graphs of the orbit plot.

10.5 continue

The continue command is used to continue reading of a suspended command file (§1.7) after a pause
command (s:pause). Format:

continue

10.6 do, enddo

Command loops can be implemented in a command file files. Format:

do <var> = <l_bound>, <u_bound> {, <incr>}
... ! use the syntax ‘‘[[<var>]]’’ to refer to a variable.

enddo

Note: “enddo” is one word and my not be split into two words. Loops can be nested and the number of
levels is not unlimited.

A loop will execute the code in between the do and enddo lines a certain number of times. Each time
trough the the the integer variable <var> will be incremented by <incr>, starting at <l_bound> and
stopping before <var> is greater than <u_bound>. If <incr> is not present, the increment will be 1.
Note: <l_bound>, <u_bound>, and <incr> must all be integers.

Example:

do j = 0, 10, 2
set particle_start pz = 1e-3 * [[j]]
...

enddo

As shown in the above example, to refer to a loop variable in a command, use the syntax “[[<var>]]”.

130 CHAPTER 10. TAO COMMANDS

10.7 end_file

The end_file command is used in command files (§1.7) to signal the end of the file. Everything after
an end_file command is ignored. An end_file command entered at the command line will simply
generate an error message. Format:
end_file

10.8 exit

The exit command exits the program. Same as Quit. Format:
exit

10.9 derivative

The derivative command calculates the dModel_Data/dVar derivative matrix needed for the lm opti-
mizer. Format:
derivative

10.10 flatten

The Flatten command runs the optimizer to minimize the merit function. This is the same as the
run_optimizer command. See the run_optimizer command for more details. Format:
flatten {<optimizer>}

10.11 help

The help command gives help on Tao commands. Format:
help {<command> {<subcommand>}}

The help command without any arguments gives a list of all commands. Some commands, like show,
are so large that help on these commands is divided up by their subcommand.

Examples:
help ! Gives list of commands.
help run ! Gives help on the run_optimizer command.
help show ! Help on the show command.
help show alias ! Help on the show alias command.

Note: The help command works by parsing the file $TAO_DIR/doc/command-list.tex which is the
LaTeX file for the Tao Commands chapter of the Tao manual. Thus, for the help command to work
properly, the environmental variable TAO_DIR must be appropriately defined. Generally, TAO_DIR will
be defined if the appropriate setup script has been run. For “Distributions”, this is the same setup script
used to setup a distribution. See your local Bmad guru for details.

10.12. MISALIGN 131

10.12 misalign

The misalign command misaligns a set of lattice elements. Format:
misalign <wrt> <ele_type> <range> <ele_attrib> <misalign_value>

<ele_type> is the type of element to misalign. Only elements of type <ele_type> will be misaligned
within the range. If <ele_type> begins with "*@" then choose all universes. If <ele_type> begin with
"n@" then choose universe n. Otherwise the default universe (§2.3)) is used.

A lattice element will only be misaligned if its lattice index falls within a range given by <range>.
<range> is of the form nnn:mmm or the word ALL.

The element attribute <ele_attrib> is “misaligned” by the rms value <misalign_value> with respect
to the setting of <wrt>. Any element attribute can be misaligned provided the attribute is free to vary.

If <misalign_value> is prepended by ’x’ then the misalignment value will be a relative misalignment
with respect to the <wrt> value. Otherwise, it’s an absolute rms value about the <wrt> value.

In the special case where sbend strengths are misaligned then use <ele_attrib> = g_err. However, if
a relative error is specified it will be relative to ’g’.

The possible values of <wrt> are:
wrt_model ! Misalign about the current model value
wrt_design ! Misalign about the design value
wrt_survey ! Misalign about the zero value

Examples
! The following will misalign all quadrupole vertical positions in the default
! universe within the lattice element range 100:250 with respect to the zero
! value by 300 microns
misalign wrt_survey quadrupole 100:250 y_offset 300e-6
! The following will misalign all quadrupole strengths in all universes for
! the entire lattice with respect to the design value by 1%.
misalign wrt_design *@quadrupole ALL k1 x0.01

10.13 pause

The pause command is used to pause Tao when executing a command file (§1.7). Format:
pause {<time>} ! Pause time in seconds.

If <time> is not present or zero, Tao will pause until the CR key is pressed. Once the CR key is pressed,
the command file will be resumed. If <time> is negative, Tao will suspend the command file. Commands
can now be issued from the keyboard and the command file will be resumed when a continue command
(§10.5) is issued. Multiple command files can be simultaneously suspended. Thus, while one command
file is suspended, a second command file can be run and this command file too can be suspended. A
continue command will resume the second command file and when that command file ends, another
continue command will be needed to complete the first suspended command file. Use the show global
command to see the number of suspended command files.

Example:
pause 1.5 ! Pause for 1.5 seconds.
pause -1 ! Suspend the command file until a continue

! command is issued.

132 CHAPTER 10. TAO COMMANDS

10.14 place

The place command is used to associate a <template> plot with a <region> and thus create a visible
plot in that region. Format:
place <region> <template>
place <region> none
place * none

To erase a plot from a region use none in place of a template name. Notice that by using multiple place
commands a template can be associated with more than one region. place * none will erase all plots.

Examples:
place top orbit ! place the orbit template in the top region
place top none ! erase any plots in the top region

10.15 plot

The plot command is used to determine what “components” (§9.10.3) are plotted in the specified graphs
or plots. Format:
plot <plot_or_graph> <component>

components are a property of a graph (or curve) so when <plot_or_graph> specifies a plot, all the
graphs associated with the plot are assigned the <component>.

Note: The plot command is a shortcut for the commands:
set plot <plot_name> component = <component> ! and
set graph <graph_name> component = <component>

Also see the set curve command.

Use a “-” for baselines.

Examples:
plot bottom.g1 model - design ! Plot model - design in the g1 graph of the bottom region
plot top meas - model + design - ref ! Set the components for the graphs in the top region.

10.16 ptc

The ptc command is used manipulating PTC layouts associated with Bmad lattices. Format:
ptc init ! Init associated PTC layout.

The ptc init command must be run before running any other ptc command is used.

Also see:
call -ptc <file> ! Run a PTC script
read ptc ! Read a PTC lattice
write ptc ! Write a PTC lattice

Examples:
ptc init

10.17. PYTHON 133

10.17 python

The python command is like the show command in that the python command prints information to the
terminal. The difference is that the output from the show command is meant for viewing by the user
while the output of the python command is meant for easy parsing. Format:
python {-append <file_name>} {-noprint} <what_to_print>
python {-write <file_name>} {-noprint} <what_to_print>

The python command has -append and -write optional arguments which can be used to write the
results to a file. The python -append command will appended to the output file. The python -write
command will first erase the contents of the output file. Example:
python -write d2.dat data_d2 ! Write to file "d2.dat"

The -noprint option suppresses printing and is useful when writing large amounts of data to a file. The
python command can be used to pass information to a parent process when Tao is run as a subprocess.
The parent process may be any scripting program like Python, Perl, Tcl, etc. In particular, see §12 for
details on how to run Tao as a Python subprocess.

For long term maintainability of python scripts, the advantage of using the python command in the
scripts over the show command comes from the fact that the output syntax of the show command can
(and does) change.

For further documentation on the python command, please look at the file tao/code/tao_python.f90.

Note: At this point in time, the python command is still in development. Please contact David Sagan
if needed.

10.18 quiet

Format:
quiet

The quiet command can only be used in command files (§10.2). When placed in a command file, output
to the terminal is suppressed (but only from the quiet command for the duration of the execution of
the file).

Other useful commands to put in a command file are to speed up execution are:
set global lattice_calc_on = F ! Stop lattice calculations
set global plot_on = F ! Halt replotting

If set, at the end of the command file these logicals should be toggled back to True.

10.19 quit

Quit exits the program. Same as exit. Format:
quit

10.20 re_execute

The re_execute command reruns prior commands. Format:

134 CHAPTER 10. TAO COMMANDS

re_execute <index> ! Re-execute a command with the given index number.
re_execute <string> ! Re-execute last command that begins with <string>.

Every Tao command entered is recorded in a “history stack”. These commands can be viewed using the
show history command. The show history command will also display the index number associated
with each command.

Note: The up and down arrow keys on the keyboard can be used to scroll through the command history
stack.

Examples

re_exe 34 ! Re-execute command number 34.
re_exe set ! Re-execute last ‘‘set’’ command.

10.21 read

The read command is used to modify the (Bmad) model lattice or the associated PTC lattice. Format:

read lattice <file_name>
read ptc {-old} <file_name>

With the read lattice command, the model lattice contained in the default universe (§2.3) is modified
using a “secondary” lattice file. [See the Bmad manual for the definition of secondary.]

For example, with the appropriate file, the read command can be used to misalign the lattice elements.
The input file must be in Bmad standard lattice format.

Note: Due to bookkeeping complications, the number of lattice elements may not be modified. If it is
desired to initiate Tao using both “primary” and secondary lattice files, this can be done as illustrated
in §9.3.

The read ptc command reads in a PTC lattice. WARNING: This command is untested. Please contact
David Sagan if you want to use it.

10.22 restore

The restore command cancels data or variable vetoes. Format:

restore data <data_name> <locations>
restore var <var_name> <locations>

See also the use and veto commands.

Examples:

restore data orbit.x[23,34:56] ! un-veto orbit.x 23 and 34 through 56.
restore data orbit.x[23,34:56:2] ! un-veto orbit.x 23 and even data between 34

! and 56
restore data *@orbit[34] ! un-veto orbit data in all universes.
restore var quad_k1[67] ! un-veto variable

10.23. REINITIALIZE 135

10.23 reinitialize

The reinitialize command reinitializes various things. Format:
reinitialize beam
reinitialize data
reinitialize tao {command line optional arguments}

The reinitialize beam command reinitializes the beam at the start of the lattice. That is, a new
random distribution is generated. Note: This also reinitializes the model data.

reinitialize data forces a recalculation of the model data. Normally, a recalculation is done auto-
matically when any lattice parameter is changed so this command is generally only useful for debugging
purposes.

reinitializes tao reinitializes Tao. This can be useful to reset everything to initial conditions or
to perform analysis with more than one initialization file. See section §1.3 for a list of the optional
arguments. If an argument is not set, the reinitialize command uses the same argument value that
were used in the last reinitialize command, or, if this is the first reinitialization, what was used to
start Tao.

Examples:
reinit tao ! Reinit using previous arguments
reinit tao -init tao_special.init ! Reinitializes Tao with the initialization file

! tao_special.init

10.24 run_optimizer

The run_optimizer command runs an optimizer. Format:
run_optimizer {<optimizer>}

If <optimizer> is not given then the default optimizer is used. Use the show optimizer (§10.27.23)
command to see optimizer parameters. To stop the optimizer before it is finished press the period “.”
key. If you want the optimizer to run forever run the optimizer in single mode. Valid optimizers are:
custom ! Used when a custom optimizer has been implemented (§13).
de ! Differential Evolution (good for global optimizations).
geodesic_lm ! ‘‘Geodesic’’ Levenburg-Marquardt (good for local optimizations).
lm ! Levenburg-Marquardt from Numerical Recipes
lmdif ! Levenburg-Marquardt (good for local optimizations).
svd ! svd optimizer (good for local optimizations).

See Chapter §7 for details on how Tao structures optimization and for more details on the different
optimizers.

Examples:
run ! Run the default optimizer
run de ! Run the de optimizer

10.25 scale

The scale command scales the vertical axis of a graph or set of graphs. Format:

136 CHAPTER 10. TAO COMMANDS

scale {-y} {-y2} {-gang} {-nogang} {<where>} {<value1> }<value2>}}}

Which graphs are scaled is determined by the <where> switch. If <where> is not present or <where> is
all then all graphs are scaled. <where> can be a plot name or the name of an individual graph withing
a plot.

scale adjusts the vertical scale of graphs. If neither <value1> nor <value2> is present then an
autoscale is performed and the scale is adjusted so that all the data points are within the graph
region. If an autoscale is performed upon an entire plot, and if plot%autoscale_gang_y (§9.10.2) is
True, then the chosen scales will be the same for all graphs. That is, a single scale is calculated so that
all the data of all the graphs is within the plot region. The affect of plot%autoscale_gang_y can be
overridden by using the -gang or -nogang switches.

If only <value1> is present then the scale is taken to be from -<value1> to +<value1>. If both are
present than the scale is from <value1> to <value2>.

A graph can have a y2 (left) axis scale that is separate from the y (right) axis. Normally, the scale
command will scale both axes. Scaling of just one of these axes can be achieved by using the -y or -y2
switches.

Examples:
scale top.x -3 7 ! Scale the x graph in the top region
scale -y2 top.x ! Scale only the y2 axis of the top.x graph.
scale bottom ! Autoscale the graphs of the plot in the bottom region
scale ! Scale everything

10.26 set

The set command is used to set values for data, variables, etc. Subcommands are:
set beam {n@}<component> = <value> ! §10.26.1
set beam_init {n@}<component> = <value> ! §10.26.2
set bmad_com <component> = <value> ! §10.26.3
set branch <branch> <component> = <value> ! §10.26.4
set csr_param <component> = <value> ! §10.26.5
set curve <curve> <component> = <value> ! §10.26.6
set data <data_name>|<component> = <value> ! §10.26.7
set default <parameter> = <value> ! §10.26.8
set element <element_list> <attribute> = <value> ! §10.26.9
set floor_plan <component> = <value> ! §10.26.10
set geodesic_lm <component> = <value> ! §10.26.11
set global <component> = <value> ! §10.26.12
set graph <graph> <component> = <value> ! §10.26.13
set key <key> = <command> ! §10.26.14
set lat_layout <component> = <value> ! §10.26.15
set lattice {n@}<destination_lat> = <source_lat> ! §10.26.16
set opti_de_param <component> = <value> ! §10.26.17
set particle_start {n@}<coordinate> = <value> ! §10.26.18
set plot <plot> <parameter> = <value> ! §10.26.19
set plot_page <parameter> = <value1> {<value2>} ! §10.26.20
set ran_state = <random_number_generator_state> ! §10.26.21
set symbolic_number <name> = <value> ! §10.26.22

10.26. SET 137

set universe <what_universe> <on/off> ! §10.26.23
set universe <what_universe> recalculate ! §10.26.23
set universe <what_universe> twiss_calc <on/off> ! §10.26.23
set universe <what_universe> track_calc <on/off> ! §10.26.23
set variable <var_name>|<component> = <value> ! §10.26.24
set wave <component> = <value> ! §10.26.25

When running Tao, to see documentation on any of the subcommands, use the help set <subcommand>
command. For example, help set element will show information on the set element subcommand.

Also see the change command (§10.3). The change command is specialized for varying real parameters
while the set command is more general.

Note: The show command (§10.27) is able to display the settings of many variables that can be set by
the set command.

To apply a set to all data or variable classes use “*” in place of <data_name> or var_name.

To set the prompt color, use the command
set global prompt_color = <value>

Where <value> may be one of:
’BLACK’
’RED’
’GREEN’
’YELLOW’
’BLUE’
’MAGENTA’
’CYAN’
’GRAY’
’DEFAULT’ ! Default foreground color

10.26.1 set beam

Format:
set beam {n@}<component> = <value>
set beam {n@}beginning = <ele-name>
set beam {n@}add_saved_at = <ele-list>
set beam {n@}subtract_saved_at = <ele-list>

The set beam command sets beam parameters such as the initial and final tracking positions. Use the
show beam command (§10.27) to see the current values.

For the set beam beginning <ele-name> command, the element specified by <ele-name> must be an
element where particle positions of the tracked beam have been stored. With this command, the initial
distribution of the beam at the beginning of the lattice will be set to the distribution at the indicated
element. This is useful to track the beam over many turns.

The set beam {n@}add_saved_at command adds to the list of elements where the beam distribution
is saved at.

The set beam {n@}subtract_saved_at command subtracts from the list of elements where the beam
distribution is saved at.

The optional n@ allows the specification of the universe or universes the set is applied to. The current
default universe (§2.3) will be used if no universe is given.

138 CHAPTER 10. TAO COMMANDS

Also see the commands: set beam_init and set particle_start.

Examples:
set beam 2@track_start = q10w ! Set the tracking start at element Q10W in universe 2.
set beam saved_at = "Q*, B*" ! Save beam parameters (sigma matrix, etc.) at elements

! whose names begin with "Q" or "B".
set beam add_saved_at = S10 ! Save beam parameters at element "S10" as well.
set beam beginning = end ! Set the initial beam distribution equal to the distribution at

! the lattice element named "end".

10.26.2 set beam_init

Format:
set beam_init {n@}<component> = <value>

The set beam_init command sets components of the beam_init structure (§9.5). Additionally, the
set beam_init command can set the parameters (§9.5)
beam_track_start and
beam_track_end

The optional n@ allows the specification of the universe or universes the set is applied to. The current
default universe (§2.3) will be used if no universe is given.

Use the show beam command (§10.27) to see the current values.

Also see the commands: set beam and set particle_start.

Examples:
set beam_init 3@center(2) = 0.004 ! Set px center of beam for universe 3.
set beam_init [1,2]@sig_e = 0.02 ! Set sig_e for universes 1 and 2.
set beam_init beam_track_end = q10w ! Set beam_track_end parameter.

10.26.3 set bmad_com

Format:
set bmad_com <component> = <value>

For set bmad_com: The show global command will give a list of <component>s.

Example:
set bmad_com radiation_fluctuations_on = T ! Turn on synchrotron radiation fluctuations.

10.26.4 set branch

Format:
set branch <branch> <component> = <value>

Sets parameters associated with a lattice branch. Use the show branch command to see the various
parameters that can be set. <branch> may be the branch index or branch name. <branch> may also
contain an optional n@ prefix to specify a particular universe to apply the set to. The default is to only
set the current viewed universe.

Examples:
set branch 2@0 live_branch = F ! Suppress calculations for branch # 0 of universe 2.
set branch a_line geometry = open ! Open geometry for branch named a_line.
set branch default_tracking_species = positron

! Set the tracking species to positron.

10.26. SET 139

10.26.5 set csr_param

Format:
set csr_param <component> = <value>

Sets coherent synchrotron radiation parameters. Use the show global -csr_param command to see a
list of <component>s.

Example:
set csr_param n_bin = 30 ! Set number of bins used in the csr calc.

10.26.6 set curve

Format:
set curve <curve> <component> = <value>

For set curve, the <component>s that can be set are:
ele_ref_name = <string> ! Name of reference element
component = <string> ! §9.10.3
ix_branch = <number> ! Branch index.
ix_bunch = <number> ! Bunch index.
ix_ele_ref = <number> ! Index of reference element
ix_universe = <number> ! Universe index.
symbol_every = <number> ! Symbol skip number.
y_axis_scale_factor = <number> ! Scaling of y axis
draw_line = <logical>
draw_symbols = <logical>
draw_symbol_index = <logical>

See Section §9.10.2 for a description of these attributes. Use the show curve (§10.27) to see the settings
of the attributes.

Examples:
set curve top.x.c1 ix_universe = 2 ! Set universe number for curve

10.26.7 set data

Format:
set data <data_name>|<component> = <value>

For set data, the <component>s that can be set are:
base ! Base model value
design ! Design model value
meas ! Measured data value.
ref ! Reference data value.
weight ! Weight for the merit function.
exists ! Valid datum for computations?
good_meas ! A valid measurement has been taken?
good_ref ! A valid reference measurement has been taken?
good_opt ! Good for using in the merit function for optimization?
good_plot ! Good for using in a plot?
good_user ! This is what is set by the use, veto, and restore commands.
merit_type ! How merit contribution is calculated.

Besides a numeric value <value> can be any of the above along with:

140 CHAPTER 10. TAO COMMANDS

meas ! Measured data value.
Examples:
set data *|ref = *|meas ! Set ref data = measured in current universe.
set data 2@orbit.x|base = 2@orbit.x|model

! Set the base orbit.x in universe 2 to model
set data beta.x[10]|weight = 1e-5 ! Set weight of datum.

10.26.8 set default

Format:
set default <parameter> = <value>

The parameters that can be set are:
branch ! See: §2.4
universe ! See: §2.3

Use the show global (§10.27) command to see the current default values.

Example:
set default universe = 3

10.26.9 set element

Format:
set element <element_list> <attribute> = <value>

The set element command sets the attributes of an element. Use the show element command to view
the attributes of an element.

Note: If an element in the <element_list> does not specify a universe or universes, only the element
in the viewed universe is used. See the examples below.

Note: It is also possible to use the change element command to change real (as opposed to logical or
integer) attributes.

Examples:
set ele rfcav::* is_on = F ! Turn off all rfcavity elements the viewed universe.
set ele *@rfcav::* is_on = F ! Turn off all rfcavity elements in all universes.
set ele A:B track_method = linear ! Set tracking_method for all elements between

! elements A and B
set ele q10w k1 = 0.7 ! Set element q10w k1 of the viewed universe.

10.26.10 set floor_plan

Format:
set floor_plan <component> = <value>

Sets parameters for floor_plan plots (§9.10.8). Possible <components> are:
<shape_name>%<shape_component>
draw_beam_chamber_wall
beam_chamber_wall_scale

Where <ele_shape_name> is of the form “shape<n>” where <n> is the index of the ele_shape in
the floor_plan_drawing namelist. Use “show plot -floor_plan” to see the current state of the
floor_plan parameters

Example:
set floor_plan shape2%draw = F ! Veto drawing of ele_shape(2)
set floor_plan beam_chamber_scale = 0.5

10.26. SET 141

10.26.11 set geodesic_lm

Format:
set geodesic_lm <component> = <value>

For set geodesic_lm: The show optimizer geodesic_lm command will give a list of <component>s.

Example:
set geodesic_lm imethod = 10

10.26.12 set global

Format:
set global <component> = <value>

The set global command sets global parameters of Tao. The show global command will give a list
of global parameters.

Example:
set global n_opti_loops = 30 ! Set number of optimization cycles
set global rf_on = T ! Turn on the RF cavities.

10.26.13 set graph

Format:
set graph <graph> <component> = <value>

For set graph, the components that can be set are:
component = <string> ! §9.10.3
clip = <logical>
ix_universe = <number>
margin = <qp_rect_struct>
x = <qp_axis_struct>
y = <qp_axis_struct>
y2 = <qp_axis_struct>

For setting the component attribute see also the commands:
plot ! §10.15
set plot component ! §10.26.19
set curve component ! §10.26.6

Example:
set graph orbit.x component = model - design

! Plot model orbit - design orbit in the graph

10.26.14 set key

Format:
set key <key> = <command>

Binds a custom command to a key for use in single mode (§11). This will override the default behavior
(if there is one) of the key. The command default will reset the key to its default usage.

Example:
set key h = veto var *
set key j = default

142 CHAPTER 10. TAO COMMANDS

10.26.15 set lat_layout

Format:
set lat_layout <component> = <value>

Sets parameters for lat_layout plots (§9.10.8). Syntax for “set lat_layout” is identical to syntax of
“set floor_plan”. See “set floor_plan” for more details.

Use “show plot -lat_layout” to see a listing of all shapes.

Example:
set lat_layout shape2%draw = F ! Veto drawing of shape #2

10.26.16 set lattice

Format:
set lattice {n@}<destination_lat> = <source_lat>

The set lattice command transfers lattice parameters (element strengths, etc., etc.) from one lattice
(the source lattice) to another (the destination lattice). Both lattices are restricted to be from the
same universe. The optional n@ prefix (§2.3) of the destination lattice can be used to specify which
universe the lattices are in. If multiple universes are specified, the corresponding destination lattice will
be set to the corresponding source lattice in each universe. Note: At this time, it is not permitted to
transfer parameters between lattices in different universes.

The destination lattices that can be set are:
model ! Model lattice.
base ! Base lattice

The source lattice can be:
model ! model lattice.
base ! base lattice.
design ! design lattice

Note: Tao variables that control parameters in multiple universes can complicate things. If, for example,
there are two universes, and a Tao variable controls, say, the quadrupole strength of quadrupoles in both
universes, then a “set lat 2@model = design” will result in the quadrupole strengths of those quadrupoles
controlled by the variable in universe 1 being changed.

Example:
set lattice *@model = design ! Set the model lattice to the design in

! all universes.
set lattice base = model ! Set the base lattice to the model lattice in

! the default universe.

10.26.17 set opti_de_param

Format:
set opti_de_param <component> = <value>

For set opti_de_param: The show global command will give a list of <component>s.

Example:
set opti_de_param binomial_cross = T ! Use binomial crossovers

10.26. SET 143

10.26.18 set particle_start

Format:
set particle_start {n@}<coordinate> = <value>

The set particle_start command sets the starting centroid coordinates for beam tracking as well as
the starting coordinates for single particle tracking.

The optional n@ universe specification (§2.3) may be used to specify the universe or universes to apply
the set command to.

For lattices with an open geometry, set particle_start <coordinate> <number> can be used to vary
the starting coordinates for single particle tracking or the centroid coordinates for beam tracking. Here
<coordinate> is one of:
x, px, y, py, z, pz, t

For photons, <coordinate> may also be:
field_x, field_y, phase_x, phase_y

For closed lattices only the pz component is applicable. For lattices that have an e_gun (which necessarily
implies that the lattice has an open geometry), the time t coordinate must be varied instead of pz.

To see the values for particle_start use the command show element 0.

Also see the commands: set beam and set beam_init.

Examples:
set particle_start 2@x = 0.001 ! Set beginning x position in universe 2 to 1 mm.
set particle_start field_x = 1 ! Set photon field

10.26.19 set plot

The set plot command set various parameters of a plot. Format:
set plot <plot_or_region> <parameter> = <value>

The <parameters>s that can be set are:
autoscale_x = <logical>
autoscale_y = <logical>
visible = <logical>
component = <string> ! §9.10.3
x%<axis_component> = <value>
n_curve_pts = <integer>

Use the show plot <plot_name> to see the settings of various parameters. See the section §9.10.2 for
information on the plotting parameters.

The visible parameter hides a plot but keeps the plot associated with the associate region. If the
plot window is not enabled (-noplot option used at startup), the visible parameter is used by Tao to
decide whether to calculate the points needed for plotting curves (saves time if the computation is not
needed). This is relevant when Tao is interfaced to a GUI (§12.4).

The n_curve_pts parameters sets the number of points to use for drawing “smooth” curves. This over-
rides the setting of plot_page%n_plot_pts (§9.10). Warning: Tao will cache intermediate calculations
used to compute a smooth curve to use in the computation of other smooth curves. Tao will only do this
for curves that have plot_page%n_curve_pts number of points. Depending upon the circumstances,
setting plot%n_curve_pts for individual plots may slow down plotting calculations significantly.

Note: If the component parameter is set, the <value> is stored in each of the graphs of the plot since the
component attribute is associated with individual graphs and not the plot as a whole. Other commands
that involve component are:

144 CHAPTER 10. TAO COMMANDS

plot ! §10.15
set graph component ! §10.26.13
set curve component ! §10.26.6

Example:
set plot orbit visible = F ! Hide orbit plot
set plot beta component = design ! Plot the design value.
set plot x%draw_label = False ! Do not draw x-axis label.

10.26.20 set plot_page

Format:
set plot_page <component> = <value1> {<value2>}

For set plot_page, the <component>s that can be set are:
title = <string> ! Set the plot title text
subtitle = <string> ! Set the subtitle text
subtitle_loc = <number> <number> ! Set the subtitle location (%PAGE)

The subtitle_loc component can be used to place the subtitle anywhere on the plot page. This can
be useful for referencing a noteworthy part of a graph data.

Example:
set plot_page title = ’XYZ’ ! Set plot page title string

10.26.21 set ran_state

Format:
set ran_state = <random_number_generator_state>

Sets the state of the random number generator to a specific state. Use show global -ran_state to
show the random number generator state.

10.26.22 set symbolic_number

Format:
set symbolic_number <name> = <value>

Create a symbolic number that can be used in expressions. Use the show symbolic_number command
to show a list of symbols that have been defined. Repeated set commands may be used to modify the
value of a symbol if desired.

Example:
set sym aa = 23.4 * pi ! Define the symbol "aa"

10.26.23 set universe

Format:
set universe <what_universe> <on/off>
set universe <what_universe> recalculate
set universe <what_universe> twiss_calc <on/off>
set universe <what_universe> dynamic_aperture_calc <on/off>
set universe <what_universe> one_turn_map_calc <on/off>
set universe <what_universe> track_calc <on/off>

10.26. SET 145

The set universe <what_universe> ... command will turn on or off specified lattice/tracking cal-
culations for the specified universe(s). Turning specified calculations off for a universe is useful to speed
up lattice calculations when the calculation is not necessary. To specify the currently default universe
(§2.3), you can use -1 as the <what_universe> index. To specify all universes, use *. Use the show
universe command to see the state of these switches are.

Note: The global logical lattice_calc_on (§9.4) is separate from the logicals set by set universe.
That is, toggling the state of lattice_calc_on will not affect the settings of the logicals set by set
universe. If lattice_calc_on is set to False then no calculations are done in any universe independent
of the settings of the set universe logicals. That is, lattice_calc_on acts as a master toggle that
can be used to turn off all lattice/tracking calculations.

If optimizing while one or more universes are turned off, the variables associated with that universe will
still be included in the merit function but not the data for that universe. The variables will still vary in
the turned off universe.

The set universe <what_universe> recalculate command will recalculate the lattice parameters
for that universe.

The set universe <what_universe> dynamic_aperture_calc command will enable the dynamic aper-
ture calculation for a ring. See §9.9. To enable the dynamic aperture calculation at startup, set the
design_lattice(i)%dynamic_aperture component (§9.3).

The set universe <what_universe> one_turn_map_calc command will enable a one-turn-map cal-
culation for a ring using PTC, and populate the normal form taylor maps. See Eq. 5.9 and Eq. 5.10 in the
normal. data type. To enable the map calculation at startup, set the design_lattice(i)%one_turn_map_calc
component (§9.3).

The commands
set universe <what_universe> twiss_calc and
set universe <what_universe> track_calc

will set whether the 6x6 transfer matrices and the central orbit (closed orbit for circular rings) is calcu-
lated for a given universe. Turning this off is useful in speeding up calculations in the case where the
transfer matrices and/or orbit is not being used.

Example:
set universe 1 off
set universe -1 on ! Set on currently default universe.
set universe * recalc ! Recalculate in all universes.

10.26.24 set variable

Format:
set variable <var_name>|<component> = <value>

For set var, the <component>s that can be set are:
model ! Model lattice value.
base ! Base model value
design ! Design model value
meas ! Value at the time of a measurement.
ref ! Value at the time of a reference measurement.
weight ! Weight for the merit function.
exists ! Does this variable actually correspond to something?
good_var ! The optimizer can be allowed to vary it

146 CHAPTER 10. TAO COMMANDS

good_opt ! Good for using in the merit function for optimization?
good_plot ! Good for using in a plot?
good_user ! This is what is set by the use, veto, and restore commands.
step ! Sets what a "small" variation of the variable is.
merit_type ! How merit contribution is calculated.
key_bound ! Model value can be modified using keyboard?
key_delta ! Change in model value when key is pressed.

Example:
set var quad_k1|weight = 0.1 ! Set quad_k1 weights.

10.26.25 set wave

Format:
set wave <component> = <value>

The set wave command sets the boundaries of the A and B regions for the wave analysis (§8). The
components are
ix_a = <ix_a1> <ix_a2> ! A-region left and right boundaries.
ix_b = <ix_b1> <ix_b2> ! B-region left and right boundaries.

Example:
set wave ix_a = 15 27 ! Set A-region to span from datum #15 to #27

Note: Use the wave command (§10.33) first to setup the display of the wave analysis.

10.27 show

The show command is used to display information. Format:
show {-append <file_name>} {-noprint} {-no_err_out} <subcommand>
show {-write <file_name>} {-noprint} {-no_err_out} <subcommand>

<subcommand> subcommands may be one of:
alias ! Show aliases §10.27.1.
beam ... ! Show beam info §10.27.2.
branch ... ! Show lattice branch info §10.27.3.
building_wall ! Show building wall info §10.27.4.
constraints ! Show optimization constraints §10.27.5.
control ... ! Show lords and slaves of a given lattice element §10.27.6.
curve ... ! Show plot curve info §10.27.7.
data ... ! Show optimization data info §10.27.8.
derivative ... ! Show d_data/d_var optimization info §10.27.9.
dynamic_aperture ! Show DA info §10.27.10.
element ... ! Show lattice element info §10.27.11.
field ... ! Show EM field §10.27.12.
global ... ! Show Tao global parameters §10.27.13.
graph ... ! Show plot graph info §10.27.14.
history ... ! Show command history §10.27.15.
hom ! Show Higher Order Mode info §10.27.16.
internal ... ! Used for code debugging s:show.internal.
key_bindings ! Show single mode key bindings §10.27.18.
lattice ... ! Show lattice info §10.27.19.

10.27. SHOW 147

matrix ... ! Show transport matrix §10.27.20.
merit ... ! Show optimization merit function §10.27.21.
normal_form ... ! Show transport map normal form §10.27.22.
optimizer ... ! Show optimizer info §10.27.23.
particle ... ! Show tracked particle info §10.27.25.
plot ... ! Show plot info §10.27.26.
spin ! Show information on spin simulations.
symbolic_numbers ... ! Show symbolic constants §10.27.28.
taylor_map ... ! Show transport Taylor map§10.27.29.
track ... ! Show phase space coords, Twiss, EM field,

! and other info along the tracked orbit §10.27.30.
twiss_and_orbit ... ! Show Twiss and orbit info at given position including

! synchrotron radiation related parameters §10.27.31.
universe ... ! Show universe info §10.27.32.
use ! Show data and vars used in optimization §10.27.33.
value ... ! Show value of an expression §10.27.34.
variable ... ! Show optimization variable info §10.27.35.
wakes ! Show wake info §10.27.36.
wall ... ! Show vacuum chamber wall info §10.27.37.
wave ! Show wave analysis info §10.27.38.

When running Tao, to see documentation on any of the subcommands, use the help show <subcommand>
command. For example, help show element will show information on the show element subcommand.

The show command has -append and -write optional arguments which can be used to write the results
to a file. The show -append command will appended to the output file. The show -write command
will first erase the contents of the output file. If global%write_file has a * character in it, a three
digit number is substituted for the *. The value of the number starts at 001 and increases by 1 each
time show -write is used. Example:
show -write floor.dat lat -floor ! Write floor positions to the file "floor.dat".

The -noprint option suppresses printing and is useful when writing large amounts of data to a file.

When writing to a file, if there are any error messages (for example, that something could not be
computed), the error messages are reproduced in the file. If this behavior is not wanted, the -no_err_out
switch may be used to block the error messages being written.

The -append, -write, -noprint, and -no_err_out switches must be placed before <subcommand>.

Note: When running Tao as a subprocess, consider using the python command (§10.17) instead of the
show command for communicating with the parent process.

10.27.1 show alias

Syntax:
show alias

Shows a list of defined aliases. See the alias command for more details.

10.27.2 show beam

Syntax:
show beam {<element_name_or_index>}

148 CHAPTER 10. TAO COMMANDS

If <element_name_or_index> is absent, show beam shows parameters used with beam tracking including
the number of particles in a bunch, etc.

If <element_name_or_index> is present, show beam will show beam parameters at the selected element.
Also see show particle. Use the set beam_init command to set values of the beam_init structure.

10.27.3 show branch

Syntax:
show branch {-universe <universe>}

Lists the lattice branches of the lattice associated with the given universe along with information on
the fork elements connecting the branches. If no universe is given, the current default universe (§2.3) is
used.

Example:
show branch -u 2 ! Show info on lattice branches associated with universe 2

10.27.4 show building_wall

Syntax:
show building_wall

List all building wall (§9.8) sections along with the points that define the sections.

For vacuum_chamber, capillary, and diffraction_plate walls use the “show wall” command.

10.27.5 show constraints

Syntax:
show constraints

Lists data and variable constraints. Also see show merit.

10.27.6 show control

Syntax:
show control element-name-or-index

This command compiles a list of all lords (and lords of lords, etc.) of the given element as well as a list
of all slaves (and slaves of slaves, etc.) of the given element. Then for each element in the lists, the lords
and slaves of that element are displayed. Example:
show control q1#2 ! Show lords/slaves of second instance of element named q1.

10.27.7 show curve

Syntax:
show curve {-line} {-no_header} {-symbol} <curve_name>

Show information on a particular curve of a particular plot. See §6 for the syntax on plot, graph, and
curve names. Use show plot to get a list of plot names. The -symbol switch will additionally print the
(x,y) points for the symbol placement and the -line switch will print the (x,y) points used to draw the
“smooth” curve in between the symbols. The line or symbol points from multiple curves can be printed
by specifying multiple curves. Example:

10.27. SHOW 149

show curve -sym orbit

This will produce a three column table assuming that the orbit plot has curves orbit.x.c1 and
orbit.y.c1. When specifying multiple curves, each curve must have the same number of data points
and it will be assumed that the horizontal data values are the same for all curves so the horizontal data
values will be put in column 1.

The -no_header switch is used with -line and -symbol to suppress the printing of header lines. This
is useful when the generated table is to be read in by another program.

Also see: show plot and show graph commands.

Example:
show curve r2.g1.c3 ! Show the attributes of a curve named "c3" which is

! in the graph "g1" which is plotted in region "r2".

10.27.8 show data

Syntax:
show data {<data_name>}

Shows data information. If <data_name> is not present then a list of all d2_data names is printed.

Examples:
show data ! Lists d2_data for all universes
show data *@* ! Same as above
show data -1@* ! Lists d2_data for the currently default universe.
show data * ! Same as above.
show data 2@* ! Shows d2_data in universe 2.
show data orbit ! Show orbit data.
show data orbit.x ! list all orbit.x data elements.
show data orbit.x[35] ! Show details for orbit.x element 35
show data orbit.x[35,86:95] ! list orbit.x elements 35 and 86 through 95
show data orbit.x[1:99:5] ! list every fifth orbit.x between 1 and 99

10.27.9 show derivative

Syntax:
show derivative {-derivative_recalc} {<data_name(s)>} {<var_name(s)>}

Shows the derivative dData_Model_Value/dVariable. This derivative is used by the optimizers lm
and svd. Note: Wild card characters can be used to show multiple derivatives. Default values for
<data_name(s)> and <var_name(s)> is "*" (all data or variables).

The -derivative_recalc forces a recalculation of the derivative matrix. This is exactly the same as
using derivative command (§10.9) before the show derivative command.

Note: Derivatives are only calculated for data and variables that are used in an optimization. That is,
derivatives are only calculated for data and variables whose useit_opt component (see §5.2 and §4) is
True.

The output of this command is a number of lines that look like:
Data Variable Derivative ix_dat ix_var
k.22a[98] v_steer[92] -7.63151E+01 1584 214
k.22a[98] v_steer[93] -1.81810E+00 1584 215

150 CHAPTER 10. TAO COMMANDS

The first and second columns are the datum and variable names, the third column is the derivative, and
the last two columns are the indexes of where the derivative is stored in Tao’s internal derivative matrix.
These last two columns are for debugging purposes and can be ignored.

Example:
show deriv orbit.x[2] k1[3] ! Show dModel_Value/dVariable Derivative.
show deriv ! Show all derivatives. Warning! The output may be large.

10.27.10 show dynamic_aperture

Syntax:
show dynamic_aperture

Shows parameters and results of the dynamic aperture calculation.

10.27.11 show element

Syntax:
show element {-attributes} {-base} {-data} {-design} {-all} {-field}

{-floor_coords} {-no_slaves} {-no_super_slaves} {-ptc} {-taylor} {-wall}
{-xfer_mat} <ele_name>

This shows information on lattice elements. The syntax for <ele_name> is explained in section §3.1.
If <ele_name> contains a wild card or a class name then a list of elements that match the name are
shown. If no wild–card or class name is present then information about the element whose name matches
<ele_name> is shown.

If the -ptc switch is used, then the associated PTC fibre information will be displayed. If there is not
associated PTC fibre (which will be true if PTC has not been used for tracking with this element), an
associated PTC fibre will be created. In this case, only the PTC information will be displayed and the
other switches will be ignored.

If the -attributes switch is present, then all of the element “attributes” will be displayed. The default
is is to display only those attributes with non-zero values. “Attributes” here does not include such things
as the cross-section, Taylor map and wiggler element parameters.

By default, the appropriate element(s) within the model lattice (§2.3) are used. This can be overridden
by using the -base or the -design switches which switch the lattice to the base or design lattices
respectively.

If the -wall switch is present, the wall information for the element, if it has been defined in the lattice
file, is displayed. For an x-ray capillary element, the wall is the inner surface of the capillary. For all
other elements, the wall is the beam chamber wall.

If the -data switch is present, information about the all the datums associated with the element will be
listed.

If the -floor_coords switch is present, the global floor coordinates at the exit end of the element will
be printed. See the Bmad manual for an explanation of the floor coordinates.

When using wild cards in the element name, if the -no_super_slaves switch is present then super_slave
elements will not be included in the output. If the -no_slaves switch is present, both super_slave
and multipass_slave elements will be ignored.

10.27. SHOW 151

If the -taylor switch is present, the Taylor map associated with an element, if there is one, is also
displayed. An element will have an associated Taylor map if tracking or transfer matrix calculations for
the element call for one. For example, if an elements tracking_method is set to Taylor, it will have an
associated Taylor map. To see the Taylor map for an element that does not have an associated map, use
the show taylor_map command.

If the -field switch is present, any associated Electro-magnetic field maps or grid data is printed. For
example, wiggler terms for a map_type wiggler element are printed.

If the -xfer_mat switch is present, the 6x6 transfer matrix (the first order part of the transfer map)
along with the zeroth order part of the transfer map are printed.

The -all switch is equivalent to using:
-attributes
-field
-floor_coords
-taylor
-wall
-xfer_mat

Example:
show ele quad::z* -no_slaves ! list all non-slave quadrupole elements with

! names beginning with "z".
show ele q10w ! Show a particular lattice element.
show ele -att 105 ! Show element #105 in the lattice.

10.27.12 show field

Syntax:
show field <ele> <x> <y> <z> {<t>}

The show field command shows the electric and magnetic field at a point in space-time. The <z>
coordinate is with respect to the beginning of the element specified by <ele>. The syntax for <ele>
is explained in section §3.1. In this case, <ele> must specify a single element. The <t> argument is
optional and will be set to zero if not specified.

10.27.13 show global

Syntax:
show global {-bmad_com} {-csr_param} {-optimization} {-ran_state}

The show global command prints lists of global parameters. Specifically:
show global ! Displays Tao’s global parameters.
show global -bmad_com ! Displays bmad_com components (§9.4).
show global -csr_param ! Displays csr_param components (§9.4).
show global -optimization ! Displays optimization parameters.
show global -ran_state ! Displays the state of the random number generator.

10.27.14 show graph

Syntax:
show graph <graph_name>

152 CHAPTER 10. TAO COMMANDS

Show information on a particular graph of a particular plot. See §6 for the syntax on plot, graph, and
curve names. Use show plot to get a list of plot names.

Also see: show plot and show curve commands.

Example:
show graph r2.g1 ! Show the attributes of graph "g1" which is

! plotted in region "r2".

10.27.15 show history

Syntax:
show history {-no_num} {<num_to_display>}

Shows the command history. Each command is given an index number starting from 1 for the first
command. This index is printed with the command unless the -no_num switch is present.

The number of commands printed is, by default, the last 50. Setting the <num_to_display> will change
this. Setting <num_to_display> to all will cause all the commands to be printed.

Use the command re_execute (§10.20) to re-execute a command. Also the up and down arrow keys on
the keyboard can be used to scroll through the command history stack.

If a command file has been called, the commands within the command file will be displayed but will be
proceeded by an exclamation mark “!” to show that the command was not “directly” executed.

Note: Commands from previous sessions of Tao are saved in the file /.history_tao.

Examples
show -write cmd_file hist all -no ! Create a command history file
show hist 30 ! Show the last 30 commands.

10.27.16 show hom

Syntax:
show hom

Shows long–range higher order mode information for linac accelerating cavities.

10.27.17 show internal

The show internal command is for printing parameter values that are internal to Tao. This command is
used for code debugging and not useful (nor understandable) to non-programmers. Note to programmers:
Further information is contained in the code that executes the show internal command.

10.27.18 show key_bindings

Syntax:
show key_bindings

Shows all key bindings (§11.1).

10.27. SHOW 153

10.27.19 show lattice

Syntax:
show lattice {-0undef} {-all} {-attribute <attrib>} {-base}

{-blank_replacement <string>} {-branch <name_or_index>}
{-custom <file_name>} {-design} {-floor_coords} {-lords} {-middle}
{-no_label_lines} {-no_slaves} {-no_super_slaves} {-no_tail_lines} {-orbit}
{-python} {-radiation_integrals} {-remove_line_if_zero <column #>}
{-s <s1>:<s2>} {-spin} {-sum_radiation_integrals} {-tracking_elements}
{-undef0} {-universe <index>} {<element_list>}

Show a table of Twiss and orbit data, etc. at the specified element locations. The default is to show
the parameters at the exit end of the elements. To show the parameters in the middle use the -middle
switch.

By default, the appropriate element(s) within the model lattice (§2.3) are used. This can be overridden
by using the -base or the -design switches which switch the lattice to the base or design lattices
respectively.

-0undef
See the -undef0 attribute for a description. Also see the blank_replacement switch.

-all
For lattices with a large number of elements, the show lattice command defaults to only showing
the first 200 elements or so to prevent the accidental generation of possibly tens of thousands of
lines. The -all switch overrides this default and shows all tracking and lord elements. Also see
the -lords, -no_slaves, no_super_slaves, -tracking_elements switches.

-attribute <attrib>
Instead of defining a custom file, the -attribute <attrib> switch can be used as a shortcut way
for customizing the output columns. When using the -attribute switch, the first five columns
are the the same default columns of index, name, element key, s and length. All additional
columns are determined by the -attribute switch. Multiple -attribute switches can be present
and the number of additional columns will be equal to the number of times -attribute is used.
The <attrib> parameter for each -attribute switch specifies what attribute will be printed. The
general form of <attrib> is:
attribute-name or
attribute-name@format

where attribute-name is the name of an attribute and format specifies the Fortran style edit
descriptors to be used (§3.8. The default format is es12.4. Example:
show lat -attrib is_on@l4 -attrib voltage rfcavity::*

In the above example, -attribute appears twice and the total number of columns of output will
thus be 7 (= 5 + 2). The sixth column will have the is_on element attribute and will be printed
using the l4 format (logical with a field width of 4 characters). The seventh column will show the
voltage attribute.

Note: Data can be used in custom output but data is evaluated independent of whether the
-middle switch is used.

Also see the -0undef, -undef0, and -blank_replacement switches.

-base
Show values from the base lattice instead of the model lattice. Also see the -design switch.

154 CHAPTER 10. TAO COMMANDS

-blank_replacement <string>
The -blank_replacement switch specifies that whenever a blank string is encountered (for exam-
ple, the type attribute for an element can be blank), <string> should be substituted in its place.
<string> may not contain any blank characters. Example:
show lat -cust custom.file -blank zz 1:100

This will replace any blank fields with “zz”.

-branch
The -branch <name_or_index> option can be used to specify the branch of the lattice. <name_or_index>
can be the name or index of the branch. The default is the main branch (# 0).

-custom <file_name>
A table with custimized columns may be constructed either by using the -custom switch which
specifies a file containing a description of the custom columns or by using one or more -attribute
switches. to specify Example customization file:
&custom_show_list
column(1) = "#", "i6", 6
column(2) = "x", "x" 1 ! blank space
column(3) = "ele::#[name]", "a", 0
column(4) = "ele::#[key]", "a16", 16
column(5) = "ele::#[s]", "f10.3", 10
column(6) = "ele::#[l]", "f10.3", 10
column(7) = "ele::#[beta_a]", "f7.2", 7
column(8) = "1e3 * ele::#[orbit_x]", "f8.3", 8, "Orbit_x| (mm)"
column(9) = "lat::unstable.orbit[#]", "f8.3", 8
column(10) = "beam::n_particle_loss[#]", "i8", 8

/
each column(n) line has four components. The first component is what is to be displayed in that
column. Algebraic expressions are permitted (§3.2). Note: Use of ele:: and beam::, etc sources
is accepted but these constructs cannot be evaluated at the center of an element. That is the
-middle switch will have no effect on such constructs.

The second component is the Fortran edit descriptor. The third column is the total width of the
field. Notice that strings (like the element name) are left justified and numbers are right justified.
In the case of a number followed by a string, there will be no white space in between. The use of an
"x" column can solve this problem. A field width of 0, which can only be used for an ele::#[name]
column, indicates that the field width will be taken to be one greater then the maximum characters
of any element name.

The last component is column title name. This component is optional and if not present then Tao
will choose something appropriate. The column title can be split into two lines using "|" as a
separator. In the example above, The column title corresponding to "Orbit_x| (mm)" will have
“Orbit_x” printed in one row of the title and “(mm)” in the next row.

To encode the element index, use a # or #index. To encode the branch index, use #branch. Any
element attribute is permitted ("show ele" will show element attributes or see the Bmad manual).
Additionally, the following are recognized:
x ! Add spaces
! Index number of element.
ele::#[name] ! Name of element.
ele::#[key] ! Type of element (‘‘quadrupole’’, etc.)
ele::#[slave_status] ! Slave type (‘‘super_slave’’, etc.)
ele::#[lord_status] ! Slave type (‘‘multipass_lord’’, etc.)
ele::#[type] ! Element type string (see Bmad manual).

10.27. SHOW 155

Note: Data can be used in custom output but data is evaluated independent of whether the
-middle switch is used.

Also see the -0undef, -undef0, and -blank_replacement switches.

-design
Show values from the design lattice instead of the model lattice. Also see the -base switch.

<element_list>
The locations to show are specified either by specifying an element list or by specifying a longitu-
dinal position range using the -s switch The syntax used for specifying the element list is given in
section §3.1. In this case there should be no blank characters in the list.

-floor_coords
If present, the -floor_coords switch will print the global floor (laboratory) coordinates for each
element.

-lords
If present, the -lords switch will print a list of lord elements only. Also see the -all, -no_slaves,
no_super_slaves, -tracking_elements switches.

-middle
Show value evaluated at the middle of the lattice elements instead of the default exit end.

-no_label_lines
If present, the -no_label_lines switch will prevent the printing of the header (containing the
column labels) lines at the top and bottom of the table. This is useful when the output needs to
be read in by another program. Also see the -no_tail_lines switch.

-no_slaves
If the -no_slaves switch is present, all super slave and multipass slave elements will be
ignored. Also see the -all, -lords, no_super_slaves, -tracking_elements switches.

-no_super_slaves
If present, the -no_super_slaves switch will veto from the list of elements to print all super
slave elements. Also see the -all, -lords, -no_slaves, no_super_slaves, -tracking_elements
switches.

-no_tail_lines
The -no_tail_lines just suppress the header lines at the bottom of the table. Also see the
-no_label_lines switch.

-orbit
The -orbit switch will show the particle’s phase space orbit which is the closed orbit if the lattice
has a closed geometry and is the orbit beginning from the specified starting position for lattices
with an open geometry. Use set particle_start to vary the starting position in this case. If the
-spin switch is also present, the particle’s spin will also be displayed.

-python
The -python switch gives a comma deliminated table as output. This switch is used with the
python command (§10.17).

-radiation_integrals
The -radiation_integrals switch, if present, will display the radiation integrals for each lattice
element instead of the standard Twiss and orbit data. See the Bmad manual for the definitions of
the radiation integrals. Also see -sum_radiation_integrals.

156 CHAPTER 10. TAO COMMANDS

-remove_line_if_zero <column #>
If present, the -remove_line_if_zero switch will suppress any lines where the value in the column
given by <column #> is zero or not defined. Notice that when specifying custom columns using
the -custom switch, columns that only insert blank space are not counted. For example:
show lat -custom cust.table -remove 5

Assuming that the file cust.table contains the example customization given above, the fifth visible
column corresponds to column(6) which prints the element length. The -remove 5 will then
remove all lines associated with elements whose length is zero. Multiple -remove_line_if_zero
may be present. In this case the row will be suppressed if all designated columns have a zero entry.

-s <s1>:<s2>
The locations to show are specified either by specifying a longitudinal position range with -s, or
by specifying a list <element_list> of elements.

-spin
The -spin switch will show the particle’s spin which is the invariant spin if the lattice has a
closed geometry and is the spin beginning from the specified starting spin for lattices with an open
geometry. Use set particle_start to vary the starting spin in this case. If the -orbit switch is
also present, the particle’s phase space orbit will also be displayed.

-sum_radiation_integrals
The -sum_radiation_integrals switch, if present, will display the radiation integrals integrated
from the start of the lattice to for each lattice element. See the Bmad manual for the definitions
of the radiation integrals. Also see the -radiation_integrals switch.

-tracking_elements
The -tracking_elements switch can be used to show all the elements in the tracking part of the
lattice. Also see the -all, -lords, -no_slaves, no_super_slaves switches.

-undef0
If an attribute does not exist for a given element (for example, quadrupoles do not have a voltage),
a series of dashes, “----”, will be placed in the appropriate spot in the table. Additionally, an
arithmetic expression that results in a divide by zero will result in dashes being printed. This
behavior is changed if the -0undef or -undef0 switch is present. In this case, a zero, “0”, will
be printed. The difference between -0undef and -undef0 is that with -undef0 the zero will be
printed using the same format as the other numbers in the column. With the -0undef switch the
zero will be printed as a right justified “0” which gives a visual clue to differentiate between a true
zero value and a zero that represents an undefined parameter.

-universe <index>
The -universe switch specifies which universe is used. If not present, the current viewed universe
is used.

Examples:
show lattice 50:100 ! Show lattice elements with index 50 through 100
show lat 45:76, 101, 106 ! Show element #45 through #76 and 101 and 106.
show lat q34w:q45e ! Show from element q34w through q45e.
show lat q* ! Show elements whose name begins with "q"
show lat marker::bpm* ! Show marker elements whose name begins with "bpm"
show lat -s 23.9:55.3 ! Show elements whose position is between

! 23.9 meters and 55.3 meters.

10.27. SHOW 157

10.27.20 show matrix

Syntax:
show matrix {-ptc} {-s} {loc1 {loc2}}

Shows the transfer matrix for the model lattice of the default universe (set by set default universe).
This command is equivalent to show taylor_map -order 1. See the show taylor_map documentation
for more details.

10.27.21 show merit

Syntax:
show merit {-derivative} {-merit_only}

If the -derivative switch is present, this command shows top dMerit/dVariable derivatives, and Largest
changes in variable value. If not present, this command shows top contributors to the merit function.

Also see: show constraints.

If the -merit_only switch is present, only the value of the merit function is printed and nothing else.
That is, it makes the output compact if only the value of the merit function is desired.

Note: To set the number of top contributors shown, use the command
set global n_top10_merit = <number>

where <number> is the desired number of top contributors to the merit function to be shown.

Note: The show merit command was once called the show top10 command.

Example:
show merit -der ! Show merit derivative info

10.27.22 show normal_form

Syntax:
show normal_form {-order <n_order>} <type>

Shows normal form taylor maps (optionally truncated to <n_order>) from Eq. 5.9 and Eq. 5.10. <type>
can be: M, A, A_inv, dhdj, F, L.

10.27.23 show optimizer

Syntax:
show optimizer {-geodesic_lm}

Shows parameters pertinent to optimization: Data and variables used, etc.

If -geodesic_lm option is present, parameters for the geodesic_lm optimizer will be shown. These
parameters are shown in any case if the optimizer has been set to use geodesic_lm.

10.27.24 show opt_vars

Syntax:
show opt_vars

Shows the settings of the variables used in the optimization using the Bmad standard lattice input
format.

158 CHAPTER 10. TAO COMMANDS

10.27.25 show particle

Syntax:
show particle {-bunch <bunch_index>} {-particle <particle_index>

{-element <element_name_or_index>} {-lost} {-all}

Shows individual particle information except if the the -lost or -all options are used.

The default for the optional -bunch index is set by the global variable global%bunch_to_plot. The
default -element is init which is the initial beam distribution. The default -particle to show is the
particle with index 1.

The -lost option shows which particles are lost during beam tracking. Note: Using the -lost option
results in one line printed for each lost particle. It is thus meant for use with bunches with a small
number of particles.

The -all option shows all particles at the given element.

Also see show beam.

Examples:
show part -bun 3 -part 47 -ele 8 ! Shows information on particle #47 of

! bunch #3 at lattice element #8.
show part -part 47 -ele 8 ! Same as above except the default bunch is used.
show part -lost -bun 3 ! Show lost particle positions for bunch #3

10.27.26 show plot

Syntax:
show plot {-floor_plan} {-global} {-lat_layout} {-regions}

{-templates} {<plot_or_template_name>}

The show plot -floor_plan and show plot -lat_layout commands show the parameters associated
with the floor_plan or lat_layout plots (§9.10.8). Use the set floor_plan or set lat_layout
commands to set these parameters.

The show plot -global command shows some global plotting parameters like the size of the plot
window.

The show plot -regions command shows what plots are placed in which regions. Use the place
command to change where plots are placed.

The show plot -templates command displays what plot templates have been defined for plotting. See
§9.10 for information on setting up template plots.

The show plot <plot_or_region_name> command will display information on a particular plot.

The various show plot options are mutually exclusive and only the last option is used. That is, a
command like
show plot -lat_layout -regions

is equivalent to show plot -regions.

Also see show graph and show_curve.

Examples:
show plot ! Show plot region information by default
show plot r13 ! Show information on plot in region r13

10.27. SHOW 159

10.27.27 show spin

Syntax:
show spin {-ref_element <ele_name_or_index>} {-element <ele_name_or_index>}

{-n_axis <nx>, <ny>, <nz>} {-l_axis <lx>, <ly>, <lz>}

Show spin related information. Note: To see the closed orbit invariant spin at any element, make sure
spin tracking is on (if not, use: set bmad_com spin_tracking_on = T), and then the show element
command will display n0.

If -element is not present, show spin will show various quantities including the equilibrium polariza-
tion, polarization rates, and any G matrices needed to evaluate datums that have been defined of type
spin_g_matrix.ij (§5.6.

If -element is present, the output will be the 8x8 G-matrix from the downstream end of the element
given by -ref_element to the downstream end of the element given by -element. If -ref_element
is not given, the default is to use the element before the element given by -element. This gives the
G-matrix for transport through the -element element. The G-matrix is dependent upon the (l,n,m)
axes used to define the spin vector (see the SLIM Formalism secton of the Spin chapter in the Bmad
manual). The n and l axes can be specified using the -n_axis and -l_axis switches. The m axis is
calculated from knowledge of the other two axes. If not given, the axes will be taken to be what is
computed from spin tracking. Note: Commas between axis components are optional.

Example:
show spin
show spin -ele Q10W -n 0,1,0 -l 1,0,0 ! G-matrix for Q10W

10.27.28 show symbolic_numbers

Syntax:
show symbolic_numbers {-physical_constants} {-lattice_constants}

Show the symbolic constants created using the set symbolic_number command.

If the -physical_constants switch is present, the predefined physical constants (like c_light) along
with predefined mathematical constants (like pi) are displayed instead (Also see the Bmad manual for
this list).

If the -lattice_constants switch is present, constants defined in the lattice are displayed. Note: At
present, these constants cannot be used in any calculation and are for informational purposes only.

Examples:
set sym aaa = 23 ! Set a symbol.
show sym ! Show all user defined symbols.
show sym -phys ! Show predefined physical and mathematical constants.

10.27.29 show taylor_map

Syntax:
show taylor_map {-order <n_order>} {-ptc} {-s} {loc1 {loc2}}

Shows the Taylor transfer map for the model lattice of the default universe (set by set default
universe). See also show matrix.

If neither loc1 nor loc2 are present, the transfer map is computed for the entire lattice.

160 CHAPTER 10. TAO COMMANDS

if loc1 and loc2 are the same, the 1-turn transfer map is computed. If the s-position of loc1 is greater
than the s-position of loc2, the map from loc1 to the end of the lattice with the map from the beginning
to loc2 is computed.

If the -s switch is present, loc1 and loc2 will be interpreted as longitudinal s-positions. In this case,
if loc2 is not present, the map will be the 1-turn map if the lattice is circular and the map from the
beginning to loc1 if the map is not.

If the -s switch is not present, loc1 and loc2 will be interpreted as element names or indexes. The map
will be from the exit end of the loc1 element to the exit end of the loc2 element. In this case, if loc2
is not present, the map will be the for the element given by loc1

The -order switch, if present, gives the limiting order to display. In any case, the maximum order of
the map is limited to the order set by the lattice file.

The -ptc switch is used with -order 1. By default, order 1 maps (matricies) are calculated using native
Bmad code. If the -ptc switch is present, the matrix is calculated using the PTC code (see the Bmad
manual for details on PTC). Since PTC is always used to calcuate maps of order higher than 1, the -ptc
switch is ignored for higher orders.

Examples:
show taylor -order 1 q10w q12e ! 0th and 1st order maps from q10w to q12e
show taylor 45 ! Transfer map of element #45
show taylor -s 13 23 ! Transfer map from s = 13 meters to 23 meters.

10.27.30 show track

Syntax:
show track {-b_field {<fmt>}} {-base} {-branch <name_or_index>} {-design}

{-dispersion {<fmt>}} {-e_field {<fmt>}} {-momentum {<fmt>}} {-no_label_lines}
{-points <num>} {-position {<fmt>}} {-energy {<fmt>}} {-range <s1> <s2>}
{-s {<fmt>}} {-spin {<fmt>}} {-time {<fmt>}} {-twiss {<fmt>}}
{-universe <ix_uni>} {-velocity {<fmt>}}

The show track command shows a table of phase space coords, Twiss parameters, EM fields, and other
info at equally spaced points along the tracked orbit. Also see the show twiss_and_orbit command.

Command arguments that toggle whether a certain quantity is displayed have an optional <fmt> format
specifier that can be used to set the format of the displayed quantities. The format uses Fortran edit
descriptor syntax (§3.8). If “no” is used as the format then the associated quantity will not be displayed.
If there is no format specified then Tao will use a default format. Example:
show track -b_field ! Display magnetic field components using the default format
show track -position no ! Do not display position information.
show track -s 3pf12.1 ! Display S-position with decimal point shifted by three places.

! That is, display the S-position in millimeters.
When the value of quantities are shifted, using the “P” prefix, the header string for the corresponding
column(s) will be appropriately marked.

{-b_field {<fmt>}}
Set the format for the three components of the magnetic field (in Tesla). The default, if -b_field
is not present, is not to print the field.

{-base}
If present, use the base lattice for evaluating quantities. The default is the model lattice.

10.27. SHOW 161

{-branch <name_or_index>}
Lattice branch to use. The default is the default branch (§2.4)

{-design}
If present, use the design lattice for evaluating quantities. The default is the model lattice.

{-dispersion {<fmt>}}
Set the format for the dispersion and dispersion derivative columns (ηx, η′x, ηy, η′y). The default is
not to print these columns.

{-e_field {<fmt>}}
Set the format for the three components of the electric field (in V/m). The default is not to print
the field.

{-momentum {<fmt>}}
Set the format for the three phase space momentum components (px, py, pz). Notice that these
are canonical momenta and are dimensionless as explained in the Bmad manual. In particular, pz
is the momentum deviation from the reference momentum. The default is to print the momenta
using the default format.

{-no_label_lines}
If present then suppress the output header lines.

{-points <num>}
Set the number of evaluation points. That is, set the number of rows in the table.

{-position {<fmt>}}
Set the format for the three phase space position components (x, y, z). See the Bmad manual for
details on phase space coordinates. The default is to print the position using the default format.
The default format is 3PF14.6 so the output will be in mm.

{-energy {<fmt>}}
Set the format for the column showing the total energy (in eV) of the particle. The default is not
to print this.

{-range <s1> <s2>}
Set the S-position min/max bounds for the table. Default is beginning and ending S-positions of
the lattice.

{-s {<fmt>}}
Set the format for the S-position column. The default, if -s is not present, is to print the column.

{-spin {<fmt>}}
Set the format for the three components of the particle’s spin. The default, if -spin is not present,
is not to print the spin.

{-time {<fmt>}}
Set the format for the time column. The default, if -s is not present, is to not the column.

{-twiss {<fmt>}}
Set the format for the Beta and Alpha functions of the two transverse normal modes. The default,
if -twiss is not present, is not to print the Twiss parameters

{-universe <ix_uni>}
Set the universe to use. The default is the default universe (§2.3).

162 CHAPTER 10. TAO COMMANDS

{-velocity {<fmt>}}
Set the format for the three particle velocity components (vx/c, vy/c, vz/c) normalized by the speed
of light. The default is not to print the velocity.

10.27.31 show twiss_and_orbit

Syntax:
show twiss_and_orbit {-base} {-branch <name_or_index>} {-design}
{-universe <ix_uni>} <s_position>

The show twiss_and_orbit shows Twiss and orbit information at a given longitudinal position <s_position>
including synchrotron radiation related parameters. Also see show track.

The default universe to use is the current default universe. This can be changed using the -universe
switch.

The default is to show the model Twiss and orbit parameters. The use of -base or -design switches
can be used to show parameters for the base or design lattices.

The particular branch used in the analysis can be selected by the -branch switch. The default is the
default branch (§2.4).

Examples:
show twiss -uni 2 23.7 ! Show parameters in universe 2 at s = 23.7 meters.

10.27.32 show universe

Syntax:
show universe {universe_number}

Shows various parameters associated with a given

universe. If no universe is specified, the current default universe is used. Parameters displayed include
tune, chromaticity, radiation integrals, etc.

10.27.33 show use

Syntax:
show use

Shows what data and variables are used in a format that, if saved to a file, can be read in with a call
command.

10.27.34 show value

Syntax:
show value <expression>

Shows the value of an expression. Examples:
show value sqrt(3@lat:orbit.x[34]|model) + sin(0.35)

10.27. SHOW 163

10.27.35 show variable

Syntax:
show variable {-no_label_lines} {-universe <universes>}

{-good_opt_only} {-bmad_format} {<var_name>}

Shows variable information. If <var_name> is not present, a list of all appropriate v1_var classes is
printed.

The -universe switch is used to select only variables what control components in a given universe or
universes. Use -universe @ to select the current viewed universe.

If the -bmad_format switch is used then the Bmad lattice parameters that the Tao variables control will
be printed in Bmad lattice format. This is the same syntax used in generating the variable files when an
optimizer is run. If -good_opt_only is used in conjunction with -bmad_format then the list of variables
will be restricted to ones that are currently being used in the optimization.

If present, the -no_label_lines switch will prevent the printing of the header (containing the column
labels) lines. This switch is ignored if -bmad_format is present.

Examples:
show var ! List all v1 variables.
show var quad_k1 ! List variables in the quad_k1[*] array.
show var quad_k1[10] ! List detailed information on the variable quad_k1[10].
show var -uni 2 ! List all variables that control attributes in universe 2.
show var -bmad ! List variables in Bmad Lattice format.

10.27.36 show wakes

Syntax:
show wakes

The show wakes command will list the lattice elements that have associated wake fields. Use the show
ele command to get more details on a given element. Note that wakes only affect particle tracking when
tracking with a beam of particles (not when tracking just a single particle which is the default for Tao).

At this point in time, Tao is not setup to do multiturn tracking with bunches which means that if
simulations with wakefields is desired, a different program have to be used.

10.27.37 show wall

Syntax:
show wall {-branch <name_or_index>}{-section <index>} {-angle <angle>}
{-s <s1>:<s2>} {<n1>:<n2>}

The show wall command shows the vacuum chamber wall associated with a lattice branch.

For the building wall, use the “show building_wall” command.

For showing the wall associated with a given element, use the “show ele -wall” command.

The -branch switch is used to select a particular branch.

The -section switch is used to show information about a specific chamber wall cross-section. In this
case, all the other options are ignored except for -branch.

164 CHAPTER 10. TAO COMMANDS

If -section is not present, a list of vacuum chamber wall sections is presented. In this case, the range
of wall sections shown is given by <n1>:<n2> except if -s is present in which case all sections within
a range of s values is given within the range <s1> to <s2>. With each section, a wall radius is given.
The angle in the (x, y) plane at which the radius is computed is determined by the -angle option. The
default angle is 0 which corresponds to the +x direction.

Examples:
show wall 45:100 ! Show vacuum chamber wall sections 45 through 100.
show wall -s 10.0:37.5 ! Show wall sections that have S-position between 10 and 37.5.
show wall -section 49 ! Show chamber wall section 49.

10.27.38 show wave

Syntax:
show wave

The show wave command shows the results of the current wave analysis (§8).

10.28 single_mode

The single_mode command puts Tao into single mode (§11). For on-line help when running Tao go
to single mode and type “?”. To get out of single mode type “Z”.

10.29 spawn

The spawn command is used to pass a command to the command shell. Format:
spawn <shell_command>

The users default shell is used. spawn only works in Linux and Unix environments.

Examples:
spawn gv quick_plot.ps & ! view a postscript file with ghostview

! (and return to the TAO prompt)
spawn tcsh ! launch a new tcsh shell

! (type ’exit’ to return to TAO)
spawn ls ! Get a directory listing.

10.30 timer

The timer command is used to show computation time. Format:
timer start ! Start (reset) the timer
timer read ! Display the time from the last timer start command.
timer beam ! Toggle beam timing mode on/off.

The timer has a beam timing mode which can be toggled using the timer beam command. The initial
state, when Tao is started, is for beam timing to be off. With beam timing mode on, when Tao is
tracking a particle beam through the lattice, Tao will print, about once a minute, the element number
and the elapsed time.

The timer start and timer read commands can be used to time execution times. Example:
timer start ; call my_cmd_file ; timer read

Note: timer start will toggle beam timing off.

10.31. USE 165

10.31 use

The use command un-vetoes data or variables and sets a veto for the rest of the data. Format:
use data <data_name>
use var <var_name>

See also the restore and veto commands.

Examples:
use data orbit.x ! use orbit.x data in the default universe.
use data *@orbit[34] ! use element 34 orbit data in all universes.
use var quad_k1[67] ! use variable.
use var quad_k1[30:60:10] ! use variables 30, 40, 50 and 60.
use data * ! use all data in the default universe.
use data *@* ! use all data in all universes.

10.32 veto

The veto command vetoes data or variables. Format:
veto data <data_name> <locations>
veto var <var_name> <locations>

See also the restore and use commands.

Examples:
veto data orbit.x[23,34:56] ! veto orbit.x data.
veto data *@orbit.*[34] ! veto orbit data in all universes.
veto var quad_k1[67] ! veto variable
veto var quad_k1[30:60:10] ! veto variables 30, 40, 50 and 60
veto data * ! veto all data
veto data *[10:20] ! veto all data from index 10 to 20 (see note)

Note: The command ‘veto data *.*[10:20]’ will veto all d1_data elements within the range 10:20
using the index convention for each d1_data structure separately. This may produce curious results if
the indexes for the d1_data structures do not all point to the same lattice elements.

10.33 wave

The wave command sets what data is to be used for the wave analysis (§8). Format:
wave <curve> {<plot_location>}

The <curve> argument specifies what plot curve is to be used in the analysis. The specified curve must
be visible in the plot window. Possible <curve>s that can be analyzed are:
orbit.x, orbit.y
beta.a, beta.b
phase.a, phase.b
eta.x, eta.y
cbar.11, cbar.12, cbar.22 ! Analysis not possible for cbar.21
ping_a.amp_x, ping_a.phase_x

166 CHAPTER 10. TAO COMMANDS

ping_a.sin_y, ping_a.cos_y
ping_a.amp_sin_y, ping_a.amp_cos_y
ping_a.amp_sin_rel_y, ping_a.amp_cos_rel_y
ping_b.amp_y, ping_b.phase_y
ping_b.sin_x, ping_b.cos_x
ping_b.amp_sin_x, ping_b.amp_cos_x
ping_b.amp_sin_rel_x, ping_b.amp_cos_rel_x

The <plot_location> argument specifies the plot region where the results of the wave analysis is to be
plotted. If not present, the region defaults to the region of the plot containing the curve used for the
analysis.

Note: use the set wave (§10.26.25) command to set the boundaries of the fit regions.

Examples:
wave orbit.x ! Use the orbit.x curve for the wave analysis.
wave top.x bottom ! Use the curve in top.x and the results of the

! wave analysis are put in the bottom region.

10.34 write

The write command creates various files. Format:
write 3d_model {<file_name>} ! Write a blender script for a 3D lattice display.
write bmad_lattice {-binary} {<file_name>}

! Write a Bmad lattice file of the model
write beam {-ascii} -at <element_list> {<file_name>}

! Write beam distribution data.
write blender {<file_name>} ! Write a blender script (Same as 3d_model).
write covariance_matrix {file_name} ! Write the covariance and alpha matrices

! from the Levenburg (lm) optimization.
write curve <curve_name> {<file_name>} ! Write the curve data
write derivative_matrix {file_name} ! Write the dModel_Data/dVar matrix.
write digested {<file_name>} ! Write a digested Bmad lattice file of the model.
write gif {<file_name>} ! create a gif file of the plot window.
write hard ! Print the plot window to a printer.
write hard-l ! Like "hard" except use landscape orientation.
write mad8_lattice {<file_name>} ! Write a MAD-8 lattice file of the model
write madx_lattice {<file_name>} ! Write a MAD-X lattice file of the model
write ps {-scale <scale>} {<file_name>}

! Create a PS file of the plot window.
write ps-l {-scale <scale>} {<file_name>}

! Create a PS file with landscape orientation.
write ptc {-all} {-old} {-branch <name_or_index} {<file_name>}
write variable {-good_var_only} {<file_name>}

! Create a Bmad file of variable values.

If <file_name> is not given then the defaults are:
Command Default File Name
------------------ ------------------
write 3d_model blender_lat_#.py
write bmad_lattice lat_#.bmad

10.34. WRITE 167

write beam beam_#.dat
write blender blender_lat_#.py
write curve curve
write derivative_mat derivative_matrix.dat
write digested lat_#.digested
write gif tao.gif
write mad8_lattice lat_#.mad8
write madx_lattice lat_#.madx
write ps tao.ps
write ptc ptc.flatfile
write variable global%var_out_file

where # is replaced by the universe number. write curve will produce two or three files:
<file_name>.symbol_dat ! Symbol coordinates file
<file_name>.line_dat ! Curve coords.
<file_name>.particle_dat ! Particle data file

The particle data file is only produced if particle data is associated with the curve. The curve coordinates
are the the set of points that are used to draw the (possibly smooth) curve through the symbols.

For ps and ps-l, the optional -scale switch sets the scale for the postscript file. The default is 0 which
autoscales to fit an 8-1/2 by 11 sheet of paper. A value of 1.0 will result in no scaling, 2.0 will double
the size, etc.

The write 3d_model or write blender creates a script which can then be run by the blender program[Blender].
Blender is a free, open source, program for creating, among other things, 3D images. This script will
create a 3D model of the lattice in the current default universe (§2.3). The suffix must by ’.py’ and if this
suffix is not present it will be added. To run the script in blender, use the following on the operating
system command line:
<path-to-blender-exe>/blender -P <script-file-from-tao>

To learn how to pan, zoom, etc. in blender, consult any one of a number of online tutorials and videos.
A good place to start is:
www.blender.org/support/tutorials/

Note: In order of the script to work, the script must be able to find the “base” file blender_base.py.
This base file lives in the bmad/scripts directory and the bmad directory is found using one of the
following environmental variables:
BMAD_BASE_DIR
DIST_BASE_DIR
ACC_RELEASE_DIR

Generally, one of the latter two environmental variables will be defined. If not, a copy of the Bmad
directory must be created and then BMAD_BASE_DIR be appropriately defined.

The write variable command has an optional -good_var_only switch. If present, only the information
on variables that are currently used in the optimization is written.

write beam will create a file of the particle positions when beam tracking is being used. The -at switch
specifies at what elements the particle positions are written. Element list format (§3.1), without any
embedded blanks, is used for the <element_list> argument to the -at switch. The -ascii switch is
for writing ASCII text files instead of the default HDF5 files. See the Beam Initialization chapter
in the Bmad manual for a discussion of the syntax. The default is to write with a compressed binary
format. Note: Beam files can be used to initialize Tao (§1.3). Example
write beam -at * ! Output beam at every element.

168 CHAPTER 10. TAO COMMANDS

The write bmad command will create a bmad lattice file. The -binary switch will cause secondary
lattice files which are created, for example, for fieldmaps, to be written in a binary format. This will
speed up the reading of the lattice at the expense of portability.

The write ptc command creates PTC lattice files (called “flat” files). If the -all switch is present,
there will be two main flat files generated. The -all switch needs to be used when there are multiple
lattice branches that need to be translated to PTC. For example, in a dual colliding ring machine with
two storage rings. Both M_u and M_t mad_universe structures will be generated. The two main files
generated will have the suffixes .m_u and .m_t appended to the file names. In this case, the setting of
-branch is ignored.

If -all is not present, only one main flat file is generated. In this case, if -old is present, the flat file
generated will be of the “old” syntax. Generally there is no reason to generate old style flat files. When
generating a single flat file (no -all switch present), the flat file will contain the information for a single
lattice branch. The lattice branch used can be specified by the -branch switch. The default, if -branch
is not present, is to use lattice branch # 0. The -old switch will generate an “old style” version.

In all cases, the write ptc command can only be used after a ptc init command has been used to
setup PTC.

Note: PGPLOT, if being used, does a poor job producing gif files so consider making a postscript file
instead and using a ps to gif converter.

10.35 x_axis

The x_axis command sets the data type used for the x-axis coordinate. Format:
x_axis <where> <axis_type>

The x_axis command sets the plot%x_axis_type. This determines what data is used for the horizontal
axis. Possibilities for <axis_type> are:
index -- Use data index
ele_index -- Use data element index
s -- Use longitudinal position.

Note that index only makes sense for data that has an index associated with it.

Examples:
x_axis * s
x_axis top index

10.36 x_scale

The x_scale command scales the horizontal axis of a graph or set of graphs. Format:
x_scale {-gang} {-nogang} {<where>} {<value1> <value2>}

Which graphs are scaled is determined by the <where> switch. If <where> is not present or <where> is
* then all graphs are scaled. <where> can be a plot name or the name of an individual graph withing a
plot. If <where> is s then the scaling is done only for the plots where the x-axis scale is the longitudinal
s-position.

x_scale sets the lower and upper bounds for the horizontal axis. If <bound1> and <bound2> are
present, <bound1> is taken to be the lower (left) bound and <bound2> is the upper (right) bound. If

10.37. XY_SCALE 169

neither is present, an autoscale will be invoked to give the largest bounds commensurate with the
data. If an autoscale is performed upon an entire plot. In the case where there is an autoscale, if
plot%autoscale_gang_x (§9.10.2) is True, then the chosen scales will be the same for all graphs. That
is, a single scale is calculated so that all the data of all the graphs is within the plot region. The affect
of plot%autoscale_gang_x can be overridden by using the -gang or -nogang switches.

Note: The x_scale command will vary the number of major divisions (set by plotthat if two plots have
the same range of data but differing major division settings, the x_scale command can produce differing
results.

Example:
x_scale ! Autoscale all x-axes.
x_scale * 0 100 ! Scale all x-axes to go from 0 to 100.
x_scale orbit -10 10 ! This "wraps around" the beginning of the lattice.

10.37 xy_scale

The xy_scale command sets horizontal and vertical axis bounds. Format:
xy_scale {<where>} {<value1> }<value2>}}}

xy_scale is equivalent to an x_scale followed by a y-scale.

Which graphs are scaled is determined by the <where> switch. If <where> is not present or <where> is
* then all graphs are scaled. <where> can be a plot name or the name of an individual graph withing a
plot.

xy_scale sets the lower and upper bounds for both the horizontal and vertical axes. This is just a
shortcut for doing an x_scale followed by a scale. If both <bound1> and <bound2> are present then
<bound1> is taken to be the lower (left) bound and <bound2> is the upper (right) bound. If only
<bound1> is present then the bounds will be from -<bound1> to <bound1>.

If neither {<bound1>} nor {<bound2>} is present then an autoscale will be invoked to give the largest
bounds commensurate with the data.

Example:
xy_scale ! Autoscale all axes.
xy_scale * -1 1 ! Scale all axes to go from -1 to 1.

170 CHAPTER 10. TAO COMMANDS

Chapter 11

Single Mode

Tao has two modes for entering commands. In Single Mode, described in this chapter, each keystroke
represents a command. That is, the user does not have to press the carriage control key to signal the
end of a command (there are a few exceptions which are noted below). Conversely, in Line Mode, which
is described in Chapter §10, Tao waits until the return key is depressed to execute a command. That
is, in Line Mode a command consists of a single line of input. Single Mode is useful for quickly varying
parameters to see how they affect a lattice but the number of commands in Single Mode is limited.

From line mode use the single_mode command (§10.28) to get into single mode. To go back to line
mode type "Z".

11.1 Key Bindings

The main purpose of Single Mode is to associate certain keyboard keys with certain variables so that
the pressing of these keys will change their associated model value of the variable as illustrated in
Figure 11.1. This is called a key binding. Key bindings are established in a startup file by setting
the var(i)%key_bound and var(i)%key_delta parameters (see Section §9.6). After startup, associated
variables with keyboard keys can be done using the set variable command (§10.26).

The variables are divided into banks of 10. The 0th bank uses the first ten variables that have their

Var #1
Var #2

Var #10
Var #9

Var #8
Var #7

Var #6
Var #5

Var #4
Var #3

Figure 11.1: Ten pairs of keys on the keyboard are bound to ten variables so that pressing a key of
a given pair will either increment or decrement the associated variable. The first key pair bound to
variable number 1 are the 1 and Q keys, etc.

171

172 CHAPTER 11. SINGLE MODE

250
300

Figure 11.2: A lattice layout plot (top) above a data plot (middle) which in turn is above a key table plot
(bottom). Elements that have attributes that are varied as shown in the key table have the corresponding
key table number printed above the element’s glyph in the lattice layout.

key_bound attribute (§9.6) set to True. the 1st bank uses the next ten, etc. At any one time, only one
bank is active. To see the status of this bank, a key_table plot (§9.10.12)can be setup as shown in
Figure 11.2. The relationship between the keys and a change in a variable is:

Change by factor of:
Variable -10 -1 1 10

---------- --- --- --- -------
1 + 10*ib Q q 1 shift-1 ("!")
2 + 10*ib W w 2 shift-2 ("@")
3 + 10*ib E e 3 shift-3 ("#")
4 + 10*ib R r 4 shift-4 ("$")
5 + 10*ib T t 5 shift-5 ("%")
6 + 10*ib Y y 6 shift-6 ("^")
7 + 10*ib U u 7 shift-7 ("&")
8 + 10*ib I i 8 shift-8 ("*")
9 + 10*ib O o 9 shift-9 ("(")
10 + 10*ib P p 0 shift-0 (")")

In the above table ib is the bank number (0 for the 0th bank, etc.), and the change is in multiples of the
step (§9.6. value for a variable. Note: In line mode, the command show key_bindings (§10.27) may
be used to show the entire set of bound keys.

Initially the 0th bank is active. The left arrow and right arrow are used to decrease or increase the bank
number. Additionally the "<" and ">" keys can be used to change the deltas for the variables.

For example, looking at Figure 11.2, the "1:" in the upper left corner of the Key Table shows that the
1st bank is active. key(14) is associated with the "4" key and from the Key Table it is seen that the
bound attribute is the b1_gradient of the element named Q15_2. Thus, if the "4" key is depressed

11.2. LIST OF KEY STROKES 173

in single mode, the value of the b1_gradient of element Q15_2 will be increased by the given Delta
(0.1000 in this case). Pressing the "r" key (which is just below the "4" key) will decrease the value of
the b1_gradient by 0.1000. Using the shift key, which is shift-4 ("$") will increase b1_gradient by 10
times the given delta (1.000 in this case) and "R" will decrease, by a factor of 10, the given delta.

Since element Q15_2 is also displayed in the Lattice Layout, there is a "4" drawn above this element
that reflects the fact that the element contains a bound attribute. Since, in this case, the Lattice Layout
only shows part of the lattice, not all key indexes are present.

11.2 List of Key Strokes

In the following list, certain commands use multiple key strokes. For example, the "/v" command is
invoked by first pressing the slash ("/") key followed by the "v" key. "a <left_arrow>" represents
pressing the "a" key followed by the left-arrow key.

Additionally, custom commands can be associated with any key using the set key command §10.26.

? Type a short help message.

a <left_arrow> Pan plots left by half the plot width.

a <right_arrow> Pan plots right by half the plot width.

a <up_arrow> Pan plots up by half the plot height.

a <down_arrow> Pan plots down by half the plot height.

s <left_arrow> Scale x-axis of plots by a factor of 2.0.

s <right_arrow> Scale x-axis of plots by a factor of 0.5

s <up_arrow> Scale y-axis of plots by a factor of 2.0.

s <down_arrow> Scale y-axis of plots by a factor of 0.5

z <left_arrow> Zoom x-axis of plots by a factor of 2.0.

z <right_arrow> Zoom x-axis of plots by a factor of 0.5

z <up_arrow> Zoom y-axis of plots by a factor of 2.0.

z <down_arrow> Zoom y-axis of plots by a factor of 0.5

c Show constraints.

g Go run the default optimizer (§7.5). The optimizer will run until you type a ’.’ (a period). Periodically
during the optimization the variable values will be written to files, one for each universe, whose
name is tao_opt_vars#.dat. where # is the universe number.

v Show Bmad variable values in bmad lattice format. See also the /v command. Equivalent to show
vars -bmad in line mode.

V Same an v except only variables currently enabled for optimization are shown. This is equivalent to
show vars -bmad -good in line mode.

Z Go back to line mode

174 CHAPTER 11. SINGLE MODE

< Reduce the deltas (the amount that a variable is changed when you use the keys 0 through 9) of all
the variables by a factor of 2.

> Increase the deltas (the amount that a variable is changed when you use the keys 0 through 9) of all
the variables by a factor of 2.

<left_arrow> Shift the active key bank down by 1: ib -> ib - 1

<right_arrow> Shift the active key bank up by 1: ib -> ib + 1

/<up_arrow> Increase all key deltas by a factor of 10.

/<down_arrow> Decrease all key deltas by a factor of 10.

<CR> Do nothing but replot.

-p Toggle plotting. Whether to plot or not to plot is initially determined by plot%enable.

’<command> Accept a Line Mode (§10) command.

/b Switch the default lattice branch (§2.4).

/e <Index or Name> Prints info on a lattice element. If there are two lattices being used and only
the information of an element from one particular lattice is wanted then prepend with "n@" where
n is the lattice index.

/l Print a list of the lattice elements with Twiss parameters.

/u <Universe Index> Switch the default universe (§2.3).

/v Write variable values to the default output file in Bmad lattice format. The default output file name
is set by global%var_out. See also the V command.

/x <min> <max> Set the horizontal scale min and max values for all the plots. This is the same as
setting plot%x%min and plot%x%max in the Tao input file. If min and max are not given then the
scale will be chosen to include the entire lattice.

/y <min> <max> Set the y-axis min and max values for all the plots. This is the same as setting
plot%y%min and plot%y%max in the Tao input file. If min and max are not given then an autoscale
will be done.

=v <digit> <value> Set variable value. <digit> is between 0 and 9 corresponding to a variable of
the current bank. <value> is the value to set the variable to.

=<right_arrow> Set saved ("value0") values to variable values to saved values. The saved values
(the value0 column in the display) are initially set to the initial value on startup. There are saved
values for both the manual and automatic variables. Note that reading in a TOAD input file will
reset the saved values. If you want to save the values of the variables in this case use "/w" to save
to a file. Use the "/<left_arrow>" command to go in the reverse direction.

=<left_arrow> Paste saved (value0 column in the display) values back to the variable values. The
saved values are initially set to the initial value on startup. Use the "/<right_arrow>" command
to go in the reverse direction.

Part II

Programmer’s Guide

175

Chapter 12

Python/GUI Interface

It is sometimes convenient to be able to run Tao via Python. For example, in an online control system
environment. Tao has scripts for doing this in one of two ways. One way is using the ctypes module.
The other way is using the pexpect module. A Web search will point to documentation on ctypes and
pexpect. The advantage of ctypes is that it directly accesses Tao code which makes communication
between Python and Tao more robust. The disadvantage of ctypes is that it needs a shared-object
version of the Tao library. [See the Bmad web site for information on building shared-object libraries.]
The disadvantage of pexpect is that it is slower and it is possible for pexpect to time out waiting for a
response from Tao.

12.1 Python Interface Via Pexpect

A python module, tao_pipe.py, for interfacing Tao to Python is provided in the directory tao/python/tao_pexpect.

The tao_pipe module uses the pexpect module. The pexpect module is a general purpose tool for
interfacing Python with programs like Tao. If pexpect is not present your system, it can be downloaded
from www.noah.org/wiki/pexpect.

Example:

>>> import tao_pipe # import module
>>> p = tao_pipe.tao_io("../bin/tao -lat my_lat.bmad") # init session
>>> p.cmd_in("show global") # Command to Tao
>>> print(p.output) # print the output from Tao
>>> p.cmd("show global") # Like p.cmd_in() excepts prints the output too.

After each call to tao_io.cmd and tao_io.cmd_in, the tao_io.output variable is set to the multi-line
output string returned by Tao. To chop this string into lines, use the splitlines() string method.

To get information from Tao into Python, the output from Tao, contained in tao_io.output, needs
to be parsed. For long term maintainability of python scripts, use the python (§10.17) command as
opposed to the show command . See the python command for more details.

177

178 CHAPTER 12. PYTHON/GUI INTERFACE

12.2 Python Interface Via Ctypes

A ctypes based python module pytao.py for interfacing Tao to Python is provided in the directory
tao/python/pytao.

A test driver script named pytao_example.py is in the same directory. See the documentation in both
of these files for further information.

12.3 Tao Python command

To get output from Tao that can be easily parsed by Python, use the python command (§10.17). The
output of this command are semi-colon delimited lists. Besides being easily parsed, the syntax of the
output from the python command will not change over time as the Tao program is developed.

Documentation on the python command is contained in the code file itself at:
tao/code/tao_python_cmd.f90

Example: The command
python global

will produce as output:
lm_opt_deriv_reinit;REAL;T; -1.0000000000000000E+00
de_lm_step_ratio;REAL;T; 1.0000000000000000E+00
de_var_to_population_factor;REAL;T; 5.0000000000000000E+00
lmdif_eps;REAL;T; 9.9999999600419720E-13
svd_cutoff;REAL;T; 9.9999997473787516E-06
unstable_penalty;REAL;T; 1.0000000474974513E-03
... etc ...

12.4 Plotting Issues

When using Tao with a GUI, and when the GUI is doing the plotting, the -noplot option (§1.3) should be
used when starting Tao. The -noplot option (which sets global%plot_on) prevents Tao from opening
a plotting window.

Normally when Tao is not displaying the plot page when the -noplot option is used, Tao will, to save
time, not calculate the points needed for plotting curves. If it is desired for Tao to calculate points for
plotting, the force_plot_data_calc component of the global structure (§9.4) can be set to True using
the set command:
set global force_plot_data_calc = T

When Tao is calculating data points with global%plot_on set to False and global%force_plot_data_calc
set to True, a few points must be kept in mind: First the names of the default plot regions are simplified
to be ’r1’, ’r2’, etc. Use the show plot command (§10.27.26) to view a list. Second, to prevent unneeded
computation, the visible parameter of template plots that are placed (§10.14) is set to False and must
be set to True, using the set plot command (§10.26.19), to enable computation of the curve points.

To make plot references unambiguous, plot can be referred to by their index number. The plot index
number can be viewed using the python plot_list command. Template plots can be referenced using
the syntax “@Tnnn” where nnn is the index number. For example, @T3 referrers to the template plot with
index 3. Similarly, the displayed plots that are associated with plot regions can be referred to using the
syntax “@Rnnn”.

Chapter 13

Customizing Tao

Tao has been designed to be readily extensible with a minimum of effort when certain rules are followed.
This chapter discusses how this is done.

13.1 Initial Setup

Creating a custom version of Tao involves creating custom code that is put in a directory that is distinct
from the tao directory that contains the standard Tao code files.

It is important to remember that the code in the tao directory is not to be modified. This
ensures that, as time goes on, and as Tao is developed by the "Taoist" developers, changes
to the code in the tao directories will have a minimal chance to break your custom code.
If you do feel you need to change something in the tao directory, please seek help first.

To setup a custom Tao version do the following:

1. Establish a base directory in which things will be built. This directory can have any name. Here
we will call this directory ROOT.

2. Make a subdirectory of ROOT that will contain the custom code. This directory can have any name.
Here this directory will be called tao_custom.

3. Copy the files from the directory tao/customization to ROOT/tao_custom. The tao directory is
part of the Bmad package. If you do not know where to find it, ask your local Guru where it is.
Along with a README file, there are two CMake1 script files in the customization directory:
CMakeLists.txt
cmake.custom_tao

These scripts are setup to make an executable called custom_tao. This name can be changed by
modifying the cmake.custom_tao file.

4. Copy the file tao/program/tao_program.f90 to ROOT/tao_custom.

5. Copy as needed hook files from tao/hook to ROOT/tao_custom. The hook files you will need are
the hook files you will want to modify to customize Tao. See below for details. See §13.5 for an
example.

1CMake is a program used for compiling code

179

180 CHAPTER 13. CUSTOMIZING TAO

6. Go to the ROOT/tao_custom directory and use the command mk to create the executable
ROOT/production/bin/custom_tao.

Similarly, the command mkd will create a debug executable
ROOT/debug/bin/custom_tao

A debug executable only needs to be created if you a debugging the code.

13.2 It’s All a Matter of Hooks

The golden rule when extending Tao is that you are only allowed to customize routines that have the
name “hook” in them. These files are located in the directory tao/hook. To customize one of these files,
copy it from tao/hook to ROOT and then make modifications to the copy.

The reason for this golden rule is to ensure that, as time goes by, and revisions are made to the Tao
routines to extend it’s usefulness and to eliminate bugs, these changes will have a minimum impact
on the specialized routines you write. What happens if the modification you want to do cannot be
accomplished by customizing a hook routine? The answer is to contact the Tao programming team and
we will modify Tao and provide the hooks you need so that you can then do your customization.

13.3 Initializing Hook Routines

One way to initialize a hook routine is to read in parameters from an initialization file. If an initialization
file is used, the filename may be set using the s%global%hook_init_file string. This string may be
set in the tao_params namelist (§9.4 or may be set on the command line using the -hook_init_file
option (§1.3).

13.4 Hook Routines

To get a good idea of how Tao works it is recommended to spend a little bit of time going through the
source files. This may also provide pointers on how to make customizations in the hook routines. Of
particular interest is the module tao_lattice_calc_mod.f90 where tracking and lattice parameters are
computed.

Plotting is based upon the quick_plot subroutines which are documented in the Bmad reference manual.
If custom plotting is desired this material should be reviewed to get familiar with the concepts of “graph”,
“box”, and “page”.

The following is a run through of each of the hook routines. Each routine is in a separate file called
tao/hook/<hook_routine_name>.f90. See these files for subroutine headers and plenty of comments
throughout the dummy code to aid in the modification of these subroutines.

13.4.1 tao_hook_graph_setup

Use this to setup custom graph data for a plot.

13.4. HOOK ROUTINES 181

13.4.2 tao_hook_command

Any custom commands are placed here. The dummy subroutine already has a bit of code that replicates
what is performed in tao_command. Commands placed here are searched before the standard Tao
commands. This allows for the overwriting of any standard Tao command.

By default, there is one command included in here: ‘hook’. This is just a simple command that
doesn’t really do anything and is for the purposes of demonstrating how a custom command would be
implemented.

The only thing needed to be called at the end of a custom command is tao_cmd_end_calc. This will
perform all of the steps listed in Section §2.6.

See Sec. §13.6 for an example of how to use this hook.

13.4.3 tao_hook_evaluate_a_datum

Any custom data types are defined and calculated here. If a non-standard data type is listed in the
initialization files, then a corresponding data type must be placed in this routine. The tutorial uses this
hook routine when calculating the emittance.

Dependent lattice parameters (such as closed orbits, beta functions, etc.) are recalculated every time Tao
believes the lattice has changed (for example, after a change command). This is done in tao_lattice_calc.
tao_lattice_calc in turn calls tao_evaluate_a_datum for each datum. tao_evaluate_a_datum in
turn calls tao_hook_evaluate_a_datum to allow for custom data evaluations.

See the tao_evaluate_a_datum routine as an example as how to handle datums. The arguments for
tao_hook_evaluate_a_datum is
tao_hook_evaluate_a_datum (found, datum, u, tao_lat, datum_value, valid_value)

The found logical argument should be set to True for datums that are handled by this hook routine and
found should be set to False for all other datums.

13.4.4 tao_hook_init1 and tao_hook_init2

After the design lattice and the global and universe structures are initialized, tao_hook_init1 is called
from the tao_init routine. Here, any further initializations can be added. In particular, if any custom
hook structures need to be initialized, here’s the place to do it.

Further down in tao_init, tao_hook_init2 is called. Normally you will want to use tao_hook_init1.
However, tao_hook_init2 can be used, for example, ! to set model variable values different from design
variable values since when tao_hook_init1 is called the model lattice has not yet been initialized.

13.4.5 tao_hook_init_design_lattice

This will do a custom lattice initialization. The standard lattice initialization just calls bmad_parser
or xsif_parser. If anything more complex needs to be done then do it here. This is also where any
custom overlays or other elements would be inserted after the parsing is complete. But in general,
anything placed here should, in principle, be something that can be placed in a lattice file.

This is the only routine that should insert elements in the ring. This is because the Tao data
structures use the element index for each element associated with the datum. If all the element indexes

182 CHAPTER 13. CUSTOMIZING TAO

shift then the data structures will break. If new elements need to be inserted then modify this routine
and recompile. You can alternatively create a custom initialization file used by this routine that reads
in any elements to be inserted.

13.4.6 tao_hook_lattice_calc

The standard lattice calculation can be performed for single particle, particle beam tracking and will
recalculate the orbit, transfer matrices, twiss parameters and load the data arrays. If something else
needs to be performed whenever the lattice is recalculated then it is placed here. A custom lattice
calculation can be performed on any lattice separately, this allows for the possibility of, for example,
tracking a single particle for one lattice and beams in another.

13.4.7 tao_hook_merit_data

A custom data merit type can be defined here. Table 7.2 lists the standard merit types. If a cus-
tom merit type is used then load_it in tao_hook_load_data_array may also need to be modi-
fied to handle this merit type, additionally, all standard data types may need to be overridden in
tao_hook_load_data_array in order for the custom load_it to be used. See tao_merit.f90 for how
the standard merit types are calculated.

13.4.8 tao_hook_merit_var

This hook will allow for a custom variable merit type. However, since there is no corresponding data
transfer, no load_it routine needs to be modified. See tao_merit.f90 for how the standard merit types
are calculated.

13.4.9 tao_hook_optimizer

If a non standard optimizer is needed, then it can be implemented here. See the tao_*_optimizer.f90
files for how the standard optimizers are implemented.

13.4.10 tao_hook_parse_command_args

The tao_hook_parse_command_args routine can be used to set the names of initialization files. The
file names are stored in the s%com structure. For example, in the hook file, the following changes the
default plot initialization file:
s%com%hook_plot_file = ’/nfs/acc/user/dcs16/my_plot_init.tao’

Note that if an initialization file name is given on the command line or in the root Tao initialization file,
that name will supersede the hook name.

13.4.11 tao_hook_plot_graph

This will customize the plotting of a graph. See the Tao module tao_plot_mod for details on what it
normally done. You will also need to know how quick_plot works (See the Bmad manual).

13.5. ADDING A NEW DATA TYPE EXAMPLE 183

13.4.12 tao_hook_plot_data_setup

Use this routine to override the tao_plot_data_setup routine which essentially transfers the information
from the s%u(:)%data arrays to the s%plot_page%region(:)%plot%graph(:)%curve(:) arrays. This
may be useful if you want to make a plot that isn’t simply the information in a data or variable array.

13.4.13 tao_hook_post_process_data

Here can be placed anything that needs to be done after the data arrays are loaded. This routine is
called immediately after the data arrays are called and before the optimizer or plotting is done, so any
final modifications to the lattice or data can be performed here.

13.5 Adding a New Data Type Example

As an example of a customization, let’s include a new data type called particle_emittance. This will
be the non-normalized x and y emittance as found from the Courant-Snyder invariant. This data type
will behave just like any other data type (i.e. orbit, phase etc...).

This example will only require the modification of one file: tao_hook_evaluate_a_datum.f90. This file
should be copied from the tao/hook directory and put in your ROOT/code directory (§13.1).

The formula for single particle emittance is

ε = γx2 + 2αxx′ + βx′2 (13.1)

Place the following code in tao_hook_evaluate_a_datum.f90 in the case select construct. Also add
the necessary type declarations. See the routine tao_evaluate_a_datum as an example.
type (coord_struct), pointer :: orbit(:)
type (ele_struct), pointer :: ele
type (lat_struct), pointer :: lat
integer ix_ele
...
lat => tao_lat%lat
orbit => tao_lat%tao_branch(0)%orbit
ele => tao_pointer_to_datum_ele (lat, datum%ele_name, datum%ix_ele, datum, &

valid_value, why_invalid)
ix_ele = -1
...
select case (datum.data_source)
case (’particle_emittance.x’)
datum_value = (ele%a%gamma * orbit(ix_ele)%vec(1)**2 + &
2 * ele%a%alpha * orbit(ix_ele)%vec(1) * orbit(ix_ele)%vec(2) + &
ele%a%beta * orbit(ix_ele)%vec(2)**2)

case (’particle_emittance.y’)
datum_value = (ele%b%gamma * orbit(ix_ele)%vec(3)**2 + &
2 * ele%b%alpha * orbit(ix_ele)%vec(3) * orbit(ix_ele)%vec(4) + &
ele%b%beta * orbit(ix_ele)%vec(4)**2)

end select

184 CHAPTER 13. CUSTOMIZING TAO

This defines what is to be calculated for each particle_emittance datum. There are two transverse
coordinates, so two definitions need to be made, one for each dimension.

Now you just need to declare the data types in the tao.init and tao_plot.init files. For the sake of
this example, modify the example files found in the tao/example directory
mkdir ROOT/my_example
cp tao/example/*.init ROOT/my_example
cp tao/example/*.lat ROOT/my_example

In ROOT/my_example/tao.init add the following lines to the data declarations section
&tao_d2_data
d2_data%name = "particle_emittance"
universe = 0
n_d1_data = 2

/

&tao_d1_data
ix_d1_data = 1
d1_data%name = "x"
default_weight = 1
use_same_lat_eles_as = ’orbit.x"

/

&tao_d1_data
ix_d1_data = 2
d1_data%name = "y"
default_weight = 1
use_same_lat_eles_as = ’orbit.x"

/

In ROOT/my_example/tao_plot.init add the following lines to the end of the file
&tao_template_plot
plot%name = ’particle_emittance’
plot%x%min = 0
plot%x%max = 100
plot%x%major_div = 10
plot%x%label = ’ ’
plot%x_axis_type = ’index’
plot%n_graph = 2

/

&tao_template_graph
graph%name = ’x’
graph_index = 1
graph%box = 1, 2, 1, 2
graph%title = ’Horizontal Emittance (microns)’
graph%margin = 0.15, 0.06, 0.12, 0.12, ’%BOX’
graph%y%label = ’x’
graph%y%max = 15
graph%y%min = 0.0
graph%y%major_div = 4
graph%n_curve = 1
curve(1)%data_source = ’data’

13.6. READING IN MEASURED DATA EXAMPLE 185

curve(1)%data_type = ’particle_emittance.x’
curve(1)%y_axis_scale_factor = 1e6 !convert from meters to microns

/

&tao_template_graph
graph%name = ’y’
graph_index = 2
graph%box = 1, 1, 1, 2
graph%title = ’Vertical Emittance (microns)’
graph%margin = 0.15, 0.06, 0.12, 0.12, ’%BOX’
graph%y%label = ’Y’
graph%y%max = 15
graph%y%min = 0.0
graph%y%major_div = 4
graph%n_curve = 1
curve(1)%data_source = ’data’
curve(1)%data_type = ’particle_emittance.y’
curve(1)%units_factor = 1e6 !convert from meters to microns

/

These namelists are described in detail in Chapter 9.

We are now ready to compile and then run the program. The Tao library should have already been
created so all you need to do is
cd ROOT/code
mk
cd ROOT/my_example
../production/bin/custom_tao

After your custom Tao initializes type
place bottom particle_emittance
scale

Your plot should look like Figure 13.1.

The emittance (as calculated) is not constant. This is due to dispersion and coupling throughout the
ring. Bmad provides a routine to find the particle emittance from the twiss parameters that includes
dispersion and coupling called orbit_amplitude_calc.

13.6 Reading in Measured Data Example

This section shows how to construct a customized version of Tao, called ping_tao, to read in measured
data for analysis. This example uses data from the Fermilab proton recirculation. The data is obtained
by measuring the orbit turn-by-turn of a beam that has been initially pinged to give it a finite oscillation
amplitude.

The files for constructing ping_tao can be found in the directory
tao/examples/custom_tao_with_measured_data

The files in this directory are as follows:

CMakeLists.txt, cmake.ping_tao
Script files for creating ping_tao. See Sec. §13.1.

186 CHAPTER 13. CUSTOMIZING TAO

Figure 13.1: Custom data type: non-normalized emittance

13.6. READING IN MEASURED DATA EXAMPLE 187

README
The README file gives some instructions on how to create ping_tao

RRNOVAMU2E11172016.bmad
Lattice file for the proton recirculation ring.

data
Directory where some ping data is stored

tao.init
Tao initialization file defining the appropriate data and variable structures (§9.2)

tao.startup
File with some command that are executed when Tao is started. These commands will read in and
plot some data.

tao_hook_command.f90
Custom code for reading in ping data. The template used to construct this file is at tao/hook/tao_hook_command.f90
(§13.4.2).

tao_plot.init
File for defining plot parameters (§9.10).

tao_program.f90
copy of the tao/program/tao_program.f90 file (§13.1).

After creating the ping_tao program (see the README file), the program can be run by going to the
custom_tao_with_measured_data directory and using the command:
../production/bin/ping_tao

The customized tao_hook_command routine implements a custom command called pingread. This
command will read in ping data. Ping data is the amplitude and phase of the beam oscillations at a
BPM for either the a-mode or b-mode oscillations. See the write up on ping data types in Sec. §5.8 under
ping_a.amp_x, and ping_b.amp_x for more details.

The data files in the data directory contain data for either the a-mode or b-mode ping at either the
horizontal or vertical BPMs.

The syntax of the pingread command is:
pingread <mode> <filename> <data_or_ref>

The first argument, <mode>, should be either “a_mode” “b_mode” indicating wether the data is for the
a-mode b-mode analysis (a better setup would encode this information in the data file itself). The
second argument, filename is the name of the data file, and the third argument, data_or_ref should
be “data” or “reference” indicating that the data is to be read into the meas_value or ref_value of
the appropriate tao_data_struct.

13.6.1 Analysis of the tao_hook_command.f90 File

The first part of the tao_hook_command routine parses the command line to see if the pingread command
is present. The relevant code, somewhat condensed, is:
subroutine tao_hook_command (command_line, found)

!!!! put your list of hook commands in here.

188 CHAPTER 13. CUSTOMIZING TAO

character(16) :: cmd_names(1) = [character(16):: ’pingread’]

! "found" will be set to TRUE if the command is found.

found = .false.

! strip the command line of comments

call string_trim (command_line, cmd_line, ix_line)
ix = index(cmd_line, ’!’)
if (ix /= 0) cmd_line = cmd_line(:ix-1) ! strip off comments

! blank line => nothing to do

if (cmd_line(1:1) == ’’) return

! match first word to a command name
! If not found then found = .false.

call match_word (cmd_line(:ix_line), cmd_names, ix_cmd, .true., .true., cmd_name)
if (ix_cmd < 0) then
call out_io (s_error$, r_name, ’AMBIGUOUS HOOK COMMAND’)
found = .true.
return

endif

found = .true.
call string_trim (cmd_line(ix_line+1:), cmd_line, ix_line)

Note: To quickly find information on routines and structures, use the getf and listf scripts as explained
in the Bmad manual. For example, typing “getf string_trim” on the system command line will give
information on the string_trim subroutine.

The above code tests to see if the command is pingread and, if not, returns without doing anything.

If the pingread command is found, the rest of the command line is parsed to get the <mode>, <filename>,
and <data_or_ref> arguments.

In the tao.init file, a tune d2 datum is setup to have two d1 datum arrays One for the a-mode tune
and one for the b-mode tune:
&tao_d2_data
d2_data%name = "tune"
universe = ’*’ ! apply to all universes
n_d1_data = 2

/

&tao_d1_data
ix_d1_data = 1
d1_data%name = "a"
default_weight = 1e6
ix_min_data = 1
ix_max_data = 1

/

13.6. READING IN MEASURED DATA EXAMPLE 189

&tao_d1_data
ix_d1_data = 2
d1_data%name = "b"
default_weight = 1e6
ix_min_data = 1
ix_max_data = 1

/

And each d1 array has only one datum since the a-mode and b-mode tunes have only one value associated
with them (as opposed to, say an orbit which will have multiple values from different BPMs).

In a data file there is a header section which, among other things, records the tune. In a line beginning
with the word “Tune”. Example:

Horz Vert Sync.
Tune (.452444) (.404434) (0) 2p

In the tao_hook_command file, after the arguments are parsed, the header part of the data file is read to
extract the tune datums:
type (tao_d2_data_array_struct), allocatable :: d2(:)
...
if (line(1:4) == ’Tune’) then
call tao_find_data (err, ’tune’, d2_array = d2)
if (size(d2) /= 1) then
call out_io (s_fatal$, r_name, ’NO TUNE D2 DATA STRUCTURE DEFINED!’)
return

endif

The call to tao_find_data looks for a d2 data structure named tune. This structure is setup in the
tao.init file. Alternatively, the ping_tao program could be configured to automatically setup the
appropriate data and/or variable structures via the tao_hook_init1 routine (§13.4.4).

The returned value from the call to tao_find_data is an array called d2 of type tao_d2_data_array_struct.
d2 holds an array of pointers to all d2_data_struct structures it can find. In general, there could be
multiple such structures if multiple universes are being used or if the match string, in this case ’tune’,
contained wild card characters. In this case, the expectation is that there will only one universe used
and thus there should be one and only one structure that matches the name tune. This structure will
be pointed to by d2(1)%d2. The appropriate datums, will be:
d2(1)%d2%d1(1)%d(1) ! a-mode tune
d2(1)%d2%d1(1)%d(2) ! b-mode tune

The values read from the data file are put in these datums via the code:
if (data_or_ref == ’data’) then
d2(1)%d2%d1(1)%d(1)%meas_value = twopi * (data_tune_a + nint(design_tune_a))
d2(1)%d2%d1(1)%d(1)%good_meas = .true.
d2(1)%d2%d1(2)%d(1)%meas_value = twopi * (data_tune_b + nint(design_tune_b))
d2(1)%d2%d1(2)%d(1)%good_meas = .true.

else
d2(1)%d2%d1(1)%d(1)%ref_value = twopi * (data_tune_a + nint(design_tune_a))
d2(1)%d2%d1(1)%d(1)%good_ref = .true.
d2(1)%d2%d1(2)%d(1)%ref_value = twopi * (data_tune_b + nint(design_tune_b))
d2(1)%d2%d1(2)%d(1)%good_ref = .true.

endif

The next step is to setup pointers to the appropriate data arrays to receive the ping data. In the data
file the ping data looks like:

190 CHAPTER 13. CUSTOMIZING TAO

BPM Phase Ampl. RMSdev Beta bml_psi *Calib Old_Cal
R:HP222 -0.27314 0.46085 0.078 1.863 0.35183
R:HP224 -0.05939 0.28277 0.143 0.701 -0.43442
R:HP226 0.23140 0.31712 0.075 0.882 -0.14363
... etc ...

The “H” in R:HP222, etc. indicates that the data is from BPMs that only measure the horizontal
displacement of the beam. Alternatively, a “V” would indicate data from vertical measurement BPMs.

In the tao_hook_command file the data pointers are setup by the code:
type (tao_d1_data_array_struct), allocatable, target :: d1_amp_arr(:), d1_phase_arr(:)
...
if (line(3:3) == ’H’) then
if (mode == ’a_mode’) then
call tao_find_data (err, ’ping_a.amp_x’, d1_array = d1_amp_arr)
call tao_find_data (err, ’ping_a.phase_x’, d1_array = d1_phase_arr)

else
call tao_find_data (err, ’ping_b.amp_x’, d1_array = d1_amp_arr)
call tao_find_data (err, ’ping_b.phase_x’, d1_array = d1_phase_arr)

endif
elseif (line(3:3) == ’V’) then
if (mode == ’a_mode’) then
call tao_find_data (err, ’ping_a.amp_y’, d1_array = d1_amp_arr)
call tao_find_data (err, ’ping_a.phase_y’, d1_array = d1_phase_arr)

else
call tao_find_data (err, ’ping_b.amp_y’, d1_array = d1_amp_arr)
call tao_find_data (err, ’ping_b.phase_y’, d1_array = d1_phase_arr)

endif

line(3:3) is either H or V indicating horizontal or vertical orbit measuring BPMs. In this case, the call
to the tao_find_data routine returns d1 data arrays to the amplitude data (d1_amp_arr) and phase
data (d1_phase_arr). Just like the tune data, since it is assumed only one universe is being used, there
should be one and only d1 structure for the phase and only one d1 structure for the amplitude:
d1_amp_arr(1)%d1 ! d1 struucture for the amplitude data
d1_phase_arr(1)%d1 ! d1 struucture for the phase data

To save on typing, and make the code clearer, pointers are used to point to these structures:
type (tao_d1_data_struct), pointer :: d1_phase, d1_amp
...
d1_amp => d1_amp_arr(1)%d1
d1_phase => d1_phase_arr(1)%d1

The array of datums for the amplitude and phase data will be d1_amp%d(:) and d1_phase%d(:) re-
spectively.

After the d1_amp and d1_phase pointers have been set, there is a loop over all the lines in the file to
extract the ping data. One problem faced is that the order of the data in the file is not the same as the
order of the data in d1 structures. [The data in the file is sorded in increasing numberical order in the
BPM name while the order in the d1 structures is sorted by increasing logitudinal s-position.] To get
around this problem, the BPM name in the file is used to locate the appropriate datum (the associated
BPM element name is stored in the %ele_name component of the datums):
character(140) :: cmd_word(12), ele_name
...
call tao_cmd_split (line, 4, cmd_word, .false., err)
read (cmd_word(2), *) r1

13.6. READING IN MEASURED DATA EXAMPLE 191

read (cmd_word(3), *) r2
ele_name = cmd_word(1)
datum_amp => tao_pointer_to_datum(d1_amp, ele_name(3:))
datum_phase => tao_pointer_to_datum(d1_phase, ele_name(3:))

The line string holds a line from the data file, the call to tao_cmd_split splits the line into word chunks
and puts them into the array cmd_word(:). cmd_word(1) holds the first word which is the BPM name
with “R:” prepended to the name. The calls to tao_pointer_to_datum return pointers, datum_amp and
datum_phase, to the approbriate datums given the BPM name.

After the appropriate datums have been identified, the ping data values read from the data file, r1 and
r2, are used to set the appropriate components:
if (data_or_ref == ’data’) then
datum_phase%good_meas = .true.
datum_amp%meas_value = r2
datum_amp%good_meas = .true.

else
datum_phase%good_ref = .true.
datum_amp%ref_value = r2
datum_amp%good_ref = .true.

endif

One problem is that individual data phase data points can be off by factors of 2π. To correct this, the
measured phase values are shifted by factors of 2π so that they are within ±π of the design values. There
is an added “branch cut” problem here in that, even without the factors of 2π problem, the measured
phases will be off from the design values by some arbitrary amount (determined by how the zero phase
is defined in the program that created the data file). If this difference between the zero phase of the data
and the zero phase of design lattice (in the design lattice, the phase is taken to be zero at the beginning
of the lattice) is close enough to π, the shifting of the phases by factors of 2π will not be correct. For this
reason, a best guess as to what the offset is is used in the calculation to avoid the branch cut problem:
rms_best = 1e30

do i = 1, 20
offset = i / 20.0
data = data + nint(design + offset - data)
rms = sum((data - design - offset)**2, mask = ok)
if (rms < rms_best) then
offset_best = offset
rms_best = rms

endif
enddo

data = data + nint(design + offset_best - data)

192 CHAPTER 13. CUSTOMIZING TAO

Chapter 14

Tao Structures

This chapter gives an overview of the structures (classes) used in Tao. Knowledge of the structures is
needed in order to create custom versions of Tao. See Chapter §13 for details of how to create custom
Tao versions.

14.1 Overview

The Tao code files are stored in the following directories:
tao/code
tao/hooks
tao/program

Here tao is the root directory of Tao. Ask your local guru where to find this directory.

The files in tao/code should not be modified when creating custom versions of Tao. The files in
tao/hooks, as explained in Chapter §13, are templates used for customization. Finally, the directory
tao/program holds the program file tao_program.f90.

The structures used by tao are defined in the file tao_struct.f90. All Tao structures begin with the
prefix tao_ so any structure encountered that does not begin with tao_ must be defined in some other
library The getf and listf commands can be used to quickly get information on any structure. See
the Bmad manual for more details.

14.2 tao_super_universe_struct

The "root" structure in Tao is the tao_super_universe_struct. The definition of this structure is:
type tao_super_universe_struct
type (tao_global_struct) global ! Global variables.
type (tao_common_struct) :: com ! Global variables
type (tao_plotting_struct) :: plotting ! Plot parameters.
type (tao_v1_var_struct), allocatable :: v1_var(:) ! V1 Variable array
type (tao_var_struct), allocatable :: var(:) ! Array of all variables.
type (tao_universe_struct), allocatable :: u(:) ! Array of universes.
type (tao_mpi_struct) mpi

193

194 CHAPTER 14. TAO STRUCTURES

integer, allocatable :: key(:)
type (tao_building_wall_struct) :: building_wall
type (tao_wave_struct) :: wave
integer n_var_used
integer n_v1_var_used
type (tao_cmd_history_struct) :: history(1000) ! command history

end type

An instance of this structure called s is defined in tao_struct.f90:
type (tao_super_universe_struct), save, target :: s

This s variable is common to all of Tao’s routines and serves as a giant common block for Tao.

The components of the tao_super_universe_struct are:

%global
The %global component contains global variables that a user can set in an initialization file. See
§9.4 for more details.

%com
The %com component is for global variables that are not directly user accessible.

%plot_page
The %plot_page component holds parameters used in plotting (§14.3).

%v1_var(:)
The %v1_var(:) component is an array of all the v1_var blocks (§4) that the user has defined
(§14.4).

%var(:) The %var(:) array holds a list of all variables (§4) that the user has defined (§14.5).

%u(:)
The %u(:) component is an array of universes (§2.3) (§14.6).

%mpi
The %mpi component holds parameters needed for parallel processing (§14.7).

%key(:)
The %key(:) component is an array of indexes used for key bindings (§11.1).

%building_wall
The %building_wall component holds parameters associated with a building wall (§9.8).

%wave
The %wave component holds parameters needed for the wave analysis (§8).

%history
The %history component holds the command history (§14.11).

14.3 s%plot_page Component

The s%plot_page component of the super universe (§14.2 holds plotting information and is initialized
in the routine tao_init_plotting. s%plot_page is a tao_plot_page_struct structure which has
components:

14.4. S%V1_VAR COMPONENT 195

type tao_plot_page_struct
type (tao_title_struct) title(2) ! Title at top of page.
type (qp_rect_struct) border ! Border around plots edge of page.
type (tao_drawing_struct) :: floor_plan
type (tao_drawing_struct) :: lat_layout
type (tao_shape_pattern_struct), allocatable :: pattern(:)
type (tao_plot_struct), allocatable :: template(:) ! Templates for the plots.
type (tao_plot_region_struct), allocatable :: region(:)
character(8) :: plot_display_type = ’X’ ! ’X’ (X11) or ’TK’
character(80) ps_scale ! scaling when creating PS files.
real(rp) size(2) ! width and height of window in pixels.
real(rp) :: text_height = 12 ! In points. Scales the height of all text
real(rp) :: main_title_text_scale = 1.3 ! Relative to text_height
real(rp) :: graph_title_text_scale = 1.1 ! Relative to text_height
real(rp) :: axis_number_text_scale = 0.9 ! Relative to text_height
real(rp) :: axis_label_text_scale = 1.0 ! Relative to text_height
real(rp) :: legend_text_scale = 0.7 ! Relative to text_height
real(rp) :: key_table_text_scale = 0.9 ! Relative to text_height
real(rp) :: curve_legend_line_len = 50 ! Points
real(rp) :: curve_legend_text_offset = 10 ! Points
real(rp) :: floor_plan_shape_scale = 1.0
real(rp) :: lat_layout_shape_scale = 1.0
integer :: n_curve_pts = 401 ! Default number of points for plotting a smooth curve.
integer :: id_window = -1 ! X window id number.
logical :: delete_overlapping_plots = .true. ! Delete overlapping plots when a plot is placed?

end type

%template(:)
The %template(:) array contains the array of plot templates defined by the user (§9.10.2) and/or
the default plot templates which are created in the routine tao_init_plotting.

%region(:)
The %region(:) array contains the plot regions. Each element in the array is a tao_plot_region_struct
structure:
type tao_plot_region_struct
character(40) :: name = ’’ ! Region name. Eg: ’r13’, etc.
type (tao_plot_struct) plot ! Plot associated with this region
real(rp) location(4) ! [x1, x2, y1, y2] location on page.
logical :: visible = .false. ! To draw or not to draw.
logical :: list_with_show_plot_command = .true. ! False used for default plots to

! shorten the output of "show plot"
end type

Then place command finds the appropriate plot in the s%plot_page%template(:) array and
copies it to the s%plot_page%region(i)%plot component where i is the index of the region
specified by the place command.

14.4 s%v1_var Component

The s%v1_var(:) array holds the list of v1 variable blocks (§4. This array is initialized in the routine
tao_init_variables. The range of valid elements in this array goes from 1 to s%n_v1_var_used. Each
element of this array is a tao_v1_var_struct structure:

196 CHAPTER 14. TAO STRUCTURES

type tao_v1_var_struct
character(40) :: name = ’’ ! V1 variable name. Eg: ’quad_k1’.
integer ix_v1_var ! Index to s%v1_var(:) array
type (tao_var_struct), pointer :: v(:) => null()

! Pointer to the appropriate section in s%var.
end type

The %ix_v1_var component is the index of the element in the s%v1_var(:) array. That is, s%v1_var(1)%ix_v1_var
= 1, etc. This is useful when debugging.

The %v(:) component is a pointer to the appropreiate block in the s%var(:) array (§14.5) which contain
the individual variables associated with the particular v1 variable block.

14.5 s%var Component

The s%var(:) array holds the list complete list of all variables (§4. This array is initialized in the
routine tao_init_variables. The range of valid variables goes from 1 to s%n_var_used. Each element
in the s%v1_var(:) array (§14.4 has a pointer to the section of the s%var(:) array holding the variables
associated with v1 block. Using a single array of variables simplifies code where one wants to simply
loop over all variables (for example, during optimization).

Each element of the s%var(:) array is a tao_var_struct structure:
type tao_var_struct
character(40) :: ele_name = ’’ ! Associated lattice element name.
character(40) :: attrib_name = ’’ ! Name of the attribute to vary.
character(40) :: id = ’’ ! Used by Tao extension code. Not used by Tao directly.
type (tao_var_slave_struct), allocatable :: slave(:)
type (tao_var_slave_struct) :: common_slave
integer :: ix_v1 = 0 ! Index of this var in the s%v1_var(i)%v(:) array.
integer :: ix_var = 0 ! Index number of this var in the s%var(:) array.
integer :: ix_dvar = -1 ! Column in the dData_dVar derivative matrix.
integer :: ix_attrib = 0 ! Index in ele%value(:) array if appropriate.
integer :: ix_key_table = 0 ! Has a key binding?
real(rp), pointer :: model_value => null() ! Model value.
real(rp), pointer :: base_value => null() ! Base value.
real(rp) :: design_value = 0 ! Design value from the design lattice.
real(rp) :: scratch_value = 0 ! Scratch space to be used within a routine.
real(rp) :: old_value = 0 ! Scratch space to be used within a routine.
real(rp) :: meas_value = 0 ! The value when the data measurement was taken.
real(rp) :: ref_value = 0 ! Value when the reference measurement was taken.
real(rp) :: correction_value = 0 ! Value determined by a fit to correct the lattice.
real(rp) :: high_lim = -1d30 ! High limit for the model_value.
real(rp) :: low_lim = 1d30 ! Low limit for the model_value.
real(rp) :: step = 0 ! Sets what is a small step for varying this var.
real(rp) :: weight = 0 ! Weight for the merit function term.
real(rp) :: delta_merit = 0 ! Diff used to calculate the merit function term.
real(rp) :: merit = 0 ! merit_term = weight * delta^2.
real(rp) :: dMerit_dVar = 0 ! Merit derivative.
real(rp) :: key_val0 = 0 ! Key base value
real(rp) :: key_delta = 0 ! Change in value when a key is pressed.
real(rp) :: s = 0 ! longitudinal position of ele.

14.6. S%U COMPONENT 197

character(40) :: merit_type = ’’ ! ’target’ or ’limit’
logical :: exists = .false. ! See above
logical :: good_var = .false. ! See above
logical :: good_user = .true. ! See above
logical :: good_opt = .false. ! See above
logical :: good_plot = .false. ! See above
logical :: useit_opt = .false. ! See above
logical :: useit_plot = .false. ! See above
logical :: key_bound = .false. ! Variable bound to keyboard key?
type (tao_v1_var_struct), pointer :: v1 => null() ! Pointer to the parent.

end type tao_var_struct

%exists
The variable exists. Non-existent variables can serve as place holders in the s%var array.

%good_var
The variable can be varied. Used by the lm optimizer to veto variables that do not change the
merit function.

%good_user
What the user has selected using the use, veto, and restore commands.

%good_opt
Not modified by Tao. Setting is reserved to be done by extension code.

%good_plot
Not modified by Tao. Setting is reserved to be done by extension code.

%useit_opt
Variable is to be used for optimizing:
%useit_opt = %exists & %good_user & %good_opt & %good_var

%useit_plot
If True variable is used in plotting variable values:
%useit_plot = %exists & %good_plot & %good_user

14.6 s%u Component

The s%u(:) array holds the Tao universes (§2.3). Each element of this array is a tao_universe_struct
structure:
type tao_universe_struct
type (tao_universe_struct), pointer :: common => null()
type (tao_lattice_struct), pointer :: model, design, base
type (tao_beam_struct) beam
type (tao_dynamic_aperture_struct) :: dynamic_aperture
type (tao_universe_branch_struct), pointer :: uni_branch(:) ! Per element information
type (tao_d2_data_struct), allocatable :: d2_data(:) ! The data types
type (tao_data_struct), allocatable :: data(:) ! Array of all data.
type (tao_ping_scale_struct) ping_scale
type (lat_struct) scratch_lat ! Scratch area.
type (tao_universe_calc_struct) calc ! What needs to be calculated?
real(rp), allocatable :: dModel_dVar(:,:) ! Derivative matrix.

198 CHAPTER 14. TAO STRUCTURES

integer ix_uni ! Universe index.
integer n_d2_data_used ! Number of used %d2_data(:) components.
integer n_data_used ! Number of used %data(:) components.
logical :: reverse_tracking = .false. ! Reverse tracking direction?
logical is_on ! universe turned on
logical picked_uni ! Scratch logical.

end type

14.7 s%mpi Component

The s%mpi component holds information that is used when running Tao multi-threaded.

14.8 s%key Component

The value of %key(i) is the index in the %var(:) array associated with the iþkey.

14.9 s%building_wall Component

14.10 s%wave Component

14.11 s%history Component

Bibliography

[Bma06] D. Sagan, "Bmad: A Relativistic Charged Particle Simulation Library" Nuc. Instrum. & Meth-
ods Phys. Res. A, 558, pp 356-59 (2006).

The Bmad Manual can be optained at:
www.classe.cornell.edu/bmad

[Bengt97] J. Bengtsson, “The Sextupole Scheme for the Swiss Light Source (SLS): An Analytic Ap-
proach,” SLS Note 9/97, Paul Scherrer Institut, (1997).

[Wang12] C. Wang, “Explicit formulas for 2nd-order driving terms due to sextupoles and chromatic
effects of quadrupoles,” ANL/APS/LS-330, Argonne National Laboratory, (2012).

[Blender] Blender web page:
blender.org/

[Fra11] A. Franchi, L. Farvacque, J. Chavanne, F. Ewald, B. Nash, K. Scheidt, and R. Tom,́ “Vertical
emittance reduction and preservation in electron storage rings via resonance driving terms correc-
tion”, Phys. Rev. ST Accel. Beams, 14, 3, 034002, (2011).

link.aps.org/doi/10.1103/PhysRevSTAB.14.034002

[NR92] W. Press, B. Flannery, S. Teukolsky, W. Wetterling, Numerical Recipes in Fortran, the Art of
Scientific Computing, Second Edition, Cambridge University Press, New York (1992)

[Saf97] J. Safranek, “Experimental determination of storage ring optics using orbit response measure-
ments”, NIM-A388, p. 27 (1997).

[Sag99] D. Sagan, and D. Rubin, “Linear Analysis of Coupled Lattices,” Phys. Rev. ST Accel. Beams 2,
074001 (1999).

https://journals.aps.org/prab/abstract/10.1103/PhysRevSTAB.2.074001

[Sag00a] D. Sagan, R. Meller, R. Littauer, and D. Rubin, “Betatron phase and coupling measurement
at the Cornell Electron/Positron Storage Ring”, Phys. Rev. ST Accel. Beams 3, 092801 (2000).

link.aps.org/doi/10.1103/PhysRevSTAB.3.092801

[Sag00b] D. Sagan, “Betatron phase and coupling correction at the Cornell Electron/Positron Storage
Ring”, Phys. Rev. ST Accel. Beams 3, 102801 (2000).

link.aps.org/doi/10.1103/PhysRevSTAB.3.102801

[Sto96] R. Storn, and K. V. Price, "Minimizing the real function of the ICEC’96 contest by differential
evolution" IEEE conf. on Evolutionary Computation, 842-844 (1996).

[Wil00] Klaus Wille, The Physics of Particle Accelerators: An Introduction, Translated by Jason McFall,
Oxford University Press (2000).

199

www.classe.cornell.edu/bmad
blender.org/
link.aps.org/doi/10.1103/PhysRevSTAB.14.034002
https://journals.aps.org/prab/abstract/10.1103/PhysRevSTAB.2.074001
link.aps.org/doi/10.1103/PhysRevSTAB.3.092801
link.aps.org/doi/10.1103/PhysRevSTAB.3.102801

Index

abs_max, 95
abs_min, 95
alpha, 58
arithmetic Expressions, 26

base, 108
base lattice, 20, 21, 21

using set command, 21
beam chamber wall, 121
beam_chamber_wall, 108
beam_file, 81
beam_init, 90

a_norm_emit, 90
b_norm_emit, 90
bunch_charge, 90
center, 90
center_jitter, 90
dPz_dZ, 90
dt_bunch, 90
emit_jitter, 90
n_bunch, 90
n_particle, 90
polarization, 90
renorm_center, 90
renorm_sigma, 90
sig_e, 90
sig_e_jitter, 90
sig_z, 90
sig_z_jitter, 90

beam_random_engine, 84
beam_random_gauss_converter, 84
beam_track_end, 90
beam_track_start, 90
beta, 58
bmad, 19, 82
bmad_com, 84
box, 117
building wall, 58
building walls, 99
bunch_to_plot, 84

calculation, 108

cbar, 58
change command, 33
chrom, 58
class::name, 26
clone, 94
command

misalign, 131
command files, 17
command line, 15
command_file_print_on, 84
commands

alias, 126
call, 127
change, 127
clip, 128
Command List, 125
continue, 129
derivative, 130
do, 129
end_file, 130
exit, 130
flatten, 130
help, 130
pause, 131
place, 132
plot, 132
ptc, 132
python, 133
quiet, 133
quit, 133
re_execute, 133
read, 134
reinitialize, 135
restore, 134
run, 135
scale, 135
set, 136
show, 146
single_mode, 164
spawn, 164
timer, 164
use, 165

200

INDEX 201

veto, 165
wave, 165
write, 166
x_axis, 168
x_scale, 168
xy_scale, 169

common root lattice, 72
common_lattice, 81
concatenate_maps, 84
coupling, 58
csr_param, 84
current_init_file, 84
curve, 61, 106

convert, 106
data_source, 106, 108
data_type, 106
data_type_x, 106
draw_line, 106
draw_symbols, 106
ele_ref_name, 106, 121, 123
ix_bunch, 106
ix_ele_ref, 106, 121, 123
ix_universe, 106
line, 106
name, 106
symbol, 106
symbol_every, 106
use_y2, 106
x_axis_units_factor, 106
y_axis_units_factor, 106

customizing, 179
hooks, 180
tao_hook_commad, 181
tao_hook_evaluate_a_datum, 181
tao_hook_graph_data_setup, 180
tao_hook_init, 181
tao_hook_init_design_lattice, 181
tao_hook_lattice_calc, 182
tao_hook_merit_data, 182
tao_hook_merit_var, 182
tao_hook_optimizer, 182
tao_hook_parse_command_args, 182
tao_hook_plot_data_setup, 183
tao_hook_plot_graph, 182
tao_hook_post_process_data, 183

d1_data, 37, 98
name, 96

d2_data, 37, 98
name, 95

data, 20, 37, 108

associated lattice elements, 45
base, 42
calculation method, 58
data Types, 46
data_source, 44
data_type, 96, 98
design, 42
ele_name, 96
ele_ref_name, 96
ele_start_name, 96
good_user, 96
ix_bunch, 96
meas, 96
measured, 42
merit_type, 96
model, 42
name, 96
reference, 42
weight, 96

data%weight, 98
data_file, 81
data_source, 97
de

optimizer, 135
de optimizer, 71
default_attribute, 92
default_data_source, 97
default_data_type, 96, 98
default_high_lim, 92
default_init_file, 84
default_low_lim, 92
default_merit_type, 92, 95
default_step, 92
default_universe, 92
default_weight, 92, 96, 98
derivative_recalc, 84
derivative_uses_design, 84
design, 108
design lattice, 20, 21, 21
design_lattice, 81

file, 81
parser, 81

digested, 82
dpa_da, 58
dpb_db, 58
dpx_dx, 58
dpy_dy, 58
dpz_dz, 58
draw_curve_off_scale_warn, 84
dynamic aperture, 100
dynamic aperture drawing, 118

202 INDEX

dynamic_aperture, 150

e_tot, 58
ele_index, 105
element shape

color, 116
emittance, 58
eta, 58
etap, 58

floor, 58
floor plan drawing, 113
floor_plan, 108
floor_plan drawings, 115
floor_plan_drawing, 81

gang, 94
global, 84
global parameters, 20
global%track_type, 22
graph, 61, 106

box, 106, 111
clip, 106
component, 106
floor_plan_flip_label_side, 106
floor_plan_rotation, 106
floor_plan_view, 106
ix_universe, 111
margin, 106, 111
n_curve, 106, 111
name, 106, 111
symbol_size_scale, 106
title, 106, 111
type, 106, 111
y, 106
y2, 106

graph_index, 106, 111

histogram drawing, 119
hook_init_file, 81

index, 105
Initialization, 79

beginning, 81
initialization

beams, 90
constants, 95
data, 95
globals, 84
lattice, 81
plotting

plot window, 102

variables, 92
initializing

files, 17
intrinsic functions, 26
ix_d1_data, 96
ix_key_bank, 84
ix_max_data, 96
ix_max_var, 92, 93
ix_min_data, 96
ix_min_var, 92, 93
ix_universe, 90

key bindings, 171
key table, 121
key_table, 108

label_keys, 84
label_lattice_elements, 84
lat_layout, 108
lat_layout drawings, 115
lat_layout_drawing, 81
lattice, 20, 21

base, see base lattice
calculation of, 22
design, see design lattice
model, see model lattice

lattice calculaitons, 17
lattice corrections, 67
lattice layout, 111
lattice_calc_on, 84
lattice_file, 81
limit, 94
lm, 149

optimizer, 135
lm optimizer, 71
lm_opt_deriv_reinit, 84
lmdif optimizer, 71
lr_wakes_on, 87

max, 95
meas, 108
merit function, 67
min, 95
model, 108
model lattice, 20, 21, 21
modeling data, 67

n_d1_data, 95
n_lat_layout_label_rows, 84
n_opti_cycles, 84
n_universes, 81
norm_emittance, 58

INDEX 203

only_limit_opt_vars, 84
opt_with_base, 84
opt_with_ref, 84
opti_de_param, 84
Optimization

setting the optimizer, 84
optimization, 67

constraints, 68
generalized merit function, 69
lattice design, 68
merit function, 67
optimize with reference, 69
optimizer, 70

optimization troubleshooting, 72
optimizer

variables, 33
orbit, 58

page, 62
phase, 58
phase space plotting, 122
phase_space, 108
phase_units, 84
place, 102
place command, 62
plot, 61

autoscale_gang_x, 104
autoscale_gang_y, 104
autoscale_x, 104
autoscale_y, 104
data slice, 110
initialization file, 62
n_graph, 104, 111
name, 104, 111
plotting as a function of a variable, 111
x, 104

max, 111
min, 111

x_axis_type, 104
plot templates, 104
plot_file, 81
plot_on, 84
plot_page

border, 102
n_curve_pts, 102
size, 102
text_height, 102
title, 102

plotting, 20, 61
plotting initializing, 102
print_command, 84

programming
overview, 193

prompt_string, 84
px, 120, 123
py, 120, 123
python, 177
python interface, 177
pz, 120, 123

qp_axis_struct
label, 105
major_div, 105
major_div_nominal, 105
max, 105
min, 105
minor_div, 105

r, 58
rad_int.i1, 58
rad_int.i2, 58
rad_int.i2_e4, 58
rad_int.i3, 58
rad_int.i3_e7, 58
rad_int.i5a_e6, 58
rad_int.i5b_e6, 58
radiation_damping_on, 87
radiation_fluctuations_on, 87
random_seed, 84
ref, 108
region, 62

location, 102
name, 102

s, 105
s_position, 58
search_for_lat_eles, 92, 94, 96, 97
sigma, 58
single mode, 171

list of Key strokes, 173
single_mode, 84
single_mode_file, 81
spin, 58
sr_wakes_on, 87
startup_file, 81
startup_single_mode, 81
structure, 20
structures in tao, 193
super_universe, 19, 20, 20
svd, 149
svd optimizer, 71

t, 58

204 INDEX

tao.init, 81
tao_beam_init, 81, 90
tao_building_wall_struct, 194
tao_common_struct, 194
tao_d1_data, 81, 96
tao_d2_data, 81, 95
tao_design_lattice, 81
tao_global_struct, 22, 194
tao_mpi_struct, 194
tao_params, 81, 84
tao_plot_page, 81, 102
tao_plotting_struct, 194
tao_start, 81
tao_super_universe_struct, 193
tao_template_graph, 81, 106, 111
tao_template_plot, 81, 104, 111
tao_universe_struct, 194
tao_v1_var_struct, 194
tao_var, 81, 92
tao_var_struct, 194
tao_wave_struct, 194
target, 94, 95
taylor_order, 87
template plot, 62
track_type, 22, 84
tracking

types, 22
tt, 58

Universe, 95
universe, 20, 20
unstable.orbit, 58
unstable.ring, 58
use_same_lat_eles_as, 92, 94, 96, 97

v1_var
name, 92

var, 108
attribute, 92
ele_name, 92
good_user, 92
high_lim, 92
low_lim, 92
merit_type, 92
name, 92
step, 92
universe, 92
weight, 92

var_file, 81
var_limits_on, 84
var_out_file, 84

variable, 20
base, 34
design, 34
measured, 34
model, 34
reference, 34

variables, 33
v1_var, 33

wire, 58
write_file, 84

x, 120, 123
xbox, 117
xsif, 82

y, 120, 123

z, 120, 123

	Preamble
	Introduction

	Contents
	Table of Contents
	List of Figures
	List of Tables

	I Reference Guide
	Overview: Starting and Running Tao
	Tao Setup
	Tao Tutorial
	Initialization from the Command Line
	Initializing Tao
	Command Line Mode and Single Mode
	Lattice Calculations
	Command Files and Aliases
	Customizing Tao

	Overall Organization and Structure
	The Organization of Tao: The Super_Universe
	The Super_universe
	The Universe
	Lattices
	Tracking Types
	Lattice Calculation

	Syntax
	Element List Format
	Arithmetic Expressions
	Specifying Data Parameters in Expressions
	Specifying Variable Parameters in Expressions
	Specifying Lattice Parameters in Expressions
	Specifying Beam Parameters in Expressions
	Specifying Element Parameters in Expressions
	Format Descriptors

	Variables
	Data
	Data Organization
	Anatomy of a Datum
	Datum values
	Evaluation Point of a Datum
	Datums in Optimization
	Data_source
	Datum Evaluation and Associated Lattice Elements
	Tao Data Types

	Plotting
	Optimization: Lattice Correction and Design
	Lattice Corrections
	Lattice Design
	Generalized Design
	Variable Limits and Optimization
	Optimizers in Tao
	Optimization Troubleshooting Tips
	Common Root Lattice (CRL) Analysis

	Wave Analysis
	General Description
	Wave Analysis in Tao
	Preparing the Data
	Wave Analysis Commands and Output

	Tao Initialization
	Namelist Syntax
	Beginning Initialization
	Lattice Initialization
	Initializing Globals
	tao_global_struct Structure
	bmad_com_struct Structure
	csr_param_struct Structure
	opti_de_param_struct Structure

	Initializing Particle Beams
	Initializing Variables
	Initializing Data and Constraints
	Old Data Format

	Initializing a Building Wall
	Initializing Dynamic Aperture
	Initializing Plotting
	Plot Window
	Plot Templates
	Data and Variable plotting
	Graphing a Data Slice
	Plotting With a Variable Parameter on the X-Axis
	Drawing a Lattice Layout
	Drawing a Floor Plan
	Defining Shapes for Lat_layout and Floor_plan Drawings
	Drawing a Dynamic Aperture
	Drawing a Histogram
	Drawing the Beam Chamber Wall
	Drawing a Key Table
	Phase Space Plotting

	Tao Commands
	alias
	call
	change
	clip
	continue
	do, enddo
	end_file
	exit
	derivative
	flatten
	help
	misalign
	pause
	place
	plot
	ptc
	python
	quiet
	quit
	re_execute
	read
	restore
	reinitialize
	run_optimizer
	scale
	set
	set beam
	set beam_init
	set bmad_com
	set branch
	set csr_param
	set curve
	set data
	set default
	set element
	set floor_plan
	set geodesic_lm
	set global
	set graph
	set key
	set lat_layout
	set lattice
	set opti_de_param
	set particle_start
	set plot
	set plot_page
	set ran_state
	set symbolic_number
	set universe
	set variable
	set wave

	show
	show alias
	show beam
	show branch
	show building_wall
	show constraints
	show control
	show curve
	show data
	show derivative
	show dynamic_aperture
	show element
	show field
	show global
	show graph
	show history
	show hom
	show internal
	show key_bindings
	show lattice
	show matrix
	show merit
	show normal_form
	show optimizer
	show opt_vars
	show particle
	show plot
	show spin
	show symbolic_numbers
	show taylor_map
	show track
	show twiss_and_orbit
	show universe
	show use
	show value
	show variable
	show wakes
	show wall
	show wave

	single_mode
	spawn
	timer
	use
	veto
	wave
	write
	x_axis
	x_scale
	xy_scale

	Single Mode
	Key Bindings
	List of Key Strokes

	II Programmer's Guide
	Python/GUI Interface
	Python Interface Via Pexpect
	Python Interface Via Ctypes
	Tao Python command
	Plotting Issues

	Customizing Tao
	Initial Setup
	It's All a Matter of Hooks
	Initializing Hook Routines
	Hook Routines
	tao_hook_graph_setup
	tao_hook_command
	tao_hook_evaluate_a_datum
	tao_hook_init1 and tao_hook_init2
	tao_hook_init_design_lattice
	tao_hook_lattice_calc
	tao_hook_merit_data
	tao_hook_merit_var
	tao_hook_optimizer
	tao_hook_parse_command_args
	tao_hook_plot_graph
	tao_hook_plot_data_setup
	tao_hook_post_process_data

	Adding a New Data Type Example
	Reading in Measured Data Example
	Analysis of the tao_hook_command.f90 File

	Tao Structures
	Overview
	tao_super_universe_struct
	s%plot_page Component
	s%v1_var Component
	s%var Component
	s%u Component
	s%mpi Component
	s%key Component
	s%building_wall Component
	s%wave Component
	s%history Component

