USPAS summer 2023, Grad Accelerator Physics # Georg Hoffstaetter de Torquat and David Sagan June 12, 2023 ## Homework #6 #### Exercise (Coupling) Write the Hamilton function for a midplane symmetric accelerator with tunes ν_x and ν_y that has the following perturbations from midplane symmetry. What resonances can occur? Which of these resonances can lead to very large oscillation amplitudes and therefore have to be avoided? - (a) Weak skew quadrupole perturbations with strength $k_{1s}(s) = \frac{q}{p} \partial_x B_x(s)$. - (b) Weak skew sextupoles perturbations with strength $k_{2s}(s) = \frac{q^r}{p} \frac{1}{2} \partial_x^2 B_x(s)$. #### Exercise (Amplitude dependent tune shift) Write the Hamilton function for a midplane symmetric accelerator with tunes ν_x and ν_y that has small midplane symmetric oktopoles with strength k_3 . - (a) Derive the horizontal and vertical amplitude dependent tune shifts as functions of J_x and J_y . - (b) Show that $\partial_{J_x} \nu_y = \partial_{J_y} \nu_x$ for your result from (a). - (c) Show that the J_x derivative of the vertical tune is always the same as the J_y derivative of the horizontal tune, for any amplitude-dependent tune shift.