USPAS summer 2023, Grad Accelerator Physics

Georg Hoffstaetter de Torquat and David Sagan June 12, 2023

Homework #6

Exercise (Coupling)

Write the Hamilton function for a midplane symmetric accelerator with tunes ν_x and ν_y that has the following perturbations from midplane symmetry. What resonances can occur? Which of these resonances can lead to very large oscillation amplitudes and therefore have to be avoided?

- (a) Weak skew quadrupole perturbations with strength $k_{1s}(s) = \frac{q}{p} \partial_x B_x(s)$.
- (b) Weak skew sextupoles perturbations with strength $k_{2s}(s) = \frac{q^r}{p} \frac{1}{2} \partial_x^2 B_x(s)$.

Exercise (Amplitude dependent tune shift)

Write the Hamilton function for a midplane symmetric accelerator with tunes ν_x and ν_y that has small midplane symmetric oktopoles with strength k_3 .

- (a) Derive the horizontal and vertical amplitude dependent tune shifts as functions of J_x and J_y .
- (b) Show that $\partial_{J_x} \nu_y = \partial_{J_y} \nu_x$ for your result from (a).
- (c) Show that the J_x derivative of the vertical tune is always the same as the J_y derivative of the horizontal tune, for any amplitude-dependent tune shift.