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In conventional beam-based alignment (BBA) procedures, the relative alignment of a quadrupole to a
nearby beam-position monitor is determined by finding a beam position in the quadrupole at which the
closed orbit does not change when the quadrupole field is varied. The final focus magnets of the
interaction regions (IR) of circular colliders often have some specialized properties that make it
difficult to perform conventional beam-based alignment procedures. At the HERA interaction points,
for example, these properties are the following: (a) the quadrupoles are quite strong and long. Therefore
a thin lens approximation is quite imprecise. (b) The effects of angular magnet offsets become
significant. (c) The possibilities to steer the beam are limited as long as the alignment is not within
specifications. (d) The beam orbit has design offsets and design angles with respect to the axis of the
low-beta quadrupoles. (e) Often quadrupoles do not have a beam-position monitor in their vicinity. Here
we present a beam-based alignment procedure that determines the relative offset of the closed orbit
from a quadrupole center without requiring large orbit changes or monitors next to the quadrupole.
Taking into account the alignment angle allows us to reduce the sensitivity to optical errors by 1 to 2
orders of magnitude. We also show how the BBA measurements of all IR quadrupoles can be used to
determine the global position of the magnets. The sensitivity to errors of this method is evaluated and
its applicability to HERA is shown.
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isfactory precision by the survey procedure. A precision
of magnet alignment of 0.1 mm appears to be desirable.

The difficulties we encountered have to do with
circumstances that might be considered typical for an
I. INTRODUCTION

The new HERA interaction regions are designed to
achieve a maximum possible luminosity by strongly fo-
cusing the proton beam. This results in �-function values
at the interaction point (IP) which are in the range of the
bunch length. This new design includes superconducting
combined function magnets inside the colliding beam
detectors H1 and ZEUS which focus the 27.5 GeV lepton
beam in the vertical plane and bend the beam away from
the 920 GeV proton beam. This allows one to place the
low-beta magnet for the protons as close as 11 m to the IP.
The synchrotron radiation produced by the beam separa-
tion has to be absorbed far away from the IP. Therefore
the vacuum chambers downstream of the IP have a key-
hole shape to allow the synchrotron radiation fan to
propagate through the low-beta quadrupoles. These have
a 28 mm gap between the coils. The aperture of the flat
part of the downstream vacuum chambers is only 18 mm.
This is critical because of the height of the synchrotron
radiation that is generated in the upstream low-beta quad-
rupoles. Because of the large vertical divergence of the
beam in these quadrupoles, the synchrotron radiation fan
will only fit inside the keyhole shape if the quadrupoles in
the low-beta region are aligned to a precision of better
than 0.5 mm. By optical surveying, a precision of about
0.3 mm can be achieved under optimum conditions which
are not given in the interaction region (IR) with shielding
walls and a large detector in between the two halves of
the straight section. Beam-based alignment was proposed
to verify specifications that cannot be verified to a sat-
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The magnets of the HERA IR are movable via remote
control and can be adjusted in an iterative way without
access to the magnets.

Beam-based alignment is a technique of deriving the
position of a quadrupole magnet from the analysis of
difference orbits that are generated by the variation of
the strength of this quadrupole. If the central orbit of the
beam is not in the center of the quadrupole, the beam
experiences a dipole field that changes the orbit. Beam-
position monitors detect the changes of the orbit around
the ring. The offset of the beam with respect to the
quadrupole axis is then determined by analysis of the
difference orbit. The result may be used to calibrate
the offsets of nearby beam-position monitors or to
mechanically realign the quadrupole magnets.

This technique has been invented to optimize the
performance of the SLC [1–4]. It has also been success-
fully applied to calibrate the beam-position monitors in
the HERA electron ring, where it was the basis for an
orbit steering algorithm of minimizing the residual ver-
tical kicks which yielded a record electron spin polar-
ization [5–7]. Future accelerators such as NLC will
depend heavily on extensive beam-based steering algo-
rithms [8,9].

The application of beam-based alignment techniques
to adjust the magnet positions in the new HERA inter-
action region however encountered a number of difficul-
ties and problems. The analysis and the solutions of these
problems can be helpful for future application of beam-
based alignment, especially in interaction regions.
2002 The American Physical Society 102801-1
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interaction region: (a) The quadrupoles are quite strong
and long. Therefore the thin lens approximation is quite
imprecise. (b) The effects of angular magnet offsets
become significant. (c) The possibilities to steer the
beam are limited as long as the alignment is not within
specifications. (d) The beam orbit has design offsets and
design angles with respect to the axis of the low-beta
quadrupoles that can be relatively large and have to be
accurately determined. (e) Often quadrupoles do not have
a beam-position monitor in their vicinity. Under these
circumstances the results are very sensitive to errors and
it turned out to be very difficult to achieve the desired
precision of the beam-based alignment of 0.1 mm.
Moreover, since the beam cannot be centered in all the
magnets simultaneously, a global analysis of the magnet
positions becomes necessary which uses the results of
the beam-based alignment measurements in all the IR
quadrupoles.
II. THE HERA INTERACTION REGIONS

In the following we describe the HERA interaction
region to the extent relevant for synchrotron radiation
background and beam-based alignment of the low-beta
quadrupoles. A schematic view is shown in Fig. 1.

The proton and lepton beams collide head-on in the
interaction point. The two beams are separated by com-
bined function magnets, which start on both sides at 2 m
from the IP. Because of the strong synchrotron radiation
power of together approximately 30 kW generated in
these magnets, the layout is not symmetric. On the left
side from which the lepton beam enters, there is a 3.2 m
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

-30 -20 -10 0 10 20 30

x 
[m

]

z [m]

sc. magnets

half quadrupoles

SR fan

electrons
protons

FIG. 1. (Color) HERA’s new IR: The lepton beam (green, lower
beam) and the proton beam (blue, central beam) through the IR
magnets are shown. The three magnets left and the four
magnets right (green) of the IP build the final focusing triplets
for the e� beams. From left to right their names are GJ8L,
GI7L, GOL, GGR (which is a tuning quad with zero as design
value), GI6R, GI7R, and GJ8R. All other displayed magnets
(blue) are used for focusing the proton beam and influence the
electrons only through their stray fields.
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long relatively low field superconducting magnet (GO) of
90 mm full aperture which deflects the leptons by 3 mrad
and focuses them in the vertical plane as the first lens of a
low-beta triplet. On the right side of the IP, these functions
are provided by a combination of a short (1.3 m length)
but large full aperture (120 mm) superconducting dipole
magnet (GG) which contains a tuning quadrupole and a
normal conducting conventional quadrupole (GI) with a
length of 1.88 m. The two superconducting magnets GO
and GG have dipole windings for horizontal bending, but
they permit variation of the quadrupole field while leav-
ing constant the dipole field. This allows us to find the
beam position relative to the center of the quadrupole
windings by beam-based alignment. On both sides of the
IP, these innermost magnets are complemented by a hor-
izontally focusing quadrupole of type GI and by a verti-
cally focusing magnet (GJ) with a length of 1.88 m. The
double-doublet structure for focusing the protons starts at
11.2 m on each side of the IP with a half quadrupole with
a septum plate. After the lepton beam has been separated
from the protons, magnets of type QL are used to match
the optics to a regular FODO structure in HERA’s arcs.
Table I shows the main parameters of the HERA IR
quadrupoles and the location of the positron design orbit
relative to the quadrupole axis in the center of each IR
magnet. For electron/proton collisions the values are
slightly different. Because of spin matching requirements
it has not been possible to use exactly these design pa-
rameters for the quadrupoles, and in the routinely used
optics files the computed paths for injection and for the
luminosity operation differ by up to 0.5 mm in some
quadrupoles. The Twiss parameters in that region are
shown in Table II.

III. ANALYSIS OF DIFFERENCE ORBITS

A. Closed orbit changes due to a quadrupole change

As described before, beam-based alignment is the
analysis of difference orbits that are excited by a change
in the strength of a quadrupole as illustrated in Fig. 2.

The difference orbit is related to the offset and the
angle of the beam orbit with respect to the quadrupole
axis. Therefore, we will derive the relationship between
magnet alignment, closed orbit, strength variations, and
the difference orbit. Following standard textbook proce-
dure, the closed orbit is written in linear approximation
as

~xxs � Ts 0�I �M0�
�1 ~ddL 0 � ~dds 0: (1)

In this expression, ~xxs is the vector with closed orbit xs and
its derivative x0s at some longitudinal position s along the
design trajectory, which is chosen as reference with ~xxs �
0. Ts 0 is the transport matrix from the position s � 0 to
position s. With the total circumference of the design
curve L the revolution matrix at s is Ms � Ts�L s and I
is the unity matrix. With the focusing strength k, the
102801-2



TABLE I. Design parameters for the HERA IR quadrupoles and the offset of the positron
design orbit in the center of these quadrupoles.

l s Focusing k xoff x0off
Name (m) (m) direction (m�2) (mm) (mrad)

QL16L 1.033 �54:881 y �0:112026 0 0
QL14L 1.033 �42:930 x 0.055143 0 0
GJ8L 1.88 �9:172 y �0:132197 �3:288 �0:002
GI7L 1.88 �6:965 x 0.246518 2.982 1.322
GOL 3.20 �3:575 y �0:140664 �5:568 �0:993
GGR 1.3 2.625 0 �27:913 �1:217
GI6R 1.88 4.817 y �0:226504 �10:172 0.165
GI7R 1.88 7.218 x 0.262005 �0:409 �0:358
GJ8R 1.88 9.432 y �0:119000 �9:130 �0:504

QL14R 1.033 43.934 x 0.048787 0 0
QL16R 1.033 54.868 y �0:116307 0 0

TABLE II. Twiss parameters at positron injection in the center of the quadrupoles around
the ZEUS IR and in the correction coils right and left of the IR which were used to create the
closed bumps needed for the beam-based alignment procedure. (The strength of the IR
quadrupole in the currently used injection optics deviates from the design values of Table I by
up to 0.7%.)

�x
m �x

m �x
m �y

m �y
m �y

m

Name (m) (2�) (m) (2�)

CH101L 14.609 0.141 12.550 14.773 �1:571 11.650
CV81L 13.568 2.193 12.732 8.052 �0:260 11.846
CH75L 14.082 �0:608 12.823 4.426 �0:396 12.055
CV56L 26.906 2.734 12.945 78.231 �6:393 12.223
QL16L 23.463 1.140 12.950 86.197 �1:784 12.225
QL14L 33.662 0.214 13.021 30.123 0.841 12.262
GJ8L 38.355 �5:776 13.297 61.265 6.790 12.396
GI7L 78.538 1.947 13.303 23.525 2.619 12.406
GOL 10.899 3.760 13.322 27.998 3.462 12.426
GGR 5.040 �1:105 13.614 19.374 �7:296 12.890
GI6R 14.276 �4:894 13.659 54.196 �1:265 12.900
GI7R 62.721 �3:665 13.671 30.056 �0:211 12.910
GJ8R 33.574 4.327 13.679 60.368 �4:849 12.919

QL14R 37.975 0.012 13.897 17.258 �1:076 13.190
QL16R 23.143 �1:007 13.964 78.119 0.934 13.242
CV56R 26.398 �2:619 13.969 71.756 5.345 13.244
CH75R 22.662 0.885 14.066 8.679 0.509 13.369
CV81R 19.151 �2:690 14.123 6.176 0.778 13.514
CH101R 9.592 �0:461 14.336 17.520 1.879 13.812
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curvature � of the design trajectory in the dipole fields
and �� from dipole field errors and correction coils, the
vector ~dds s0 describes the closed orbit distortions along
the ring according to the inhomogeneous equation of
motion

d2

ds2
ds s0 � ��

2 � k�ds s0 � �� with ds0 s0 � 0;

d0s0 s0 � 0: (2)
102801-3
We assume that the quadrupole to be aligned, the
test quadrupole, is the first element in the lattice. For
generality the quadrupole can also have a dipole field
component. This is important for HERA, since the
magnets GG and GO are quadrupole magnets with an
additional dipole field for horizontal bending. For the
beam-based alignment procedure only the quadrupole
strength k is changed, not the dipole field strength.
Since the quadrupole magnet has a straight axis, the
102801-3



FIG. 2. (Color) The orbit position relative to the axis of a
quadrupole can be deduced from the closed orbit change which
is created by a change in the quadrupole’s field strength.
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motion through these fields is not correctly described with
the map of a combined function magnet, where the quad-
rupole field is evaluated around a curved trajectory. In the
coordinate system which is aligned along the quadru-
pole’s straight axis, the equation of particle motion
through the magnetic field By is given by

x00 � �
qBy

p
� �kx� �: (3)

Charge and momentum are denoted by q and p. The
transport map ~GG� ~xx� which transports the phase space
vector ~xx0 from the beginning of the quadrupole to ~xxe at
its end is given by ~xxe � ~GG� ~xx0� � G~xx0 � ~DD with

G �

 
cos�l

���
k
p
� 1��

k
p sin�l

���
k
p
�

�
���
k
p

sin�l
���
k
p
� cos�l

���
k
p
�

!
;

~DD � �
�
k

 
1� cos�l

���
k
p
����

k
p

sin�l
���
k
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:

(4)

When the alignment of the magnet with respect to the
design trajectory at its entrance is described by a shift to
z0 and a slope z00, and similarly ~zze describes the alignment
of the end of the magnet, then the particle transport is
described by

~xxe � G� ~xx0 � ~zz0� � ~zze � ~DD: (5)

The closed orbit at the end of the quadrupole is given
by the periodicity condition
102801-4
~xxe � ~GG� ~TTL e� ~xxe�� � G�TL e ~xxe � ~ddL e � ~zz0� � ~zze � ~DD:

(6)

After the quadrupole strength has been changed to k�
�k we denote changed quantities by a superscript �, and
the closed orbit is similarly given by

~xx�e � ~GG�� ~TTL e� ~xx
�
e ��

� G��TL e ~xx�e � ~ddL e � ~zz0� � ~zze � ~DD�: (7)

We are looking for a relation between the distance of
the closed orbit from the quadrupole’s center �~xx � ~xx � ~zz
and the closed orbit change �~xx � ~xx� � ~xx. For this pur-
pose we use Eq. (6) to eliminate TL e ~xxe � ~ddL e � ~zz0 in
Eq. (7) and obtain

~zz�e � �~xxe � �~xxe � ~zze
� G��TL e ~xxe � ~ddL e � ~zz0 � TL e�~xxe� � ~zze � ~DD�

� G�
G�1��~xxe � ~DD� � TL e�~xxe� � ~zze � ~DD�:

(8)

This equation can now be solved to express �~xx in terms of
�~xx,

�G�G�1 � I��~xxe � �I �G�TL e��~xxe � ~DD�

�G�G�1 ~DD: (9)

This expression can already be used to determine the
magnet alignment �~xxe at its end. However, when neglect-
ing second orders in �k, the expression becomes simplest
when the alignment �~xxm in the middle of the magnet is
computed. For this we introduce the matrix g and vector
~dd which are G and ~DD in Eq. (4) for half the quadrupole
length. A useful matrix will be
g�1G�g�1 � I � �kl

0
@ 0 1
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1
A�O��k2�; (10)

which reduces the effect of �k to the center of the quadrupole. In the following we will use the abbreviations
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For a defocusing quadrupole (k < 0) sin changes to sinh due to the imaginary unit in
�������
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p

,
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!
: (12)

With the revolution matrix M � gT g for the middle
m L e
of the test magnet Eq. (9) leads to

�g�1�~xxe � 
I � �I � ��Mm�g�1�~xxe � g�1� ~DD� � ~DD�

��g�1 ~DD: (13)

Relating �~xxe to the center of the magnet leads to �~xxe �
g� ~xxm � ~dd and similarly ~DD � g ~dd � ~dd. To leading order in
�k the difference orbit around the ring �~xxs �
Ts mg

�1�~xxe is then given by

�~xxs � Ts m�I �Mm�
�1�� ~xxm � ~zzm � ~dd

��k��1g�1@k ~DD�: (14)
102801-4
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This shows that for a quadrupole with an additional di-
pole field, the closed orbit distortion �~xx is not created by
the distance ~xxs � ~zzs between the closed orbit and the
quadrupole axis, but by the distance between the closed
orbit and an axis that is shifted by ~ff from the quadrupole
axis, with

~ff � ~dd � �k��1g�1@k ~DD �
�
f
0

	
with

f �
�
k

 
1

��
sin�l2

���
k
p
�

l
2

���
k
p � 1

!
:

(15)

To simplify the notation, we will now use �~xxm � ~xxm �
~zzm � ~ff for the closed orbit with respect to the modified
axis of the quadrupole. The shift of the alignment axis by
f amounts to �401 "m for the GO magnet and to
�132 "m for the GG magnet.

Since Ts m�I �Mm�
�1 is the closed orbit generator, the

difference orbit �~xxs is created by an effective kick in the
center of the test magnet. However, there is not only an
angle kick #m as in the thin lens model of a quadrupole,
but there is also a position kick �m so that the difference
102801-5
orbit which is created by the change of the test quadru-
pole has two terms,

�xs � �x#s#m � �x�s �m; (16)

�x#s � Ts m11
�I �Mm�
�1�12 � Ts m12
�I �Mm�

�1�22;

(17)

�x�s � Ts m11
�I �Mm�
�1�11 � Ts m12
�I �Mm�

�1�21;

(18)

#m � ��kl�
��xm; (19)

�m � �kl
��

k
�x0m: (20)

Contributions from angular offsets become important if

sin�l

���
k
p
�=l

���
k
p
� is significantly smaller than unity, which

is the case for the HERA low-beta quadrupoles as shown
in Table III. Using Twiss parameters, the well-known
formulas
Ts m11 �

�������
�s

�m

s

cos��s ��m� � �m sin��s ��m��; (21)

Ts m12 �
������������
�s�m

p
sin��s ��m�; (22)

�I �Mm�
�1 �

1

4 sin2�$

�
1� cos2�$� �m sin2�$ �m sin2�$

�%m sin2�$ 1� cos2�$� �m sin2�$

	
(23)

lead to

�x#s �
������������
�s�m

p cos�j�s ��mj � �$�
2 sin��$�

; (24)

�x�s �

�������
�s

�m

s
�m cos�j�s ��mj � �$� � sin�j�s ��mj � �$�

2 sin��$�
: (25)
The contribution �x#s is the conventional closed orbit for a
correction coil at the center of the test magnet, where
� � �m. The contribution �x�s can be compensated by a
correction coil at �� � �m � arctan� 1�m

� since

�x�s �
������������
�s%m

p cos�j�s ���j � �$�
2 sin��$�

sgn��m�; (26)
when �s is not between �m and ��. For �� we take
the branch where the arctan function is in 
� �

2 ;
�
2�.

A closed orbit correction program with correctors at
these two phases will readily determine #m and
�m

���������������
%m=��

p
sgn��m� as proposed corrector kicks. These

lead immediately to �xm and �x0m with Eqs. (19)
and (20).
B. Kick compensation method

Quadrupole errors around the machine might lead to a
misinterpretation of the quadrupole offsets to be eval-
uated. We therefore propose to create a closed bump by
changing the strength of the test quadrupole and by
appropriately exciting two corrector coils as shown in
Fig. 3.

The difference orbit is thus a closed bump, which starts
with �x � 0; �x0 � 0 at the test quadrupole. The ampli-
tude and slope �~xxs within this bump are derived from

�~xxs � Ts 0G�1
�G� �G�� ~xx0 � ~zz0� � ~DD� � ~DD�; (27)

with the original closed orbit ~xx0 and the quadrupole offset
and angle alignment ~zz0 at the beginning of the test
quadrupole. We again refer to the alignment in the
quadrupole’s center by
102801-5



TABLE III. Measures of the accuracy of a thin kick approximation for HERA-e’s interaction
region quadrupoles (left) and of the relevance of angular alignment versus position alignment
given by Eq. (36).

�� � l
��
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�sin�l

��
k
p
�

2l
��
k
p 1

k
l
��
k
p
�sinl

��
k
p

l
��
k
p
�sinl

��
k
p

�����
%m
�m

q
Name Horizontal Vertical

QL16L 0.010 0:006 mm=mrad 0:002 mm=mrad
QL14L 0.005 0:003 mm=mrad 0:004 mm=mrad
GJ8L 0.038 0:044 mm=mrad 0:032 mm=mrad
GI7L 0.069 0:008 mm=mrad 0:036 mm=mrad
GOL 0.112 0:290 mm=mrad 0:104 mm=mrad
GGR 0 0:042 mm=mrad 0:054 mm=mrad
GI6R 0.064 0:100 mm=mrad 0:009 mm=mrad
GI7R 0.073 0:018 mm=mrad 0:010 mm=mrad
GJ8R 0.034 0:038 mm=mrad 0:024 mm=mrad

QL14R 0.004 0:002 mm=mrad 0:008 mm=mrad
QL16R 0.010 0:005 mm=mrad 0:002 mm=mrad

PRST-AB 5 BEAM-BASED ALIGNMENT OF INTERACTION REGION . . . 102801 (2002)
�~xxs �Ts mg�1
g�gg�1� ~xxm � ~zzm � ~dd� � ~DD� � ~DD�

�Ts m�� ~xxm � ~zzm � ~ff�; (28)

~ff � ~dd ��k��1g�1@k ~DD: (29)

The difference orbit vanishes after the second correction
coil so that

~xx2 � Ts2 m��~xxm � Ts2 s1

�
0
#1

	
�

�
0
#2

	
�

�
0
0

	
: (30)

Here the deviation of the closed orbit from the modified
102801-6
quadrupole center �~xxm � ~xxm � ~zzm � ~ff has been used
again. The closed orbit inside the quadrupole is then

�~xxm � ��
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: (31)

To simplify notations, we again use �� � 
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�, and

�1 m � �1 ��m. The total transformation between
the compensating kicks ~## � �#1; #2� and the test quadru-
pole offset vector is then
~xxm � ~zzm �
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where the effective center shift f is given in Eq. (15) and appears whenever the quadrupole field which is changed for
beam-based alignment is superimposed by a dipole field.

Similarly the corrector angles can be determined from the quadrupole alignment by the inverse equation,

~## � A�~xxm; A �
�kl

sin��2 ��1�

0
B@

�����
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q
sin�2 m�� � 1���������
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1���������
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��
k

1
CA: (34)

These formulas are accurate up to leading order in �k.

The program MAD was used to simulate the closed orbit
and the kick compensation version of beam-based align-
ment for the HERA IR magnets. The inaccuracy of the
reconstructed closed orbit deviation due to the neglected
higher orders in �k was shown for all the IR magnets to
be better than 1:3% for �k=k  5%. And it was shown
that only second order terms in �k=k contribute notice-
ably to this small error.
For the quadrupoles QR16L, QR14L, GOL, and GOR
the error of the linearization is shown in Fig. 4. The
deviation between the alignment xm � zm and the first
order result �xm � zm�1 of formula (32) is plotted against
�k=k on a logarithmic scale. The simulations were per-
formed for the displayed range of �k=k. For even smaller
�k=k numerical inaccuracies dominate the computation.
The error increases linearly, which shows that only next
102801-6
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FIG. 4. (Color) Deviation between the alignment ~xxm � ~zzm and
the result � ~xxm � ~zzm�1 of linearization in �k=k on a double
logarithmic scale, i.e., acc � �xm�zm�1

xm�zm
� 1 for the accuracy

of position reconstruction (lower curves, red dots) and acc0 �
�x0m�z0m�1
x0m�z0m

� 1 for the accuracy of the angular reconstruction
(upper curves, blue dots).

FIG. 3. (Color) The orbit position relative to the axis of a
quadrupole can be deduced from the angles required to close
a bump which is excited by changing the quadrupole’s field
strength.
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to leading order effects contribute noticeably to the errors
and that these are small.

The nature of this transformation becomes more trans-
parent if the two kicks ~## � �#1; #2� are replaced by two
fictive kicks ~##f which occur at a betatron phase difference
of exactly � and � arctan�1=�m� from the test quadru-
pole, respectively, and are normalized to the � function.
We again take the branch where the arctan function is in

� �

2 ;
�
2�. With �1 m ! � and �2 m ! � arctan�1=�m�

this leads to

�~xxm �
1

�kl

0
@ 1�����

�m

p 1
�� 0

0 1�����
%m
p k

��

1
A ~##f: (35)

The fictive angles ~##f � �#f1; #f2� are now clearly related
to the alignment. The kick #f1 corrects the oscillation
102801-7
from the magnet offset so that #f1 � �
�������
�m
p

#m with
Eq. (19). The kick and #f2 corrects the oscillation due to
the angle of the closed orbit relative to the magnet axis
and #f2 �

�������
%m
p

�m due to Eq. (20). The relation between
the real and the fictive angles turns out to be
~##f �
� ������

�1

p
�cos�1 m � �m sin�1 m�

������
�2

p
�cos�2 m � �m sin�2 m�������

�1

p ����������������
1� �2

m

p
sin�1 m

������
�2

p ����������������
1� �2

m

p
sin�2 m

	
~##: (36)
IV. INFLUENCE OF MEASUREMENT ERRORS
AND IMPERFECTIONS

In the following, we will consider the errors in case of
the compensating kick method.

A. Error of thin lens treatment

Let us first consider the error that is made by treating
the test quadrupole as a thin lens. The effective kick in
the quadrupole of Eq. (10) becomes in thin lens approxi-
mation

�thin �

�
0 0

��k � l 0

	
; (37)

leading to ��kl�xthinm � zm� � ���xm � zm � f�. Com-
paring this to Eq. (19) leads to the error of the thin lens
version of beam-based alignment measurements,

xthinm � zm � ���xm � zm � f�: (38)

The error has two components, a scaling error of �� �
1� �� which is shown in the second column of Table III
and an absolute error of �f�� which is 452 "m for the
GOL and 132 "m for the GGR magnet.

For a HERA IR quadrupole GO the scaling error
amounts to 11%. Given the systematic horizontal offset
of�5:5 mm in this magnet and an additional closed orbit
deviation of up to 5 mm, the absolute error due to thin
lens analysis could be on the order of 1 mm. Also for the
magnet GI in the HERA IR a thin lens evaluation could
lead to an error of up to 1 mm, since the scaling error
amounts to 6% and the offset could be a 10 mm design
offset plus a closed orbit deviation of 5 mm. The error in
case of a standard lattice quadrupole with k � 0:1 m�2

and l � 1 m however is rather small. Even with an orbit
offset of 5 mm, the error due to thin lens approximation
for such an element with zero design offset is only 50 "m.

The influence of the angle error in the quadrupole
alignment is completely ignored in the thin lens model.
To estimate the relative importance of the oscillation
excited by the angle alignment, we investigate the
Courant-Snyder invariant '�z0 of the part of the differ-
ence orbit which is due to the angle error and '�z which is
the part due to the quadrupole shift.With �m and #m from
Eqs. (19) and (20) we obtain
102801-7
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���������
'�z0

'�z

s
�

�������������
%m�

2
m

�m#
2
m

s
�

1

k
��

��

����������������
1� �2

m

p
�m

�x0

�x
: (39)

For the HERA IR magnets the third column of Table III
shows this ratio of oscillation amplitudes. For the long,
superconducting GO magnets in the HERA IRs, for ex-
ample, the oscillation amplitude

���������
'�z0
p

created by a 1 mrad
angle is 29% of the oscillation amplitude due to a quadru-
pole shift of 1 mm. This shows that a good angular
alignment of the GO magnet is not much less important
than a good position alignment. The quadrupole’s angle
and the corresponding error from neglecting it are there-
fore quite significant. Thus even if the contribution of
angular alignment is considered small, one should take
into account only that component of the difference orbit
which has the proper phase relation to the test magnet in
order to avoid large errors. This is especially important, if
there is a large value of �m in the center of the test
quadrupole.

B. Influence of optical errors

Beam optics distortions between the compensating
kicks in a beam-based alignment measurement and the
test quadrupole lead to misinterpretation of the difference
orbit and a corresponding error of the evaluation. Given
optical errors � ~�� � ���m; ��1; ��2�, ��m and � ~�� �
���1 m; ��2 m�, the change �k in the test quadrupole
requires correction kicks ~## to close the bumps which are
obtained by inserting the perturbed optical functions into
Eq. (34). The inferred orbit in the quadrupole is however
obtained by Eq. (32) with the unperturbed optical func-
tions and is therefore erroneous. This erroneous result of
the beam-based alignment procedure is here referred to
as �~xxerr.We refer to the matrix in Eq. (34) as A� ~��;�m; ~���.
The matrix in Eq. (32) is A�1,
102801-8
�~xxerrm � A�1� ~��;�m; ~���A� ~�� � � ~��;�m � ��m; ~��

� � ~����~xx: (40)

For simplicity let us now assume a phase error, so that
the � and � functions do not change and we assume
�� � ��1 m � ��2 m which means that no optics er-
ror occurs between the corrector magnets. Here we will
neglect all nonlinear terms in �� by replacing cos����
by 1 and sin���� by ��. With Eqs. (32) and (34) the result
can be expressed in the following way:

�~xxerrm ��~xxm � ��
�
��m

1
k %m

��

��

�k�m
��
�� �m

	
�~xxm: (41)

The term in the position error which is proportional to
�xm is thus simply given by

@�x�x
err
m � 1 � ��m��: (42)

With a phase deviation �� � 0:01� 2� this error is 24%
for the GO quadrupole. For the same phase deviation,
Table IVshows all these errors for the HERA IR magnets.
The error in the position measurement that is introduced
by the angle alignment is a few percent. However, the
term that generates the error in the angle determination
is shown to be huge in the third column of Table IV.
This will prevent a precise measurement of the angular
alignment.

The case studied here of a pure phase error is somewhat
artificial. When the other optical functions are also per-
turbed, then the evaluation becomes rather elaborate and
the errors depend strongly on the location of the optical
element that courses them. We now assume that there is
one thin lens quadrupole error with focal strength �kl at
position q in between the test magnet and the two cor-
rection coils. The kicks ~## in the correction coils are then
related to the alignment by Eq. (31),
� ~xxm � ��
�1Tm q

�
1 0
��kl 1

	�
Tq s1

�
0
#1

	
�Tq s2

�
0
#2

	
: (43)

The erroneously determined alignment �~xxerr does not take the optical error into account,

�~xxerrm � ��
�1Tm q

�
Tq s1

�
0
#1

	
�Tq s2

�
0
#2

	
: (44)

We therefore obtain the relation

�~xxerrm ��~xxm � ��1Tm q

�
0 0
�kl 0

	
Tq m��~xxm: (45)

The error is a linear combination of the deviation �xm from the magnet center and the deviation of the slope,

�xerrm ��xm � �xm�@�x�xerrm � 1� � �x0m@�x0�xerrm ; (46)

and similarly for the error of the angular alignment determination. The exact value of the terms in the matrix that
relates �~xxerr and �~xx depend on the optical parameters, especially on the phase advance between the error and the test
quadrupole. When one inserts as a worst case scenario for each of the matrix elements the phase �q m where it has the
maximum absolute value, one obtains
102801-8
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maxj@�x�x
err
m � 1j � j�klj�q

1

2
�j�mj �

����������������
1� �2

m

q
�; maxj@�x0�x

err
m j � j�klj�q%m

��

k��
;

maxj@�x�x0errm j � j�klj�q�m
k��

��
; maxj@�x0�x0errm � 1j � j�klj�q

1

2
�j�mj �

����������������
1� �2

m

q
�:

(47)

These values are shown for the HERA IR in TableV when

a thin lens quadrupole error with tune change 1

4� �kl�q �
0:01 is assumed. Table VI shows which relative quadru-
pole errors in the IR lead to such a tune shift.

For specific quadrupole errors in the HERA interaction
region, the sensitivity of this beam-based alignment pro-
cedure was also evaluated. TableVII shows the error of the
constructed beam offset in the GJ8L, GI7L, and GOL
magnet which occurs when the field strength in one of the
other quadrupoles on the left side of the IP has an error
which leads to a tune shift of 0.01. We show only the most
relevant term of the error, @�x��xerr ��x�.
TABLE V. Maximum of the errors of the beam-based align-
ment procedure for the HERA IR quadrupoles at injection due
to some focusing error at position sq with tune shift 1

4��q�kl �
0:01. Corresponding quadrupole errors are shown in Table VI.

j@�x�x
err � 1j j@�x0�x

errj j@�x�x
0errj j@�x0�x

0err � 1j
Name mm=mrad mrad=mm

QL16L 0.17 0.00 33 0.17
QL14L 0.08 0.00 47 0.08
GJ8L 0.73 0.03 17 0.73
GI7L 0.26 0.00 33 0.26
GOL 0.48 0.14 2 0.48
GGR 0.16 0.01 4 0.16
GI6R 0.62 0.06 6 0.62
GI7R 0.47 0.01 25 0.47
GJ8R 0.55 0.02 14 0.55

QL14R 0.06 0.00 53 0.06
QL16R 0.15 0.00 32 0.15

TABLE IV. Errors of the beam-based alignment procedure
for the HERA IR quadrupoles at injection due to a phase error
of �� � 0:01� 2� within the closed bump of the kick com-
pensation method.

@�x�x
err � 1 @�x0�x

err @�x�x
0err @�x0�x

0err � 1
Name mm=mrad mrad=mm

QL16L �0:07 0.00 �16:64 0.07
QL14L �0:01 0.00 �23:74 0.01
GJ8L 0.36 0.02 �8:312 �0:36
GI7L �0:12 0.00 �16:29 0.12
GOL �0:24 0.07 �0:843 0.24
GGR 0.07 0.00 �2:249 �0:07
GI6R 0.31 0.03 �3:129 �0:31
GI7R 0.23 0.00 �12:99 �0:23
GJ8R �0:27 0.01 �7:264 0.27

QL14R �0:00 0.00 �26:79 0.00
QL16R 0.06 0.00 �16:42 �0:06

102801-9
C. Reduction of sensitivity to errors

One source of errors is an imperfect determination of
the compensation kicks, thus the measured angles #1 and
#2 contain errors �#1 and �#2. This can be due, for
example, to noise in the beam-position monitors leading
to an imperfect closing of the bump or due to an imper-
fect knowledge of the kick strength per ampere in the
correction coils. In the following we will show how the
sensitivity to errors in #1 and #2 can be significantly
reduced. Since optical errors within the bump lead to
kick strengths that are different than they would be with-
out errors, this method can also be used to reduce the
sensitivity to optical errors. This method however re-
quires a neglect of the measurement of the magnet’s
alignment angles. For not too long magnets, where the
alignment angle is not very relevant, it can be very
valuable to neglect the alignment angle for the sake of
improving the position alignment. For very long magnets,
however, this trade-off might not be a good choice.

Since the determination of �x0m is very prone to errors
for HERA’s IR magnets, as can be seen in Tables IVand V,
it is not worth trying to determine the angle alignment.
But we will make use of the knowledge that the angular
alignment error �x0m � x0m � z0m cannot be very large by
TABLE VII. Horizontal errors @�xxerr � 1 of the beam-based
alignment procedure for three HERA IR quadrupoles at in-
jection due to an error of the field strength in one of the other
IR quadrupoles which leads to a 0.01 tune shift. All magnets
were assumed to be correctly aligned.

Error element for GJ8L for GI7L for GOL

QL16L �0:432 0.217 0.309
QL14L �0:687 0.259 0.463
GJ8L �0:005 �0:008
GI7L �0:008

TABLE VI. Relative filed strength errors for the IR quadru-
poles which lead to a tune shift �$x or �$y of 0:01.

Name QL16L QL14L GJ8L GI7L GOL
4��$x
�x
mkl

4.6% 6.5% 1.3% 0.3% 2.6%
4��$y
�y
mkl

1.3% 7.3% 0.8% 1.1% 1.0%

Name GI6R GI7R GJ8R QL14R QL16R
4��$x
�x
mkl

2.1% 0.4% 1.7% 6.6% 4.5%
4��$y
�y
mkl 0.5% 0.8% 0.9% 14% 1.3%

102801-9
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assuming that it is approximately correct. By doing so, we
require our compensation kicks to lead to the design value
z00m of the angular alignment. While the angles ~## are
measured, we assume that the true kick angles were ~## �
� ~##. Since the errors � ~## are not known, we introduce an
estimate � ~##� of the erroneous angle such that Eq. (32)
leads to an estimated alignment of

� ~xx�m � A�1� ~��;�m; ~���
 ~## �� ~##�� �
�
�x�m
�z00m

	
: (48)

With ~aa2 � �
A
�1�2;1; 
A

�1�2;2� we write ~aa2
 ~## � � ~##�� �
�z00m. This condition should be satisfied for a set � ~##� of
angles which is as small as possible, i.e., j� ~##�j2 should be
102801-10
minimal. We can use Lagrange multipliers to minimize,

� ~##�2 � *
 ~aa2� ~## � � ~##�� � z00m� ! minimum; (49)

2� ~##� � *~aa2 � 0; (50)

~aa2 � � ~##� � ~aa2
~## � z00m: (51)

These equations lead to � ~##� � ~aa2� ~aa2 � ~## � z00m�=j ~aa2j
2.

With ~aa1 � �
A
�1�11; 
A

�1�12� Eq. (32) determines
the alignment to �xm � ~aa1 � ~##. When the above
estimate � ~##� is used, the estimated alignment is given by
�x�m �
1

j ~aa2j
2 
j ~aa2j

2 ~aaT1 � � ~aa1 � ~aa2� ~aa
T
2 �
~## �

~aa1 � ~aa2

j ~aa2j
2 z00m

�
1

j ~aa2j
2
~aaT2 � ~aa2;� ~aa1�

�
~aaT1
~aaT2

	
~## �

~aa1 � ~aa2

j ~aa2j
2 z00m

�
1

j ~aa2j
2
~aaT2

�

A�1�21 �
A�1�11

A�1�22 �
A�1�12

	�

A�1�11 
A�1�12

A�1�21 
A�1�22

	
~## �

~aa1 � ~aa2

j ~aa2j
2 z00m �

det�A�1�

j ~aa2j
2

~aaT2

�
0 �1
1 0

	
~## �

~aa1 � ~aa2

j ~aa2j
2 z00m:

(52)
With Eq. (32) for A�1 this yields

�x�m �

������������
�1�2

p
sin�2 1

�kl��
�������
�m
p

������
�2

p
sin�2 m#1 �

������
�1

p
sin�1 m#2

�1 sin
2�1 m � �2 sin

2�2 m

� z00m
��

k�m�
�

�
�m �

�1 sin�1 m cos�1 m � �2 sin�2 m cos�2 m

�1 sin
2�1 m � �2 sin

2�2 m

	
: (53)

When the determination of the angles ~## has an error with standard deviation �#, then the errors in the determination
of �xm and �x0m have the standard deviations j ~aa1j�# and j ~aa2j�# when Eq. (32) is used, leading to

��xm �
�#

�kl��

�������������������������������������������������������������������������������������������������������������������������������������
�1

�m
�cos�1 m � �m sin�1 m�

2 �
�2

�m
�cos�2 m � �m sin�2 m�

2

s
: (54)

When Eq. (52) is used, the standard deviation of �x�m is always smaller,

��x�m � �#

�������det�A
�1�

j ~aa2j
2

~aaT2

�
0 �1
1 0

	�������� �#

�kl��
�������
�m
p

������������
�1�2

p
sin�2 1������������������������������������������������������������

�1 sin
2�1 m � �2 sin

2�2 m

p : (55)

Especially for large �m this spread of results in �x�m is drastically smaller than the spread in Eq. (54). If the angular
alignment of the orbit relative to the magnet is not the design value �z00m, then �x�m contains a systematic error, since
�# � 0 does not lead to the correct alignment �xm � ~aa1 � ~##, but with ~aa2 � ~## � �x0m it leads to

�x�m � �xm � ��x0m � z00m�
~aa1 � ~aa2

j ~aa2j
2 (56)

� �xm � �x
0
m � z0m � z00m�

��

k���m

�
�m �

�1 cos�1 m sin�1 m � �2 cos�2 m sin�2 m

�1 sin
2�1 m � �2 sin

2�2 m

	
: (57)
This systematic deviation of �x�0m � �x�m�� ~## � 0� from
�x0m � �xm�� ~## � 0� is shown in Table VIII for an an-
gular deviation x0m of 1 mrad. Figure 5 shows that a
spherical error distribution for #1 and #2 leads to an
elliptical distribution for �xm and �x0m. The large spread
in �xm is reduced by the estimation of � ~##� as shown in
the figure. This, however, introduces the systematic error
x�0m � x0m which is also shown.

Since the angular alignment of the GO magnet is more
important than that of any other IR magnet of HERA, as
shown in Table III, neglecting an angle leads to the largest
102801-10



FIG. 5. (Color) The reduction of the spread of the determined
offset �x�m and the introduced systematic error �x�0m ��x0m
due to the requirement of �x00m � �z00m.
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systematic error in Table VIII. On the other hand the
beam-based angular alignment of the GO has the small-
est sensitivity to optical errors in the fourth columns of
Tables IVand Vso that the chance of measuring the angle
of GO is largest. Nevertheless we have found that even for
the GO magnet it is better to assume that there is no
angular alignment error and to use this assumption to
TABLE VIII. Systematic error �x�0m ��x0m of the procedure
which reduces the measurements sensitivity to the kick angles
~##. This error increases linearly with the deviation from the
orbits design angle in the magnet.

GJ8L GI7L GOL GGR GI6R GI7R GJ8R

�43 "m
mrad 8 "m

mrad 291 "m
mrad �34

"m
mrad �99

"m
mrad �18

"m
mrad 37 "m

mrad
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improve the accuracy of the position alignment. For even
longer magnets where the angular alignment is even more
important, on the other hand, it might be favorable not to
improve the position alignment but to perform beam-
based angular alignment.

Now we will show that this procedure also reduces the
sensitivity to optical errors. In Tables IV, V, and VII it has
been seen that the most important error of the alignment
determination is due to the term @�x�x

err � 1. This is
mostly due to the fact that the Twiss parameter �m that
contributes to this term can be relatively large. We will
now show that the method proposed here of error reduc-
tion makes this term independent of � for all types of
optical errors. For an alignment �xm, the angles ~## that

close the bump are given by ~## � A� ~~��~��; ~��m;
~~��~�� �� ~xxm where

the tilde indicates Twiss parameters which are perturbed
due to an optical error. With Eq. (55) the estimate of the
alignment is computed by

�x�m �
det�A�1�

j ~aa2j
2 �
A�1�22;�
A

�1�21� ~## �
~aa1 � ~aa2

j ~aa2j
2 z00m:

(58)

The most disturbing error contribution @�x�xerrm � 1 is
then given by
@�x�x
err
m � 1 �

det�A�1�

j ~aa2j
2

0
@

���������
�m�2

p

�� sin�2 m

�

���������
�m�1

p

�� sin�1 m

1
A
0
BBB@

�����
~��m
~��1

r
sin ~��2 m

sin� ~��2 1�
��

�

�����
~��m
~��2

r
sin ~��1 m

sin� ~��2 1�
��

1
CCCA: (59)
Since det�A�1� as well as j ~aa2j
2 does not depend on �m, the

error contribution no longer depends on �m, no matter
which optical perturbation occurs. Equation (41) and
Table IV show the error terms introduced by an optical
error that changes only the betatron phase.When the error
reduction method is used, the error of the alignment
determination can be computed from Eq. (59) to be

@�x�x
err
m � 1 � 2

�1 sin2�1 m � �2 sin2�2 m

�1 sin
2�1 m � �2 sin

2�2 m
��:

(60)

Also the term @�x�x
err
m � 1 depends on the Twiss parame-

ters at the corrector coils. For �1 m � �=2 and �2 m �
� we obtain
�x� � ��
��

k�m��
�x0m: (61)

The error becomes completely independent of �xm and
the already small error due to �x0m in Eq. (41) is reduced
by

����������������
1� �2

m

p
. For the phase advances which are realized in

the HERA IR between the test magnet and two horizontal
correction coils at 101 and 75 m left of the IP, the error
terms are shown in Table IX. The error has been reduced
to less than 1% for all magnets, whereas it was up to 36%
without error reduction.

The maximum error terms that can occur due to a
focusing error somewhere in the bump depend also on
the phase advances when the error reduction method is
used. For �1 m � �=2 and �2 m � � one obtains

maxj@�x�x
�
m � 1j �

�kl�q

2
; (62)

maxj@�x0�x�mj �
�kl�q�1�

����������������
1� �2

m

p
�

2

��

k�m�
�
: (63)

Both terms are always smaller than the maximum errors
in Eq. (47) without error reduction. Especially the first
102801-11



TABLE X. After error reduction: @�x�x
err � 1 for three

HERA IR quadrupoles at injection due to an error of the field
strength in one of the other IR quadrupoles which leads to a
0.01 tune shift.

Error element for GJ8L for GI7L for GOL

QL16L 0.048 0.049 0.053
QL14L 0.004 0.008 0.021
GJ8L �0:005 �0:020
GI7L �0:015

TABLE IX. After error reduction: the horizontal beam-based alignment procedure for the
HERA IR quadrupoles at injection due to a phase error of �� � 0:01� 2� within the closed
bump of the kick compensation method.

@�x�x
err � 1 @�x0�x

err maxj@�x�x
err � 1j maxj@�x0�x

errj

Name mm=mrad mm=mrad

QL16L �0:002 0.000 0.063 0.000
QL14L �0:005 0.000 0.063 0.000
GJ8L 0.009 0.001 0.063 0.003
GI7L 0.009 0.000 0.063 0.001
GOL 0.009 0.002 0.063 0.023
GGR �0:007 0.002 0.063 0.004
GI6R �0:003 0.001 0.063 0.008
GI7R �0:002 0.003 0.063 0.001
GJ8R �0:001 0.001 0.063 0.003

QL14R 0.005 0.000 0.063 0.000
QL16R �0:004 0.000 0.063 0.000
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error term is significantly smaller as can be seen in
Table IX where these maximum errors are plotted for
the IR of HERA. In Table X the error for one of the IR
magnets is shown which occurs when another IR magnet
causes the focusing error. With error reduction also these
errors are significantly smaller than those in Table VII.

We conclude the error considerations by realizing that
there are currently no chances to determine the angular
alignment of HERA’s IR quadrupoles with the desired
precision of �x0m ’ 100 "rad with beam-based align-
ment. However, the assumption that there are no angular
alignment errors allows us to reduce the large sensitivity
to optical errors and to corrector settings of the esti-
mated quadrupole offset drastically by 1 to 2 orders of
magnitude.

V. THE GLOBAL POSITIONS OF MAGNETS

A. Combining BBA data of all IR magnets

Since it is not possible to steer the beams to the middle
of all quadrupoles for a misaligned interaction region, the
measurement of the position and the angle of the beam
with respect to a single quadrupole magnet do not give
enough information to determine the global alignment of
this magnet. All the quadrupole offsets and angles with
102801-12
respect to the beam have to be determined, and the beam
orbit has to be consistently modeled, thereby fixing the
absolute magnet positions. In order to achieve that, the
following procedure has been established: the beam off-
sets with respect to all the quadrupoles in the IR are
measured for two or more different quadrupole settings
in the IR. Then a model of the IR that has the initial orbit
values at the entrance of the IR and the magnet positions
as free parameters is fitted to the set of measurements. An
additional constraint in the fit is that the magnet position
deviations from their nominal values should be minimal
in order to connect to the machine coordinate system
avoiding a global, unrealistic offset.

In order to perform this task, we need an explicit
formula for the beam orbit as a function of alignments
and initial conditions. To arrive at such a formula we
write the transformation of the beam orbit from the center
of a quadrupole to the center of its neighbor quadrupole as

~xxn � gnfOn n�1
gn�1� ~xxn�1 � ~zzn�1� � ~ddn�1 � tn�1 ~zzn�1�

� ~ddn n�1 � t�1n ~zzng � ~ddn � ~zzn: (64)

The vector ~xxn describes the orbit and ~zzn is the vector of
magnet alignments, both taken in the center of the mag-
net. The matrix gn transforms through half the magnet
with index n, and ~ddn describes the closed orbit distortion
produced in this half magnet. The 4� 4 matrix On n�1 is
the transport matrix from the end of the n� 1st test
magnet to the entrance of the nth test magnet. On this
distance the closed orbit distortions ~ddn n�1 due to cor-
rector coils or field errors are being accumulated. The
matrix tn describes a drift with half the length of the
nth magnet. It is used to obtain the alignment at the end of
a magnet as tn�1 ~zzn�1 or at the beginning of a magnet as
t�1n ~zzn. In the following we will use the 4� 4 matrix
Tn n�1 � gnOn n�1gn�1. The matrix Tn n�1 transforms
from center to center between two neighbored quadru-
poles. This equation can be simplified by using 5� 5
102801-12
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matrices, where the fifth column is used to describe the
closed orbit distortions. The orbit vector then has five
components, �x; x0; y; y0; 1�; the alignment vectors ~zzn have
0 in their fifth component. The closed orbit deviations ~dd
are then all absorbed in the fifth columns with
Tn n�1;i5 � 
gnfOn;n�1

~ddn�1 � ~ddn;n�1g � ~ddn�i for i 2
f1; . . . ; 4g; Tn n�1;55 � 1 and Tn n�1;5j � 0 for j 2
f1; . . . ; 4g. After combining the terms, the recursive orbit
formula reads

~xxn � Tn n�1 ~xxn�1 � Tn n�1�I � g�1n�1tn�1�~zzn�1
� �1� gnt�1n �~zzn: (65)

This recursive formula leads to the explicit expression

~xxn � Tn 0 ~xx0 � Tn 0�I � g�10 t0�~zz0

�
Xn�1
j�1

Tn j�g
�1
j tj � gjt

�1
j �~zzj � �I � gnt

�1
n �~zzn:

(66)

Using

Pn 0 � �Tn 0�I � g�10 t0�; (67)

Pn j � Tn j�g�1j tj � gjt�1j � for 0< j< n; (68)

Pn n � �gnt�1n : (69)

We finally obtain for the orbit in each of the N test
magnets the desired form

~xxn � ~zzn � Tn 0 ~xx0 �
Xn
j�0

Pn j ~zzj: (70)

It is apparent that Tn 0 describes the transport of the
incoming orbit coordinates ~xx0 to the center of magnet n
102801-13
and that Pn j describes how an orbit that is created by a
misaligned magnet j is propagated from its center to the
center of magnet n. On the left side appears the expression
that is obtained as the result of the measurement; the
right-hand side contains the parameters to be fitted, the
magnet offsets and angles and the initial orbit coordi-
nates. Since there are more parameters than measured
values, this expression can be solved only by fitting at
least two different measurements with different quadru-
pole settings simultaneously, as pointed out in [10] for a
similar circumstance. For the different measurements we
use an index m, thus different matrices T�m�n 0 and P�m�n j.
One can also add as an additional constraint that the
magnet positions should differ as little as possible from
their nominal value ~zzn � ~zz0n. Additional constraints can
be the readings of the beam-position monitors in the IR
region.

From the previous section, it is clear that the angular
alignment cannot be determined with satisfactory preci-
sion. Since the angles of the magnets with respect to the
beam need to be taken into account for the fit, the design
angles of the magnet are used. Therefore we can only
make use of the position part of the vector Eq. (70). This
introduces certain errors into the alignment reconstruc-
tion that are analyzed in the next section.

We now define a new relationship between the
measured values of xn � zn, the magnet offsets
z0; z1; . . . ; zN , and the initial orbit values x0; x00. For this
we define new vectors. The first one includes several sets
�m 2 f1; . . . ;Mg� of relative position measurements �xn �
zn�
�m� in all the IR magnets, as well as the design position

z0n
~vv � 
�x0 � z0�
�1�; �x1 � z1�

�1�; . . . ; �xN � zN�
�1�; . . . ; �xN � zN�

�M�; �z00; . . . ; z
0
N��: (71)
The second vector contains the parameters to be deter-
mined

~uu � �z0; . . . ; zN; x
�1�
0 ; x0�1�0 ; . . . ; x�M�0 ; x0�M�0 �; (72)

and the third vector ~ww contains the parameters which are
kept fixed, the design angles of the magnets z00j and the
effects of the dipole corrector settings of the mth meas-
urement,

w�m�n � 
T�m�n 0�1;5 �
Xn
j�0


P�m�0 j�1;2 � z
00
j

for j 2 f1; . . . ; N �Mg;

w�m�n � 0 else:

(73)

Note the indices outside the square brackets denote the
matrix element, the indices inside the square bracket
denote the matrix. The measurements are then related to
the parameters by
~vv � C~uu � ~ww: (74)

The matrix C contains the matrix elements which are
determined by Eq. (70),

C�m�1�N�n;j � 
P
�m�
n j�1;1 for 0  j  n; (75)

C�m�1�N�n;j � 
T
�m�
n 0�1;1 for j � N � 2�m� 1� � 1;

(76)

C�m�1�N�n;j � 
T
�m�
n 0�1;2 for j � N � 2�m� 1� � 2;

(77)

CMN�j;j � 1 for 0< j  N; (78)

C�m�1�N�n;j � 0 else: (79)

The solution of the fit with a quadratic norm is

~uu � �CTC��1CT� ~vv � ~ww�: (80)
102801-13
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In cases when the inverse cannot be computed due to a bad
condition of the matrix, a singular-value decomposition
can be helpful.

B. Error in magnet offset determination by ignoring
the magnet angle offsets

The quadrupole magnet’s angular alignment produces
a contribution to the closed orbit that is to be recon-
102801-14
structed. Since we are not able to measure the angular
alignment, it is not contained in our model. Therefore, the
missing angular offset in the model is compensated by an
additional false offset in neighboring magnets. The mag-
nitude of this error is estimated in the following.

The effect of the magnet angle on the beam trajectory
is described in Eq. (66) for one of the orbit planes by two
dimensional submatrices,
xn � Tn jQj

�
0

z0j � z00j

	
; (81)

Qj � g�1j tj � gjt
�1
j �

0
BB@ 0 2

lj
2

����
kj
p

cos�
lj
2

����
kj
p
��sin�

lj
2

����
kj
p
�����

kj
p

2
�����
kj

p
sin�

lj
2

�����
kj

p
� 0

1
CCA; (82)

xn � Tn j

�
1
0

	
2

lj
2

�����
kj

p
cos�

lj
2

�����
kj

p
� � sin�

lj
2

�����
kj

p
������

kj
p �z0j � z00j �: (83)

We use the same notation as before, Tn j is the transport

matrix between the middle of quadruple index j and n, gj
is the transformation through half of this quadrupole, tj is
a transformation through the drift of the same half
length, and z0j is the angle of the beam with respect to
the design curve. In our model, the missing effect of the
angle alignment in Eq. (83) is produced by additional,
false magnet offsets of neighboring quadrupoles.
Quadrupole i requires an additional shift �zi and an
additional angle �z0i to produce the effect of the angle
of quadrupole j,

xn � Tn iQi

�
�zi
�z0i

	
: (84)

These false offsets are given by
�
�zi
�z0i

	
� Q�1i T�1n iTn j

�
1
0

	
2

lj
2

�����
kj

p
cos�

lj
2

�����
kj

p
� � sin�

lj
2

�����
kj

p
������

kj
p �z0j � z00j �: (85)

For two quadrupoles with a phase distance of �i j � 0 00

� arctan�1=�j�, taking the arctan function in f0; ��, one
obtains

T�1n iTn j � Ti j �

0
@ 0 �

����
�i
%j

q
����
%j

�i

q
�i��j��������
%j�i

p

1
A: (86)

This leads to �z0i � 0 so that the quadrupole i alone can
compensate the missing angle of quadrupole j by chang-
ing the position but not the angular alignment of magnet
i. The error of the position reconstruction for this quadru-
pole is given by

�zi �

�����
%j

�i

s lj
2

�����
kj

p
cos�

lj
2

�����
kj

p
� � sin�

lj
2

�����
kj

p
����������

kikj
p

sin�li2
����
ki
p
�

�z0j � z00j �: (87)
The factor between �zi and zj � zj depends very much
on the values of � in the centers of the two quadrupoles
and on the chosen phase advance which allows that a
single quadrupole can compensate the ignored angular
alignment of magnet j.

In a realistic setting, at least two quadrupole positions,
i and q, will be reconstructed erroneously to take account
of the missing angle alignment of quadrupole j. For this
the following equation has to be satisfied:

Tn iQi

�
�zi
0

	
�Tn qQq

�
�zq
0

	
� Tn jQj

�
0

z0j � z00j

	
:

(88)

Solving for the position errors leads to
�
�zi
�zq

	
� �z0j � z00j �

lj
2

�����
kj

p
cos�

lj
2

�����
kj

p
� � sin�

lj
2

�����
kj

p
�

sin�q i
����������
�jkj

p
0
B@

cos�j q��j sin�j q

sin�
li
2

���
ki
p
�
�������
�iki
p

�
cos�j i��j sin�j i

sin�
lq
2

����
kq
p

�
��������
�qkq
p

1
CA: (89)

Table XI shows what error an angular alignment error of HERA’s IR quadrupoles can have on the estimated position
102801-14



TABLE XI. Effect of an angular alignment error of HERA
IR magnets on the estimated alignment of the two neighboring
quadrupoles. Since the nominal quadrupole strength of GGR is
zero, this magnet is not considered here.

Quad to the left Quad to the right
Name mm=mrad mm=mrad

QL14L 0.000 �0:001
GJ8L 0.029 �0:017
GI7L 0.074 �0:056
GOL 0.104 0.050
GI6R �0:016 �0:041
GI7R 0.070 �0:138
GJ8R 0.014 �0:030

QL14R 0.001 0.000
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of the two neighboring IR magnets. Even for an angular
alignment error of 1 mrad, the errors in the reconstructed
position are always below 150 "m.

C. Error propagation in the fitting procedure

The magnet positions as the result of a fit of the
measurements can be written as

zn �
XN
j�1

Bn;jyj: (90)

The zn are the first N components of the vector ~uu, the yj
are the components of ~vv � ~ww, and B � �CTC��1CT is the
matrix of the least square fit in Eq. (80).We now introduce
sets of random errors of the input variables labeled by 7

zn � �z7n �
XN
j�1

�Bn;j � �B7
n;j��yj ��y7j �; (91)

which gives the error of the magnet positions (neglecting
second order terms)

�z7n �
XN
j�1

��B7
n;j � yj � Bn;j � �y

7
j �: (92)

We now calculate the expectation value of �zn by squar-
ing the expression and by subsequently averaging over the
error set 7. We assume that for random errors the follow-
ing correlations hold: h�B7

n;j�B
7
n;ki7 � �B2

rms�j;k and
h�y7j�y

7
ki7 � y2rms�j;k. With this we finally obtain

�zn;rms �

�����������������������������������������������������������������X
j

y2j ��B
2
rms �

X
j

B2
n;j ��y

2
rms

s
: (93)

The first sum has typically values of 1 to 3 when eval-
uated for the HERA IR. Thus an error of a single meas-
urement ��xj � zj� � 0:1 mm propagates, yielding
approximately an error of 0.3 mm in the reconstructed
102801-15
magnet position. However, these are only first observa-
tions for the case of HERAwhere the presented version of
beam-based alignment is currently being heavily used in
the commissioning process. This particular application
and experiences with this method will thus be reported in
a separate paper after the successful commissioning of
the HERA luminosity upgrade.

VI. CONCLUSION

We have introduced a beam-based alignment method
for a general class of combined function magnets that can
be encountered in collider interaction regions. While this
method can in principal determine alignment angles, we
have shown that these angles would be very prone to
measurement errors. We have therefore introduced a pro-
cedure to use the angular alignment to strongly improve
the accuracy of the position determination by 1 to 2 orders
of magnitude. Furthermore a procedure has been pre-
sented to determine global magnet positions after the
closed orbit deviation from the quadrupole axis has
been measured throughout the interaction region.
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