Dynamical Systems

Z(s)=M(s;5,,2,) dynamical variable  Z

—

Flow, transport map M

By referring to a reference trajectory, transport maps in accelerators become
origin preserving: M(S SO,O)

Flows build a group under concatenation:
M (s55,,-) o M (8580,20) = M (535, M(5,380,2,)) = M(s5,,Z,)

|dentity element: M(S 1S,2)=Z

Inverse element of M(S;SO,Z) =M (s58,,2) s M(SO;S,Z)

In physics, the flow is often given as a solution of a first order ODE % Z = f(z,s)

(Note that an nth order ODE can be rewritten as an n-dimensional first order ODE.)
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Uniqueness

Note that not all ODEs 4 7 = f(f, s)
have a unique solution Z(s)
through a given point  Z(0) =z,

Picard-Lindeloef: B ~

A unique solution through( Z,,s,) exists for &z = f(Z,s) if f(Z,s)
is Lipschitz continuous and bounded,

l.e. it is continuous, bounded, and there is a number N such that

| f(Gs)— f(Z8) K N|Z -2, |
. 3 . .
Bxample: g =1p’+V(q), V(g)=-8Jlq| = 4¢=p, p=12y|q|
There are two solutions through the point (q,p,t)=(0,0,0)
1. (q(®), p(¢)) =(0,0) 2. (q), p(t)=(t"48) = (4, p)=(412¢%)

In our following treatments we do require uniqueness of solutions.
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Linear Systems

Linear ODEs in N dimesions % Z = f(Z,5) have f(AZ,5)=Af(Z,s)

HZ=L(s)z

There are N linearly independent solutions. For example Z, () going through (Z,, S, )
With z,; =0 for i #n and z,, =1

Z =(0,....L,....0)0 = Z(s)

One speaks of N fundamental solutions.

Superposition for linear ODEs:
If z1 is a solution and z2 is a solution, then
any linear combination Az1 +Bz2 is also a solution
4z =[(s)Z, & LZ,=L(s)Z, = <(A4Z,+Bz,)=L(s)(4Z +Bz,)
N
Therefore any solution through(Z,, s, ) can be written as Z(s) = Zé’n (5)z,,
n=1
2(5)= M (535,,2)) = M(5,5))2,  M(5,5)) = (Z,(5)s-...Z(5))

QB2 Cornell University Iﬂ.‘ ] y ] Brookhaven
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Nonlinear Systems

—

Noninear ODEs in N dimesions <z = f(Z, )

Have no fundamental solutions. Each solution has to be determined separately
for each initial condition.

Examples: Plasma, Galaxies

=2

P q,;4
_|_ - <

o2

H(oosFryeyeaas D) =2 .
’ ’ 7 2m; |-

Finding a general solution, flow, or transport map can be very hard.
This has not even been possible for the 3 body problem.

Z(s) = M (s;5,,2,)
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Weakly Nonlinear Systems

Weakly nonlinear ODEs i 7 = f(f,s)
Have a right hand side that can be
approximated well by a truncated Taylor expansion

f(z S) = L(S)Z+Zf]kzzk+2fﬂdzzkzl+ .+ Zfz +.

j.k,l k ,orderO

oI, Y=Y with 3k, =0
k n=1

n=1 k ,orderO n=1 k,

By solving the Taylor expanded ODE one tries to find a Taylor expansion of the
transport map: - A7 (s;s,Z,) % M(S,5,)Z, +...+ 2 M.Z) +

k ,orderO
Note:

While this approach is usually chosen, it is not certain that a transport map of the
Taylor expanded ODE is a Taylor expansion of the transport map of the original
ODE. One therefore often speaks of “formally” finding the Taylor expansion of

@ cmavoss [l "3 Brovihave
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Aberrations and Sensitivities

M(s350,2) = M(5,5))Z +... > M_Z5+...

k ,order O

The Taylor coefficients are called aberrations of order O and are denoted by
6
k ke N\ _
(z;,z"...28" ) =M, order O= an
Parameter dependences lead to sensitivities:
4z = f(Z,5,6) = Z(s)=M(s,&:5,,2,)

M(s,8;5,,2,) = M(5,5,)Z, + M (5,5,)Z,6 +...+ ZM””"

k n,order O

6
(z,,z ...zé‘ﬁg")EMl’g’i, order 0:n+ij

How can all these Taylor coefficients be computed?

National Laboratory
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Horizontal Midplane Symmetry

This is the most important symmetry in nearly all accelerators.

7 =(x,-y,2) y\ﬁ\;

ﬁ@:(px)_pyﬂpz) — o —

e - <P
45=FF,p) = <Lp®=FF® p®) |~V
= (x,a,y,b,7,5) Z(s) =M(s,Z,)
@z(x,a,—y,—b,f 0) (S) M(S 0)

M (s,Z0)= M(s,z,) for ie{l,2,5,6}

Ml.(s,zo =—-M (s,z,) for ie{3,4}
(x,x...0,)=0 for k,+k,isodd similarly fora,tand 8
(y,x)...00)=0 for k,+k,iseven similarly for b

Brookhaven:
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Double Midplane Symmetry

In addition to midplane symmetry, some elements are symmetric around the
vertical plane, e.g. quadrupoles, glass lenses

z=(x,a,y,b,7,0) z (s) :M(S,ZO)
z° = (x,a,—y,~b,7,6) Z%(s) = M(s,2;
7® = (-x,~a, y,b,7,5) 79(s)=M(s,Z;

M (s,z20)= M(s,z,) for ie{l,2,5,6}
M (s,z20)=-M,(s,Zz,) for ie{3,4}
M (s,2°)=-M,(s,Z,) for ie{l,2}
M. (s,2°)= M,/(s,Z,) for ie{3,4,5,6}

(x,x;"...00)=0 for k +k,isevenork, +k,isodd similarlyfora,tandd

k k . . o
(,x, ...0,°)=0 for k,+k,1soddork,+k,1seven similarly for b
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Rotational Symmetry

Some optical elements are completely rotationally symmetric in the x-y plane,
e.g. solenoid magnets, many glass lenses

w=x+iy, a=a+ib -
=(w,w,a,a,t,0) z2(s) =M(s,Z,)
z® =(e"w, e "w,e’a,e’a,T,5) E@(S):M(S’EO@
M (s,zy)=e "M (s,z,) for ie{l3}
M (s,z2))=e""M (s,Z,) for ie{24}
M (s,z2))= M,(s,z,) for ie{56}
(w, W ...5k6) =0 for k —k,+k,—k,#1 similarly fora
(w,w"...6")=0 for k —k,+k,—k,=~1 similarly for a*
(T,wkl .0%)=0 for k—k,+k,—k,#0 similarly for §

— 2 __ —
(W WO 0)9 (aa Wo WO), (aa Woao)a (Ta
y ] Brookhaven

can all be non-zero
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C,, Symmetry

Some optical elements have C,, symmetric in the x-y plane,
e.g. C, for quadrupole, C; for sextupoles, etc.

w=x+iy, a=a+ib ~
=(w,w,a,a,7,0) z(s) =M(s,z,)

\ e ~® N _ (e 2O
7% = (e2 we Tw.ea,e lz"a,r,é‘) z7(s)=M(s,Z,

M.(s,22)=e "M (s,Z,) for ie{l3)

M (s,22) ="M (s,Z,) for ie{2,4)

M (s,z20)= M,(s,z,) for ie{56}
(w,w"...6%)=0 for k,—k,+k,—k,# jn+1 similarlyfora
(W,wkl...5k6)=0 for k —k,+k,—k,# jn—1 similarly for a*

(T, w" .. 5k6) 0 for k —k,+k, k % jn similarly for &
(W, wy), (&, |W, Wo) (@, W,y ay), (7,

f Cornell University hu‘s g Brookhaven
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Symplecticity

[OMT JloM"]=J Symplecticity leads to the requirement that sums over
— — certain products of aberrations must be either 0 or 1.

Separation into linear an ~ -
nonlinear part of the map: M((z)=M,(z+N(2))

M@EZ)=[0M"1 =[(1+ON")M |1 =M ,(1+N(Z))
I+N)' M JM,(1+N)=J = M;JM,=J, N J+JN=-N'JN

For the leading order n-1 (the first order that appears in N): NTJ +JN=0+0"

N is a Hamiltonian matrix up to order n and can thus be N(E) = léf(f) + 0™
written up to order n as:

W(Sf):(x?'xO)aaf+(x9y0)6bf+i[(yﬂx0)aa S+, )0, /]
=(W,x)0, f +(W,¥,)0, f
=2[(w, W) + (W, w)I[0, [ + 05 f1—7[(w,wy) —(w, w0, f =0 f]
= (w,w,)0_ f +(w,w,)0, f =(w,w,)0, f

Brookhaven:
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Special Aberrations
Dispersion (for & as parameter of 4-dimensional motion) z = M (s) Z, + ]3(3)5
Chromatic aberrations (x,.. ,5”) , nz0 )
Geometric aberrations (x,x""a™y5p% ), Zki =0
Purely Geometric aberrations (x,...0"), n=0 =1
Opening aberrations (x,xkl ,,,ykz ) , k1 +k2 —
Field aberrations (e, x" ..y, k+k,#0
Spherical imaging systems: (w,a) =0
Spherical aberration for rotational symmetry (W, & | & |*)
Coma line (w,wl|al’)
Coma circle (w,wa’)
Astigmatism (w, w'a&r)
Curvature of Image (W,| w |2 0!)
Distortion (w,w|w |2)

National Laboratory
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Aberrations for rotational symmetry

Imaging systems: (w,a)(s ;) =0

(w,w)(a,a) =1

Symplecticity: Magnification = Angle demagification
Spherical aberration for rotational symmetry (W,a | o |2)

w(s)=w,a)a,+(w,a|a |2)0(0 | &, |2

Scherzer Theorem: ~~

For rotationally symmetric electro-magnetic systems, the focal
length for larger angels is always shorter.

National Laboratory
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Koma Line and Koma Circle

(5) = (w,whwy + (w,a)at, +(w,wl e [Fwy |, [

/ w(s )= (w,w)w, =(w,wla [wy e, [

_ +(w,wa’)wa,
_ (A - (wiwa?)
Ap @ = 2arcsin(5) =2 arcsm((ijw))
Ay Symplecticity yields:

(w,wlal)=2(w,wa’) = ¢=60° Since:

w(s ) = (w,wy)0,[...+ Re{Kwaa’}]=(w,wy)[...+ Kwaa + L Kwa’]

* %"5 Cornell University I&" ] o Brookhaven
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Curvature of Image

w(s) = (w,w)w, +[(w,a) +(w,| w[* &) | w, [z, \

The focus occurs at (w,)(s ;) +(w,| w ? a)(s,)|w, =0

4 Cornell University Ih” ‘ o Brookhaven
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Other special systems

Telescope:
parallel to parallel system

Microscope:
point to parallel system

Nonlinearly corrected microscope: (a,a") =0

(x,0) large
(x,a)=0
(x,x) small

Spectrograph:
point to parallel system

Nonlinearly corrected spectrograph: (x,a"b™)=0

Tilt of focal plane: (x,a0)#0 the focusis at (x, a)(s,)+(x,ao)(s,)0 =0
% Cornell University Ihn'] P Brookhaven
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Variation of constants

Z' = f(Z,s)

—

Z =L(s)Z+ AJ;(Z,S) Field errors, nonlinear fields, etc can lead to AJ?(E,S)

2, =L()Z, = Z,(s)=M(s)Z,, with M (s5)a=L(s)M(s)a

Z(s)=M(s)a(s) = Z(s)=M (s)a+M(s)d(s)=L(s)Z+Af(Z,5)

a(s)=Z, + jz\_[l (AL (Z(8),8)ds

2(s) = M(s>{zo + [ MO EE)S) dﬁ}

=2, () + [ M(s. )V G, dS

: Cornell University Su‘s o Brookhaven
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Perturbations are propagated
fromstos’

National Laboratory

Georg.Hoffstaetter@Cornell.edu Graduate Accelerator Physics USPAS summer 2023



Iteration of Aberrations

2(5)= 24 (5) + | M(5, ) (B(5), ) 5
z,(8) =z, (s)

2,(5) = 2, () + [ M (5, )M (Z,(5), §) ds

2,(5) =2, () + | M(s,)Af (Z,,(5),8) 8

Taylor expansions:  Af(Z,s) = Afz (z,8)+ Aﬁ (z,8)+..., Af,= 2]7%2;;

= = k ,order O
z,(s)=M(s)z,

2,(5) = M(5)7, + [ M(5, )M, Z,(5),)

Z,(5) = M(9)Z,+ [ M(5,){[A, (5, (9),9)], + A (5, (8),8)} 5

)
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Poisson Bracket

The Poisson Bracket is defined as
[/ (2).e(E)]=30, /0,80, 10,8=0"fJdg

The Poisson Bracket can be viewed as a product on the vector space of phase
space functions. It is:

Linear: [f,ag]l=laf.gl=alf.g]l, acIR
Distributive: [ f,g+h]=[f,g]l+[f,h]

This turns the vector space into an algebra.

The multiplication is furthermore:
Anti-commutative: [f.g]l=-]g,f]

Has a Jacobi-identity: [ f,[g,/]]+[g,[A, f1]1+[A.[f,2]]=0
as can be proven by the product rule: [f,ehl=g[f, h]+][f,g]h
This turns the algebra into a Lie algebra.

S

) ComellUniversity Iﬂj R e Example: @ xb turns IR® into a Lie algebra.
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Map computation by Lie Algebra

The Poisson-Bracket operator of f, : g : is defined as g h = [g,h]
H:g=[H,gl=-[g,H|=-0"gJOH =-0"g 47 =-%g(7)

ding(zs) = —HZ——Z =/1,(z,8), —H:f,=

ds < j 8s
In the main field region where <% Z —f(f) = —H:f =4%F :szsz
_ d™ g Y, _d”
Ifg(z)— H:g=%g= iy = (—.H.) z, =42,
Propagator: o255 _ Z CASHY 7 = Z
n.
n=0 n=0
MzOMl(Zo):Mz(AszaZ(ASJ): — AS]HI) M 2 (As,,Z))
n=1
— e—Asl H,(zZ, )5e_A525H2 (EO):EO

M(s;2))=M o...oM,o M,(Z,)=e " ez

: Cornell University I,u ] o Brookhaven
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Poisson Bracket Invariance

The Poisson Bracket is invariant under a symplectic transfer map

[/ (M(2)),g(ME)]=0"f| MJIM 3¢ =[f(Z).e)],.,

For nonlinear expansions, one writes the transport map as a linear matrix
and a nonlinear Lie exponent,

o0

MI(Z) :A_lle:Hl(E): Z — Ml I‘;:l' : 2

n=0

since a linear Lie exponent requires infinitely many terms in the power sum, but
the nonlinear exponent terminates when a finite order expansion is sought.

TN (2 TN (2 g HY'(Z) T2
(Mze.l‘lz (Z)Z) o (Mle.Hl (Z)Z) — Mze.Hz (A_/[le Z).Mle.Hl (Z)Z

HI(Z)..

L R VN VR

When these equations are used to compute and manipulate transfer maps, one
speaks of the Lie algebraic method.
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Computing Taylor Expansions

order O . . .
o An But taking this approach for complicated
J(x) = HZ:; Wa ! ‘o functions would be very cumbersome:
1 —COS X
L f)=——-1, f(0)=0, &) =7—" =-1,
1+sinx (1+smx) 0

sin x(1 +sin x)+2cos’ x

0°f(x) =

=2, f(X)~—x+x"+0’

(1+sinx) .
2 — —1 1
' J(x)= 1+sin x ik This approach is formalized in the field of
1 automatic differentiation using a
f(x)= 1

1+x—%x3 1+ 0* B Differential Algebra.

3 372 3N3
r—(x—2xX)+(x—2x) = (x—3x") +0

2 3 4
x—x+x —2x +0

* %?5 Cornell University I&u ] o Brookhaven
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Computations with TPSA(n)

* Cornell University I&" ] o Brookhaven

Computation of a function in /Ris 1 l. xelR
done by a finite number of f(x)=—F-1 2. sin
_ I+sinx
elementary operations (+,-,x) and 3 1+
elementary function evaluations 4 1/
(sin, cos, exp, 1/x, ...). '
5. -1
If g.(X) is the truncated power series of order n of g(x) and h,(x) is that of h(x)

we can look for elementary operations (“+”,”-”,”x”) so that

gn *+'h, is the TPS(n) of g+h

Jn - h, is the TPS(n) of g-h

dn X'h,, is the TPS(n) of gxh

Similarly we can look for elementary functions (“sin”,”cos”,’exp”,”1/x”,...) so that

“sin”(g,) is the TPS(n) of sin(g), “exp”(g,) is the TPS(n) of exp(g), etc.
Evaluating all elementary operations and elementary functions in f(x) in terms of

“+””...” starting with the TPS(n) of x, leads to the TPS(n) of f(x).
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Automatic Differentiation with TPSA(n)

1
Example: computing the TPS(3) of f(x) = —— -1

1+sinx
TPS(3) of xis x
TPS(3) of "sin"xis x —1x’
I"+"x—1x*=1+x-1x

i(x)=L.""(x)=1-x+x" _x3»"i"(X—%X3)=1—x+x2 —%x3

I4+x 2

I N

2 3 2 3
l—-x+x —%x "M =—x+x —%x

This automatically (i.e. with a computer) leads to derivatives of f(x):

F(0)=0, f'(0)=-1, f"(0)=2, f"'(0)=—4

Truncated power series can be added “+” and multiplied “x” and there
is a neutral element of multiplication (i.e.1). Therefore the vector space of
TPS(n) forms an algebra. It is called the Truncated Power Series Algebra
TPSA(n).

* Cornell University I&" ] o Brookhaven
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The Differential Algebra D,

” Cornell University Ihu ] [ Brunkhaven"

An addition and multiplication with a scalar leads to a vector space over /R 2
{a,,a,},{b,,b} € IR, t € IR

{ay,a,} +1by, b} ={a, +by,a, + b}

Hay,a,} = {ta,ta,}

The introduction of a multiplication  {a,,a,}{b,,b,} = {a,b,,a,b, + ab,}
leads to an algebra if it is:

Distribut. {a,,a,}(10y,b,} +{c,,c,}) =1a,,a,} {b,, b, } +{ay,a,} {cy,c )
Has a neutral element: {a,,a,}{1,0} ={a,,q,}

and additionally to a ring if it is
Commutative:  {a,,a,}{b,,b} =1{b,,b}{a,,a,}
Associative:  {a,,a,;(1D,,b,} {c.c}) = ({a,,a,} by, b} ) {cy, ¢ )

All these properties are clearly given, since first order power expansion
have this multiplication: (a, + a,x)(b, +b,x) = a,b, + (a,b, + a,b,)x + O’
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The Differential Algebra D,

By the introduced addition and multiplication we created an algebra, since the
multiplication is commutative and associative we also created a ring, but not a
field. Complex numbers are a field since there is a multiplicative inverse for all

numbers except 0.

a9, a1 by, b} =1ayby, agh +aibyy = {a,,a,) {% " Z_é} ={L0}

We further introduce a differentiation: 5{610, Cll} = {al,O}
It is a differentiation since it satisfies a product rule:

O0({ay,a,§1by,b,}) = 1a,b, + a\by,0} = (01ay, a,} )by, b, § +1a,,a, (0D, b, })

By adding a differentiation we have created a Differential Algebra (DA).

Differentiation of Polynomials: f(x)=2+x" = f'(x)=2x
JU2,13) = 12,07 +{4,4; = {6,4; = { /(2), /' (2)}
Since {f, /"y +1g,8 1 =1/ +8).(/ +8)'}, /. /1 1g &'y =1(/2).(/2)'}

Every polynomial: P({f, /'}) = {P(f),[P()]'} and | P({x,1}) = {P(x), P'(x)}

() Cornell University I&u ] ] Brookhaven
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Elementary Functions in ;D,

e(a, +a,x)=e(a,)+e'(a,))a,x+0O’
leads to

e({ay,a,}) =1e(a,),a,e'(a,)} sin({a,,a,}) = {sina,,a, cosa,}

cos({a,,a,}) ={cosa,,—a,sina,}

Since { f, f'}+1{g. gy ={(f +2).(f+ &)}, 1./ }11g. &'} =1(/2).(f2)'}
and e({f,[f'})=1e(f).[e(/]'}

Therefore F'(1f, /'}) = UF(/),LF ()]} and F({x,1}) = 1 (x), F" (%)}

So that automatic differentiation works not only for Polynomials but for any function
that is constructed from a finite number of operations and elementary functions.

Computer programs that have differential algebra elements as data types can
evaluate any function or algorithm in this data type and obtain derivatives of
the function or derivatives of the algorithm.

o 25727
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The Differential Algebra D,

* Cornell University o Brookhaven

The concept of 41D can be extended to truncated power series of order n and to v
variables. This leads to the differential algebra ,,D,. For each coefficient in the nth
order expansion there is one dimension in the vectors of D,

Power expansions for v variables have extremely many expansion coefficients:

: n+v)!
A polynomial of order n in v variables has dim(, D) = ( ) coefficients
: n!y!
since | (i—14v) (ntv—1)
: : : n+v). (n—-1+v)! (n+v-1)
dim(,D )-dim(, ;D )= dim(,D, ,) , ( ) =
\ v S n!v! (n—-Dv!  nl(v-1
Zlkl...va,ikan zlkl...szl‘l,ikjén

and iteration’of Dy starts with the correct conditions: dim(,D,)=n+1= —(":)!

Example: dim(10D6) = 8008 dim(oDv) =1= %

Computer programs that have differential algebra elements as data types produce
the nth order power expansion of v-dimensional functions or algorithms
automatically.
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Equivalence classes in D,

A TPS(n) of a function f(x) defines the equivalence class of all functions that have
the same TPS(n).

Def: f= g if 0" f(0)=0"g(0) ¥ k withorder<n
=, is an equivalence relation since it has
the identity property f=f Vf
the symmetry property  f=, g if g=,f
the transitivity property f=h if f= gandg= h

Equivalence classes: Def: [f] ={g|g=, [}
Arithmetic of equivalence class: [ f

. +lgl, =/ +gl,

]
™ y t [/].[¢]
ose operations generate a _
differential algebra. tLr], =[tf],

a,lf1,  =19,/1

% Cornell University I&n'] P Brookhaven e([f]n) E[e(f)]n
e (A |
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Concatenation of maps

JS(x),g(x) and [f],.[g,le, D
[/ (g1, =1/ (g(0)],

[/ ()], =1/ (£(0)+g'(0) /" (g(0))x],

The composition of two TPS(n) can only be computed if the first one is origin
Presening MEN |1 11, o[g], =L/ (g(x)),

If two maps that are know to order n and the first one is origin preserving, then the
composition of the maps is known to order n.

— —

[Ml];w[MZ]nenD\‘:

—

[M,],°[M,], =[M,(M,Z))],

Therefore the reference trajectory is always chosen as origin for the maps
accelerator elements.

* ) Cornell University Iﬂj ] P Brookhaven
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Inversion of Maps

The nth order inverse of an origin preserving function can be computed within the
differential algebra (DA):

M(Z)=MZ+N(Z)
MoM'G) =M M "' +NoM™

—_

M =M'Z-NoM™)

z

—

(M), =M,'[Z-NoM™'], =M, (Z-[N],°[M"],)

lterative computation of the inverse:

M7 =M, 'z,

[M™'], =M, (-[N],°[M, 'Z])

M7, =M (Z-[Nl;o(M, (Z-[N1,°[M,'Z])))
(8 cometiunvensty !s.".s ~y Brookhaven:
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Generating Functions

The motion of particles can be represented by Generating Functions

Each flow or transport map: zZ(s) = M(s, Zy)

~ —~ \T
With a Jacobi Matrix : M,=0 M, o M= (aOM T)
That is Symplectic: MJM' =J

Can be represented by a Generating Function:

F(4.4,»5) with p=-0,F , p,= 0,F
F,(P,Gy,s) with G= 0,F, , p,= 0 F,
Fy(§.Py»s) with p=—0,F, , §,=—0,F
F,(P,By»s) with g= 0,F, , G,=-0,F,

6-dimensional motion needs only one function ! But to

National Laboratory

) ComeliUniversiy ml l -~y Brookhaven obtain the transport map this has to be inverted.
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Computation of Generating Functions

For any map for which the TPS(n) is know, a TPS(n+1) of a generating function
that produces this map can be computed. For example, looking for

—

E(éaéms) with ﬁ:_aqﬁi(éaqm*g) s Po = aqOE(69609S)

Z = M(EO) is given as TPS(n)

i\ (M,Z)) -.. (B B, L
= q :l Zy) = - :h ZO :laﬂ .qo) |-
[%] ( 9, ) &) (ﬁ) [Mp(zo)) (20) [ (4.9 )]uzO)

q
OF, =—Jhol™ = F=-J [hol (Q)dQ @ ]
0 - n+1 J Q
0

Particle coordinates (q0,p0) are propagated by such generating functions when
zeros of the following equations are found numerically:

e Ty | P+ 04£1(d,90,5) =0 and P, ~0,,F1(9,6,5) =
a5 ),
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