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Homework #3 Answers

Exercise 1 (Variation of constants)
Find the time evolution of the driven harmonic oscillator that satisfies the dif-
ferential equation
d2
dt?
with the variation of constants method covered in class. What is the matrix L,
what is the perturbation vector A f, what is the transfer matrix M , what is the
solution xz(t) for initial condition z¢ and vy, where v = dz/dt.
Answers: First we transform the second order differential equation into two
first order equations:

r = —w?x + e cos(wot) (1)

d
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In the matrix form from class this is written as
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Next we solve the homogenious differential equation %ZH = LZ with the solu-

. Zu(t) = ( iég ) = ( —Zossi(nw(izt) ii?ffif) ) ( " )

Now we are ready to evaluate the variation of constant equation

Z(t) = Zy (t) +/0 M(t —H)Af(E)di .

The left-hand integral computes the effect of the drive oscillation
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The top line describes the contribution to z(¢) iand on the bottom line that to
the velocity v(t). In the following, the top line of the integral is computed to

determine z(t):
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The full solution for x(t) is therefore

1
x(t) = cos(wt)xo + " sin(wt)vy + oﬂ%wg(cos(wot) — cos(wt))

Exercise 2 (FODO Twiss parameters)

(a) Find the Twiss parameters of the phase space ellipse that is periodic for a
FODO Cell in thin lens approximation, i.e. all particles that enter a FODO cell
on this phase space ellipse exit the cell on the same ellipse. Let the focusing and
defocusing quadrupole have the strength & and —k. Furthermore, let the cell
start with half a focusing quadrupole, and let the distance between quadrupoles
be L/2 so that the transport matrix of the cell is given by

M= Q()D(H)R(-KDE)QS) )

The thin lens matrices of drift and quadrupole are

an=( 1 1) ow=(4 1)

(b) Characterize how this periodic phase space ellipse changes along the FODO
cell by drawing ellipses in phase space at various points along the cell. Do this
for the horizontal and the vertical plane separately.

(c) Compute the periodic dispersion (n,n") for this FODO cell, assuming that
there is a thin lens dipole with bending angle ¢ in the center between both
quadrupoles.



(d) For what betatron phase advance (in degree) along the FODO is the max-
imum beta function in the FODO the smallest?

Answer:
(a) The matrices are given by

ki

o) = (V). (@)

L
3= (o1) o)
B 1—2(kL)2 L(1+4 XLy

o= gpri ey 1oads:) 0

From cos i = £Tr(M) one obtains cospp = 1 — 2(%L£)2 and thus |2 L| = sin £.

We use & = %% and observe that a real phase advance p for a periodic phase
space ellipse can only be found when |§| < 1. The Twiss parameters are obtained

from a o My; — Maz =0 and 8 = |My2/sinpu| = |%|,/%

(b) The periodic ellipse is upright, due to a = 0. It is sheered downward by the
first focusing quadrupole and then sheered to the right by the following drift.
The defocusing quadrupole now sheers twice as strongly upward, and the second
drift sheers again to the right, so that the last focusing quad returns the ellipse
to its original form by a downward sheer.

(c) The dispersion of a thin lens dipole is given by Dy = (D, D’) = (0,¢). To
obtain the dispersion of the FODO, one has to transport this dispersion of the
first dipole by a drift of length % and then through the defocusing quad and
the rest of the FODO. To this one has to add the dispersion Dy = (0, ¢) from
the second dipole which is transported through a drift % and through the last
quadrupole. This leads to

p-ahoe-moi e o= (3128 ). @

The periodic dispersion 77 must satisfy 7(L) = M7j(0) + D = 7j(0), and it is
therefore computed as

o J i
7(0) = (1— M)-15 = ( % ¢ ) ®)

(d) When k > 0, the first quadrupole is focusing and the maximal beta function

is located in the center of this quad The smallest possible value for this beta

function is obtained from 0¢ 5 o< 2 1+£ +1 ST 5 L x€2+¢—-1=0. The positive
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solution of this equation is £ = =sin § and thus p = 76°.

Exercise 3 (Symmetric and Asymmetric 4Bumps)



Given a FODO lattice which has the periodic Twiss parameters 3, = 3, =
10m, a, = oy = 0 at its exit.
(a) If you want to construct a symmetric arrangement of six quadrupoles to de-
sign an interaction region with a horizontal beta function of 0.5m and a vertical
beta function of 0.05m in its center. How would the transport matrix from the
FODO to the interaction point have to lock like?
Answer:
A simple FODO, in which the drift after the focusing and after the defocusing
quadrupole have the same length leads to a periodic FODO lattice which is mir-
ror symmetric with respect to the center of each quadrupole, where therefore
a0 = 0 and oy = 0. For simplicity it is therefore good to choose the center of
the last FODO quadrupole as the starting point of the low-beta insertion. At
the interaction point there is a; = 0 and a; = 0. The transport matrix from
FoDo to IP is then

COS Yy v/ BzoBk sin i, 0 0
M \/51107’% sin ¢ CcOS Wy 0 0
- 0 0 1cos Py V/ ByoBy sinty
0 0 NERTH sin 1, cos Py

(9)
(b) Why are six quadrupoles at fixed locations not sufficient to adjust the
two beta functions?
Answer:
For the horizontal plain, there are 2 free parameters that have to be adjusted to
the specified values at the interaction point (IP): 8%, and af = 0. And for the
vertical plain the corresponding 2 parameters have to be adjusted. Therefore
4 free parameters are required to adjust the Twiss parameters at the IP. Since
the interaction region is arranged in a symmetric way, the quadrupoles in the
second half of the low-beta insertion do not contribute independent parameters.
Six quadrupoles therefore do not allow for a sufficient number of free parameters.

(c) Assume there is also a symmetric arrangement of four horizontal cor-
rector coils and that the Twiss parameters at their places are known. Specify
the relative strength of these coils so that a closed bump is created that only
changes the orbit position at the low beta point, but not orbit angle.

Answer:

Let the 4 corrector coils be located at Twiss parameters 5; and v;, and their
corrector angles are §; for ¢ € {1,...,4}. The symmetric arrangement requires
that the beta functions at 1 and 4 are the same and that those at 2 and 3 are
the same. For simplicity we locate the origin of the betatron phases at the IP
so that ¢(IP) = 0. The symmetric arrangement then means for the phases that
g = p— 1 and Y3 = p — P9, where we choose 17 and 15 to be positive. Since
the first magnet is further from the IP, one has 1 > s.

The bump which changes the orbit position at the IP but not the angle is
symmetric, and therefore also the corrector coil angles have to be symmetric,



i.e. 91 = 94 and 6‘2 = 93.
The closed orbit that is created when the four corrector coils are excited can
be written as

2(5) = Y2 S 1B cos(ls) — il ~ ) (10)

This bump has to be 0 at position s1, and due to symmetry will then also be 0
at position sy,
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The relation between the bending angle therefore has to be

_ B cos Py
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b5 = 02, (13)
0, = 0. (14)

(d) Specify the relative strength of these coils so that a closed bump is
created that only changes the orbit slope at the low beta point, but not the
orbit position.

Answer:

Since now the orbit is anti-symmetric, also the corrector angles have to be anti-
symmetric, i.e. 83 = —f and 8, = —#,. To have no closed orbit distortion at
position so and s4 it is required that

x(s1) = vhi [ 91\/ECOSg + 02/ B2 cos(th1 — 2 — g)

=
251n2

— O/ Do COS(¢1 + g — g) — 91\/BTCOS(Z¢1 — %) = q15)
The relation between the bending angle therefore has to be
B sin ¢y
Oy = —y/= 0 1
? \/ B2 sin ¢y ' (16)
93 = 02 ) (17)
0, = 0. (18)

1 Lattice Design #3

Report your results for the following exercises of the Ring Design Tutorial ex-
ercises section 2.3 number 1, 2, 5, and 6.



1 - Reverse dispersion suppressor: Construct the reverse dispersion
suppressor, optimizing the last two quadrupole strengths for n, = 0 and n,, =0
at the end for FoDo cells of 900 phase advance. How do the two quadrupole
values for the reverse dispersion suppressor compare to those obtained for the
forward suppressor?

2 - Forward and Reversed Cells: Check that your forward and reverse
cells that both start with focusing quads have different periodic beta and alpha
functions. Check also that both cell, for the same phase advance of 90 degrees
have exactly the same quadrupole strengths. Explain how this can be the correct
solution.

3 - Strength of bends: to a good approximation: A dispersion sup-
pressor can be constructed using two arc FODO cells with the first cell having
the bend strengths reduced by a factor a and the second cell with the bend
strengths reduced by a factor 1 — a.. In the case of a 90° FoDo cells, we showed
in class that a = 0.5, and for a 60° FoDo we found a = 0. Find the suitable
«a for a 72° FoDo. Either determine « analytically or by matching the FoDo
in your ring design to 72° phase advance and then finding the « that leads to
dispersion suppression.



