Transport maps of cavities
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(1) Linearization: Er(r,z,t) = —La E (O,Z,t) = V-E=0
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Transport maps of cavities

(3) Average focusing over one period with relatively little energy change:
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(4) Continuous energy change:
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Transport maps of traveling wave cavities
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Transport maps of standing wave cavities
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Phase space preservation in cavities

Average focusing over one period with relatively little energy change:
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Because the determinant is not 1, the phase space volume is no longer
conserved but changes by py/p.

A new propagation and definition of Twiss parameters is therefore needed:
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Twiss parameters in accelerating cavities
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Beta functions in accelerating cavities
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For systems with changing energy one uses the normalized Courant-Snyder
invariant J,= J b, g,
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Reasons:

J is the phase space amplitude of a particle in (x, @) phase space, which is
the area in phase space (over 2p) that its coordinate would circumscribe
during many turns in a ring. However, a=p,/pg is not conserved when p0
changes in a cavity. Therefore J is not conserved.

J, =J po/mc is therefore proportional to the corresponding area in (X, py)
phase space, and is thus conserved.
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Radiative damping of the transverse emittance
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Radiative excitation of the transverse emittance
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Smaller emittance

Smaller dispersion
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Radiative damping of the longitudinal emittance

1) Energy emission: Particles with larger energy radiate more, leading them closer to the average energy.

2) Stochastic emission: Random noise in the energy of emitted photons lead to an energy spread.

—>

The equilibrium of the two effects leads to an equilibrium longitudinal emittance.

The damping time is the time it takes to radiate off the energy of the beam, while it is kept at constant
energy with RF cavities. It is usually a few 100 revolutions.

During this damping time the beam forgets its history, particle coordinates are reshuffled within the beam.
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Radiative production by electrons

bending radius

accclerating
force

radiation field

magnet poles
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Radiative production in undulators

undulator period

When the light wave passes the
electron beam by half a wavelength
per half beam oscillation, the
radiation from each beam oscillation
adds.

Vv electron trajectory

e

4
Similar adding can happen

X : for 3, 5, 7, etc. half beam
: oscillations. For every

> strong frequency there are
odd order harmonics.

light wave
E g
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Coherent addition of radiation
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Coherent addition at angles
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Radiation production at angles

).=%/1u(%—cos¢4

Longer wavelength for larger angles.
Odd and even harmonics off axis.
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Lasing at the JLAB FEL

Wiggler gap
High Reflector

Hole Outcoupler
Beam in control room
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Radiative from bending magnets

Angnler Spectral Fhux (photons per s rad® herdwicth)
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Photon flux from bends and undulators

Angular Spectral Flux (Ph pers mrad® 0.1% BW) Angular Spectral Flux (Ph per s mrad® 0.1% BW )
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The umbrella of N-pole undulator radiation

w!

Angular Spectral Flux (Ph per s mrad® 0.1 BW)
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Flux from N poles is N times
the flux from one pole
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The umbrella of N-pole undulator radiation

¥

LxN — AtcN — Awx N~'  Angular Spectral Flux (Ph per s mrad? 0.1% BW)
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The umbrella of N-pole undulator radiation
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LxN — AtcN — Awx N~'  Angular Spectral Flux (Ph per s mrad? 0.1% BW)
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The power in the central Flux from N poles is N times
cone is in dependent of N the flux from one pole
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Brightness reduction by beam properties
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Brightness reduction by beam properties
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Brightness reduction by beam properties
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Brightness reduction by beam properties

W 1)

W

Widening due to beam Widening due to beam
energy spread: Uncritical if divergence: Uncritical if
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To take advantage of many undulator poles, the electron beam needs to
| have little energy spread, little divergence, and small beam size.
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