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Homework #4 Answers

Exercise (Complex potentials)
When the coordinates w = x+ iy and w̄ = x− iy are used, the Laplace operator
has been derived to be ∇⃗2 = 4∂w∂w̄ + ∂2z .
(a) Check that this is correct.
Answer:
(a)

w = x+ iy , w̄ = x− iy , ∂x = ∂w + ∂w̄ , ∂y = i∂w − i∂w̄ . (1)

Therefore

∇⃗2 = ∂2x + ∂2y + ∂2z = (∂w + ∂w̄)
2 − (∂w − ∂w̄)

2 + ∂2z = 4∂w∂w̄ + ∂2z . (2)

(b) The static magnetic field in a charge free space is given by B⃗ = −∇⃗ψ.
Writing the magnetic field in x and y direction in complex notation as B =
Bx + iBy, derive a formula that expresses B and Bz in terms of Ψ(w, w̄, z) and
only ∂w, ∂w̄, and ∂z.
Answer:
(b) B = Bx + iBy is a complex number, not a vector,

B = −(∂x + i∂y)ψ = −[(∂w + ∂w̄)− (∂w − ∂w̄)]ψ = −2∂w̄ψ , (3)

Bz = −∂zψ . (4)

(c) Given the vector potential in complex notation as A = Ax + iAy and Az,

derive a formula that expresses B and Bz given by B⃗ = ∇× A⃗, again only using
∂w, ∂w̄, and ∂z and A, Az.
Answer:

B = Bx + iBy = (∂yAz − ∂zAy) + i(∂zAx − ∂xAz) (5)

= −i(∂x + i∂y)Az + i∂z(Ax + iAy) = −i2∂w̄Az + i∂zA , (6)

Bz = ∂xAy − ∂yAx = (∂w + ∂w̄)Ay − i(∂w − ∂w̄)Ax (7)

= −i∂wA+ i∂w̄Ā = 2Im(∂wA) . (8)
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Exercise (Rotational field symmetries)
(a) The field in a bending magnet has usually two symmetries: Midplane sym-
metry since the upper and lower part of the magnet are built identically, and a
mirror symmetry with respect to the vertical plane, since each pole is build with
right/left symmetry when viewed along the beam pipe. Which multipoles, in
addition to the main dipole component, satisfy this symmetry and can therefore
be associated with such a bending magnet.
Answer:
We introduce the matrix S that describes a reflection on the midplane. The
components of Sx⃗ are therefore (x,−y, z). Similarly we introduce the matrix V
that describes reflection on the vertical plane so that the components of V x⃗ are
(−x, y, z). The symmetry conditions on the magnetic potential are

ψ(Sx⃗) = −ψ(x⃗) , ψ(V x⃗) = ψ(x⃗) . (9)

The C1 symmetry simply states that rotating the field by 2π creates the same
field, which does not add a constraint. Inserting the mid plane symmetric
multipole expansion ψ(x⃗) =

∑∞
n=0 ΨnIm{(x − iy)n} in the main field region

into these symmetry constraints yields

ΨnIm{w̄n} = ΨnIm{(−x− iy)n} = (−1)nΨnIm{wn} = −(−1)nΨnIm{w̄n} .
(10)

This requires that Ψn = 0 when n is an even number. The first multipole error
that can occur in a dipole is therefore a sextuple.
(b) Similarly, a focusing magnet has C2 and midplane symmetry. Which multi-
poles, in addition to the main quadrupole term, satisfy this symmetry and can
therefore appear when such a magnet is built.
Answer:
For the additional C2 symmetry we introduce a matrix Q which rotates by π
so that Qx⃗ has the components (−x,−y), and requiring ψ(Qx⃗) = ψ(x⃗), we
therefore have the condition

ΨnIm{w̄n} = ΨnIm{(−x+ iy)n} = (−1)nΨnIm{w̄n} . (11)

This requires that Ψn = 0 when n is an odd number. The first multipole error
that can occur in a quadrupole is therefore an octupole.
(c) Generalize your observation to a magnet which is built with exact Cn sym-
metry and midplane symmetry. Which multipole terms can the field have?
Answer:
For Cn symmetry the potential has to be identical after a rotation by 2π/n.

ΨνIm{w̄ν} = ΨνIm{rne−iν(ϕ+ 2π
n )} . (12)

This requires that Ψν = 0 whenever ν is not divisible by n. The first multiple
error that can appear in a Cn symmetric winding is therefore a 2n-pole.
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Exercise (Solenoid)
Consider a box shape solenoid field. On the central axis, the solenoid field is
given by

B⃗(z) =

{
B0e⃗z for z ∈ [0, L]

0 else
(13)

(a) A particle flies into the solenoid parallel to the central axis. Describe its
trajectory after the solenoid.
Answer:
Before entering the solenoid the particle has the coordinates w = x0 and the
slope ẇ = 0. In the rotating coordinate system we have wr = wei

∫ t
0
gdt and

g = qBz

2mγ . Before entering the solenoid, the coordinates in this coordinate system
are wr = x0 and ẇr = 0 since g = 0 outside the solenoid.

The differential equation in the rotated coordinate system ẅr = −g2ẇr has
to be solved. We first solve it inside the solenoid where g = qBz

2mγ is constant.

wr(t) = wr(0) cos(gt) + ẇr(0)
1

g
sin(gt) = x0 cos(gt) . (14)

ẇr(t) = −gwr(0) sin(gt) + ẇr(0) cos(gt) = −gx0 sin(gt) . (15)

After the time T spent in the solenoid, we have as starting values for the trajec-
tory after the solenoid: wr(T ) = x0 cos(gT ) and ẇr(T ) = −gx0 sin(gT ). Since
after the solenoid, ẅr = 0, we obtain for t > T

wr(t) = wr(T ) + (t− T )ẇr(T )t = x0 cos(gT )− (t− T )gx0 sin(gT ) . (16)

In the section after the solenoid, the coordinates in the non-rotating region is
computed by w(t) = wr(t)e

−i
∫ t
0
gdt = wr(t)e

−igT .
The motion after the solenoid is thus described by

wr(t) = [x0 cos(gT )− (t− T )gx0 sin(gT )]e
−igT . (17)

This trajectory after the solenoid describes a line that lies in a plane that con-
tains the central axis and has a angle −gT to the x-axis. This line starts at a
distance x0 cos(gT ) from the axis and has the transverse velocity −gx0 sin(gT )
in that plane.
(b) If it touches the central axis somewhere after the solenoid, where would
that be? How does the focal length depend on the field B0 and the length L?
Answer:
The particle will touch the central axis after the solenoid if gx0 sin(gT ) > 0. If
its total velocity is v, its longitudinal velocity is vz =

√
v2 − [gx0 sin(gT )]2 ≈ v.

Quadratic terms in x0 have been neglected in setting up the linearized equation
of motion and are therefore also neglected here. It will therefore touch the axis
a distance f after the solenoid with f = v

g cot(gT ).
To determine the time T spent inside the solenoid, the transverse velocity

is needed for t < T from ẇ(t) = ẇr(t)e
igt + igwr(t)e

igt. The squared trans-
verse velocity is therefore |ẇr(t)|2 + g2|wr(t)|2 + 2ℑ{ẇr(t)w̄r(t)} = x20g

2. The
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longitudinal velocity inside the solenoid is therefore vz =
√
v2 − x20g

2 ≈ v, and
T = L/v to first order.

The focal length is then

f =
v

g
cot(

Lg

v
) . (18)

For very short solenoids the focal strength is equal to f ≈ v2

g2
1
L . With in-

creasing L the focal length decreases so that it is not justified to say that only
the fringe field of a solenoid focuses.

(c) Show that the magnetic field B⃗ = {x
2Ψ

′′
0 ,

y
2Ψ

′′
0 , −Ψ′

0} can be derived

from the vector potential A⃗ = {y
2Ψ

′
0 , −x

2Ψ
′
0 , 0}, where Ψ0 is a function of z.

Alternatively we can write A = −iw2 Ψ
′
0, Az = 0 and use the equations

B = −i2∂w̄Az + i∂zA = w
2 Ψ

′′
0 and Bz = 2ℑ{∂wA} = −Ψ′

0.
Answer:
Because Ψ0 is only a function of z, we have

∇⃗ × A⃗ = (∂xe⃗x + ∂y e⃗y + ∂z e⃗z)×
(y
2
Ψ′

0e⃗x − x

2
Ψ′

0e⃗y

)
(19)

=
x

2
Ψ′′

0 e⃗x +
y

2
Ψ′′

0 e⃗y −Ψ′
0e⃗z (20)

= B⃗ (21)

(d) Show that during this motion, the particle’s angular momentum around the
z-axis is not conserved. Also show that the z component of its canonical angular

momentum Lz =
{
r⃗ × (p⃗+ eA⃗)

}
z
is conserved. To do this, you can show that

dLz

dt = 0.
Answer:

Lz = x(py + eAy)− y(px + eAx) = γm(xẏ − yẋ)− e

2
Ψ′

0(x
2 + y2) (22)

d

dt
Lz = γm(xÿ − yẍ)− e

2
Ψ′′

0 ż(x
2 + y2)− eΨ′

0(xẋ+ yẏ) (23)

= γmx

(
ÿ +

eB′
z ż

2γm
x+

eBz

γm
ẋ

)
− γmy

(
ẍ− eB′

z ż

2γm
y − eBz

γm
ẏ

)
(24)

From the equation of motion we know that

ẍ =
eB′

z ż

2γm
y +

eBz

γm
ẏ (25)

ÿ = −eB
′
z ż

2γm
x− eBz

γm
ẋ (26)

Thus we have

d

dt
Lz = 0 =⇒ Lz = const. (27)
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(e) Given a proton beam of Ek = 5keV, how many turns of a 100A current is
approximately needed for a 10cm coil to have a 1 meter focal length.
From

f =
v

g
cot(

g

v
L) ≈ v2

g2
1

L
(28)

we have for f = 1m, v =
√

2Ek

mp
and L = 10cm

g2 =
v2z
fL

=
2Ek

mpfL
=⇒ g = 3.093× 106

Bz =
2mpg

e
= 0.0647T = µ0nI =⇒ n = 515Turns/m

Thus we need approximately 52 turns to have a 1 meter focal length.
Answer:
(f) Show that within the solenoid the particles perform helical motion of radius
x0

2 around the axis x = x0

2 .
Answer:
The motion in the non-rotating coordinate system inside the solenoid is

w(t) = x0 cos(gt)e
−igt . (29)

Exercise (Multipoles)
(a) Describe the magnetic field and the magnetic scalar potential in an duode-
capole ?
Answer:

ψ = Im{Ψ6w̄
6} = Ψ6(−6x5y + 20x3y3 − 6xy5) , (30)

B = Bx + iBy = −2∂w̄ψ = i6Ψ6w̄
5 , (31)(

Bx

By

)
= 6Ψ6

(
−Im{w̄5}
Re{w̄5}

)
= 6Ψ6

(
5x4y − 10x2y3 + y5

x5 − 10x3y2 + 5xy4

)
. (32)

(b) How strong is a duodecapole for which the distance from the central
axis to the iron pole is given by a and around each pole is a winding of n wires
each having a current I ?
Answer:
Integrating over a line with x = y and back along the line with y = 0 leads to
a path that contains n wires with current I.

B⃗ · d⃗l|x=y = −48Ψ6x
6 1

r
dr = −6Ψ6r

5dr . (33)

Since only the line with x = y contributes to the integral we obtain

µ0nI =

∫
B⃗ · d⃗l = −Ψ6a

6 = −d
5By

dx5
a6

6!
. (34)
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and

k5 =
q

p

d5By

dx5
= 6!

q

p

µ0nI

a6
. (35)

(c) : Show what fields are created when a n pole is shifted by a distance ∆
in the transverse direction. For example, show that a shifted sextupole has a
quadrupole field.
Answer:
The potential of an n pole which is centered at the origin is given by

ψ = Im{Ψnw̄
n} . (36)

If it is shifted in x by ∆x and in y by ∆y, then with ∆w = ∆x + i∆y its
potential is

ψ = Im{Ψn(w̄ −∆w̄)n} = Im{Ψnw̄
n} − Im{n∆w̄Ψnw̄

n−1}+O2(∆w̄) . (37)

Therefore a shifted n pole creates, to first order in the shift, has an n− 1 pole.
When the rotation angle out of midplane symmetry of the n pole is given by
θn with Ψn = |Ψn|einθn and is thus θn = 1

nArg(Ψn), this rotation angle of the
n− 1 pole is θn−1 = 1

n−1Arg(Ψn∆w̄). If a sextupole (n=3) that has midplane
symmetry is shifted in a direction that has an angle ϕ out of the horizontal plane,
a quadrupole (n=2) is created that has an angle of −ϕ/2 to the midplane.

1 Lattice Design #4

Report your results for the following exercises of the Ring Design Tutorial ex-
ercises section 2.3 number 1, 2, 5, and 6.

1 - Reverse dispersion suppressor: Construct the reverse dispersion
suppressor, optimizing the last two quadrupole strengths for ηz = 0 and η′x = 0
at the end for FoDo cells of 90◦ phase advance. How do the two quadrupole
values for the reverse dispersion suppressor compare to those obtained for the
forward suppressor?

2 - Forward and Reversed Cells: Check that your forward and reverse
cells that both start with focusing quads have different periodic beta and alpha
functions. Check also that both cell, for the same phase advance of 90 degrees
have exactly the same quadrupole strengths. Explain how this can be the correct
solution.

3 - Strength of bends: to a good approximation: A dispersion sup-
pressor can be constructed using two arc FODO cells with the first cell having
the bend strengths reduced by a factor α and the second cell with the bend
strengths reduced by a factor 1−α. In the case of a 90◦ FoDo cells, we showed
in class that α = 0.5, and for a 60◦ FoDo we found α = 0. Find the suitable
α for a 72◦ FoDo. Either determine α analytically or by matching the FoDo
in your ring design to 72◦ phase advance and then finding the α that leads to
dispersion suppression.
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