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ABSTRACT

The basic formulas of describing polarization dynamics in accelerators will be presented. These
include the equation of spin motion in a comoving coordinate frame for spin vectors, spin transport
matrices, spin transport quaternions, and spinors. It will also be shown how spin fields evolve in
these four ways of descibing spin motion. Furthermore, some basic concepts of polarized beams in
ring accelerators will be discussed. These include the periodic spin direction on the closed orbit,
the closed orbit spin tune, the invariant spin field, the amplitude dependent spin tune, the Froissart
Stora formula, and transfer maps of linearized spin-orbit motion, with their relation to resonance
strength and to spin-orbit coupling integrals. The here presented material is intended to be a
tutorial of the basic processes involved when polarized beams travel around circular accelerators
and of the theory used to describe first order effects. Much of this material has been presented in
[1], where it served as the basis to extend the analysis of spin motion to higher–order phenomena.

1 Introduction

While electron beams in high energy accelerators can polarize automatically due to the emission of
spin-flip synchrotron radiation via the Sokolov-Ternov effect, electrons of lower energy and protons
have to be polarized in a source. These beams then have to be accelerated and stored with little
loss of polarization. We will here not be concerned with the spin-flip synchrotron radiation but
with the radiation free dynamics of pre-polarized beams. Today polarized proton beams can be
produced either by a polarized atomic beam source (ABS) or in an optically pumped polarized ion
source (OPPIS). Pulsed beams with polarization of up to 87% for 1mA H− beam current [3] and
up to 60% for 5mA [4], respectively, have been achieved with these sources.

After a review in section 2.1 of the various ways of formulating spin motion the concept of an
invariant spin field will be used to understand features of acceleration and storage of polarized
beams. The beam average of this field describes the maximum polarization available for particle
physics experiments during the storage time of several hours. Furthermore, it allows first–order
and higher–order resonances to be analyzed [5]. Crossing these resonances while accelerating the
beam can lead to a reduction of polarization. While the invariant spin field and the amplitude
dependent spin tune can be used to compute higher–order resonance strength, we will here only use
them in the first-order treatment of linearized spin-orbit motion, and thus relate them to spin-orbit
coupling integrals and to first order resonance strength, which in tern are regularly used in the
Froissart Stora Fromula. Together, this amplifies the interdependence of these first order methods.

The invariant spin field to analyze spin dynamics at high proton energies has become the basis
of a very detailed analysis of the acceleration process in HERA–p [1, 6] and is also becoming
adopted by the RHIC group [7] for simulations of polarized beam in the AGS and of their planned
250GeV polarized proton beam. While these methods are novel and powerful, they go bejond first
order and will not be covered here.
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2 Spin Dynamics

2.1 The Equation of Spin Motion

The expectation value of the vector operator representing the spin of a particle satisfies the equation
of motion of a classical spin vector. Viewed in the particle’s instantaneous rest frame, the direction
of this expectation value will here be denoted by the spin ~s with |~s| = 1. This direction is 2

h̄
times

the expectation value. The polarization P of a beam is defined as the absolute value of the spin
average taken over all N particles of the beam,

P = | 1
N

N
∑

j=1

~sj | = | < ~s >N | . (1)

The expectation value ~s changes with the time t of the laboratory frame according to the Thomas–
Bargmann–Michel–Telegdi (T-BMT) equation [8, 9]

d

dt
~s = ~ΩBMT (~r, ~p)× ~s . (2)

The precession vector ~ΩBMT (~r, ~p) depends on the particle’s position ~r and its momentum ~p . It

can be expressed by the electric and magnetic fields ~E(~r, t) and ~B(~r, t), by the particle’s charge q
and its rest energy mc2, the relativistic factor γ, and by the particle’s anomalous gyro-magnetic
g-factor G = (g − 2)/2 in the following way:

~ΩBMT (~r, ~p) = −
q

m
[(
1

γ
+G) ~B − G~p · ~B

γ(γ + 1)m2c2
~p− 1

mc2γ
(G+

1

1 + γ
)~p× ~E] . (3)

All frame dependent quantities are taken in the laboratory frame. The anomalous g-factor is about
1.793 for protons, about 0.00116 for electrons, and about −0.143 for deuterons.

2.1.1 Spin motion in Flat Circular Accelerators

When introducing the components of the magnetic field ~B⊥ and ~B‖ which are perpendicular and
parallel to the particle’s momentum, the Lorentz force equation and the T-BMT equation in purely
magnetic fields show some similarities,

d

dt
~p = − q

mγ
{ ~B⊥ } × ~p , (4)

d

dt
~s = − q

mγ
{(Gγ + 1) ~B⊥ + (1 +G) ~B‖} × ~s . (5)

In a solenoid magnet, ~B‖ produces a spin rotation around the longitudinal direction. The rotation

angle is given by dφ = −(1+G) qB‖
p
dl. For the circular accelerators HERA and COSY, for example,

this leads to the following rotations:

• For 920GeV protons a spin rotation around the longitudinal of π is created by a longitudinal
magnetic field integral of 3456Tm. For deuterons 11250Tm would even be needed, making
solenoids completely impractical at such high energies. For HERA’s 27.5GeV electron beam,
288Tm would be needed. Protons and deuterons with up to 3.3GeV/c in the COSY syn-
chrotron would however require only 12.39Tm and 40.35Tm respectively to be rotated by
π.

• Another interesting property to observe is that a particle’s plane of focusing is rotated in

a solenoid by an angle dϕ = − 1
2

qB‖
p
dl so that the spin rotation and the orbit rotation are

related by the gyromagnetic factor: dφ = gdϕ.
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Also in transverse magnetic fields, where ~B‖ = 0, several conclusions can immediately be
drawn from these equations. This case is especially relevant, since a flat circular accelerator has
only vertical magnetic fields in the center plane.

• In such a transverse magnetic field, the momentum ~p rotates in the plane perpendicular to
the field. If ~sp describes the spin in a coordinate system which rotates with the particle’s
momentum, the equation of spin motion relative to the particle motion becomes d

dt
~sp =

− q
m
G~B⊥ × ~sp . The spin rotation relative to the orbit motion is therefore independent of

energy, in contrast to the orbit deflection which varies like 1/γ. For fixed orbit deflections and

thus fixed ratio of ~B⊥/γ, the spin precession rate, however, increases with energy. For protons
with velocity v close to the speed of light, a fixed field integral of

∫

Bdl = πmcv
qG

≈ 5.48Tm
leads to a spin rotation of π. Electrons require a field integral of 4.62Tm for this rotation
angle, and deuterons require a field integral of 137.2Tm. Deuteron spins are therefore about
25 times harder to manipulate with magnetic fields than proton spins. On the other hand a
deuteron’s spin direction is about 25 times less sensitive to field errors.

• If the orbit is deflected by an angle φ in a transverse magnetic field, then the spin is ro-
tated by an angle Gγφ relative to the orbit. To create a spin rotation of π/2, the orbit for
920GeV protons only has to change by 0.89mrad, for 920GeV deuterons by -22.1mrad, and
for 27.5GeV Electrons by 24.8mrad. The minus sign indicates that deuterons rotate in the
oposite direction. For protons or deuterons with 3.3GeV/c in the COSY synchrotron the
required orbit devlection is 13.7◦ = 240mrad and −311◦.

• In a flat ring, the orbit deflection angle of 2π during one turn leads to Gγ full spin rotations
around the vertical direction relative to the particle’s direction. For 920GeV these are 1756
such rotations. This number of spin rotations performed during one turn along the closed
orbit is called the closed-orbit spin tune ν0 . A 27.5GeV electron beam in HERA-e has
ν0 = 62.5 . Deuterons with 920GeV would make -70 rotations. Protons and deuterons in the
COSY synchrotron with up to 3.3GeV/c rotate 6.54 and -0.29 times.

• Whenever the energy of a proton is increased by 523MeV, the spin rotates once more per
revolution around the ring. For an electron, this energy increase is 441MeV, and for a
deuteron it is 13.1GeV.

2.1.2 Spin Motion in the Curvilinear Coordinate System

The design trajectory of a particle accelerator is described by a space curve ~R(l) with |d~R(l)| = dl.
A coordinate system is defined relative to this curve with the second unit vector tangential to
the curve and the first and third unit vectors chosen to obtain a right handed orthonormal set of
vectors called an orthonormal dreibein. The first and third unit vectors therefore lie in a plane
perpendicular to the curve. The orientation of the unit vectors in that plane is arbitrary and can
change along the curve. The Frenet-Serret coordinate system is defined by

~t2 =
d

dl
~R(l) ,

1

ρ
= | d

dl
~t2| , ~t1 = −ρ d

dl
~t2 , ~t3 = ~t1 × ~t2 , T = −~t3 ·

d

dl
~t1 , (6)

where the torsion of the space curve ~R(l) is given by T . From these definitions and with d
dl
(~t1 ·~t2) =

~t2 · ddl~t1 − 1
ρ
= 0 it follows that

d

dl
~t1 = −T~t3 +

1

ρ
~t2 ,

d

dl
~t3 = −~t2 ×

d

dl
~t1 = T~t1 . (7)

A space vector ~r is specified by l and by the two coordinates x and y via

~r = ~R(l) + x~t1(l) + y~t3(l) . (8)
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A space curve is then specified by the two functions x(l) and y(l). The derivative with respect to
l of such a space curve ~r(l) is given by

d

dl
~r(l) = (

d

dl
x+ Ty)~t1 + (

d

dl
y − Tx)~t3 + (1 +

x

ρ
)~t2 . (9)

To remove the torsion T from the equation of motion, one introduces the unit coordinate vectors
~ex, ~el, ~ey by winding back the rotation which is due to the torsion,

ϑ =

∫ l

l0

T (l̃)dl̃ , ~ex + i~ey = eiϑ(~t1 − i~t3) ~el = ~t2 . (10)

The coordinate system with the unit vectors ~ex, ~el, ~ey is shown in figure 1 and is called the
curvilinear coordinate system. It follows that

d

dl
~ex + i

d

dl
~ey = eiϑ{−T~t3 +

1

ρ
~t2 − iT~t1 + iT (~t1 − i~t3)} =

eiϑ

ρ
~el . (11)
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Figure 1: The unit vectors ~ex and ~ex, the curvature vector ~κ of the design curve ~R(l) and the generalized
coordinates x, y, and l of the curvilinear coordinate system. This system is rotated by θ with respect to
the Frenet-Serret coordinate system.

For the right handed orthonormal dreibein [~ex, ~el, ~ey] of the curvilinear coordinate system [10,
11], one obtains

d

dl
~R(l) = ~el , ~r = ~R(l) + x~ex + y~ey , (12)

d

dl
~ex =

cosϑ

ρ
~el ,

d

dl
~ey =

sinϑ

ρ
~el , (13)

d

dl
~el = −1

ρ
~t1 = −1

ρ
(cosϑ~ex + sinϑ~ey) , (14)

d

dl
~r = ~ex

d

dl
x+ ~ey

d

dl
y + (1 +

x cosϑ+ y sinϑ

ρ
)~el . (15)
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For ease of notation, one can use ~x = (x, y)T , ~κ = (cosϑ, sinϑ)T /ρ, and h = 1+ ~x · ~κ. Vectors like
~p which have a component in the ~e3 direction are described by

~p = px~ex + py~ey + pl~el (16)

d

dl
~p = (

d

dl
px − plκx)~ex + (

d

dl
py − plκy)~ey + (

d

dl
pl + pxκx + pyκy)~el . (17)

To find the equations of particle motion in the curvilinear coordinate system, the independent
coordinates in the equations of motion is changed from time t to arc length l by using

dt

dl
= (~el ·

d

dl
~r)/(~el ·

d

dt
~r) =

h

v

p

pl
, (18)

where v is the velocity and p = |~p| is the momentum. Properties of a reference particle moving
on the design trajectory are We indicated by subscripts 0 and define the coordinates of all other
particles relative to this reference particle through

x , a =
px
p0

, y , b =
py
p0

, τ = (t0 − t)
K0

p0
, δ =

K −K0

K0
. (19)

where K = mc2(γ − 1) is the kinetic energy. These six phase space variables are denoted by
the phase space vector ~z. The coordinate pairs (x, a), (y, b), and (τ, δ) are canonically conjugate.

Since ~R(l) is the path of the reference particle, the particle transport is origin preserving, because
a particle with ~z = 0 will continue to travel along the design trajectory. The equation of motion
for these phase space coordinates with l as independent variable [11] is obtained by transforming
the Lorentz force equation. Here I neglect the Stern–Gerlach forces since they are very small in
comparison with the Lorentz force.

To transform the equations of spin motion into the curvilinear coordinate system, d
dl
t = h

v
p
pl

from equation (18) is used. The spin direction ~s is expressed by its components in the curvilinear

coordinate system and the column vector of these components is written as ~S. A potential torsion
of the reference curve does not enter the equations of particle motion in this coordinate system
and it also does not enter the equation of spin motion,

~s = Sx~ex + Sy~ey + Sl~el , (20)

d

dl
~s = (

d

dl
Sx − Slκx)~ex + (

d

dl
Sy − Slκy)~ey + (

d

dl
Sl + Sxκx + Syκy)~el

=
h

v

p

pl
~ΩBMT (~r, ~p)× ~s . (21)

For the column vector ~S, the equation of motion is therefore given by

d

dl
~S = {~ΩBMT (~r, ~p)

hp

vpl
− ~κ× ~el} × ~S . (22)

The precession vector depends on the position and the momentum. This can be expressed as a
dependence on l and on the 6 dimensional phase space variable ~z.

2.1.3 Equation of Motion for Spins and Spin Fields

In a circular accelerator with circumference L, it is convenient to choose the azimuth θ = 2πl/L as
independent variable, rather than the arc length l of the design trajectory. The coordinate vectors
are not changed, with ~eθ = ~el . All fields are then 2π periodic in θ. The equation of particle motion
is therefore 2π periodic,

d

dθ
~z = ~v(~z, θ) , ~v(~z, θ + 2π) = ~v(~z, θ) , (23)

d

dθ
~S = ~Ω(~z, θ)× ~S , ~Ω(~z, θ + 2π) = ~Ω(~z, θ) , (24)

5



where the precession vector is obtained from equation (22) as

~Ω(~z, θ) =
L

2π
(~ΩBMT (~r, ~p)

hp

vpl
− ~κ× ~el) . (25)

A particle starting with an initial phase space coordinate ~zi and with an initial spin ~Si propa-
gates around an accelerator according to the equations of spin-orbit motion (24). After it has trav-

eled from azimuth θ0 to θ, it will have the coordinates ~z(θ) = ~M(~zi, θ0; θ) and ~S(θ) = R(~zi, θ0; θ)~Si,

where ~M(~zi, θ0; θ) is called the transport map and the orthogonal matrix R(~zi, θ0; θ) is called the
spin transport matrix.

This rotation matrix can be computed by tracking three linearly independent spins along the
phase space trajectory starting with ~zi at azimuth θ0. Transporting the nine real coefficients of
these vectors is however not an efficient way of simulating spin motion, since a rotation can be
described by three real numbers. Furthermore, the orthogonal structure of R does not change
the angle between two spins which travel along the same trajectory and it does not change the
length of a spin. These properties can be violated either by numerical errors or by computational
approximations when individual spins are propagated. Therefore, more efficient methods will be
introduced below.

A particle beam consists of particles at different phase space positions. Each particle can have
a different spin direction. The function ~f(~z, θ) describing the spin direction for a particle at phase
space point ~z at azimuth θ is called a spin field. The equation of motion for a spin field is thus
given by

d

dθ
~f = ∂θ ~f + [~v(~z, θ) · ∂~z]~f = ~Ω(~z, θ)× ~f . (26)

2.1.4 Equation of Motion for the Spin Transport Matrix

In the following sections I will investigate various methods for describing the propagation of spins
and spin fields along particle trajectories. Inserting the relation ~S(θ) = R(~zi, θ0; θ)~Si into the
equation of motion (24) leads to the equation of motion for the spin transport matrix

∂θR(~zi, θ0; θ) =





0 −Ω3 Ω2

Ω3 0 −Ω1

−Ω2 Ω1 0



R(~zi, θ0; θ) , R(~zi, θ0; θ0) = 13 , (27)

where 13 describes the 3 × 3 dimensional unit matrix. The spin rotation matrix for a particle
trajectory which enters the nth particle optical element with ~zn−1 is computed by multiplying
the spin transport matrices Rn(~zn−1) of the individual elements. This method has the same
disadvantage as the transport of three individual spins. Nine real coefficients are transported,
where three could already describe a rotation. Furthermore, computational inaccuracies can again
lead to violations of the orthogonal structure of the matrix, which therefore has to be orthogonalized
whenever such violations become problematic.

Using the transport matrix, a spin is propagated by ~S(θ) = R(~zi, θ0; θ)~Si and a spin field ~f(~z, θ)
can be propagated by

~f(~z, θ) = R(~zi, θ0; θ)~f(~zi, θ0) with ~zi = ~M(~z, θ; θ0) . (28)

Here the inverse transport map ~M(~z, θ; θ0) = ~M−1(~z, θ0; θ) describing the reverse motion from θ
back to θ0 has been used.

2.1.5 Equation of Motion for the Spin Transport
Quaternion

As will now be demonstrated, it is more efficient to use an SU(2) representation rather than the
SO(3) matrices when describing the rotations of spins. The matrix R of equation (27) describes
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the rotation of an initial spin ~Si around a unit rotation vector ~e by an angle α. Splitting the spin
into components parallel and perpendicular to ~e, one obtains

~S(θ) = ~e(~Si · ~e) + cosα[~S − ~e(~Si · ~e)] + sinα ~e× ~Si . (29)

With a0 = cos α2 and ~a = sin α
2~e, the matrix R can therefore be written as [13]

Rij = (a20 − ~a2)δij + 2aiaj − 2a0εijkak , (30)

where the vector product is expressed using the totally antisymmetric tensor εijk. The SU(2)
matrix representing a rotation around ~e by the angle α is given by the quaternion

A = exp(−iα
2
~e · ~σ) = a012 − i~a · ~σ . (31)

Here the elements of the vector ~σ are the three Pauli matrices. If a particle traverses an optical
element which rotates the spin according to the quaternion A and then passes through an element
which rotates the spin according to the quaternion B, the total rotation of the spin is given by

C = c012 − i~c · ~σ = (b012 − i~b · ~σ)(a012 − i~a · ~σ)
= (b0a0 −~b · ~a)12 − i(b0~a+~ba0 +~b× ~a) · ~σ . (32)

This concatenation of quaternions can be written in matrix form as

~C =

(

c0
~c

)

= B

(

a0
~a

)

, B =









b0 −b1 −b2 −b3
b1 b0 −b3 b2
b2 b3 b0 −b1
b3 −b2 b1 b0









. (33)

Sometimes it is useful to have the quaternions appear in reversed order, even though particles
travel first through the optical element corresponding to A,

~C =

(

c0
~c

)

= Ã

(

b0
~b

)

, Ã =









a0 −a1 −a2 −a3
a1 a0 a3 −a2
a2 −a3 a0 a1
a3 a2 −a1 a0









. (34)

Since any quaternion vector has unit length, the matrices B and Ã are both orthogonal.
It has turned out to be useful to represent rotations in terms of a0 and ~a for the following three

reasons:

1. only 4 components are needed to describe and concatenate the rotation of spins,

2. even when numerical inaccuracies cause a small error in the computation of this representa-
tion, one can always normalize so that a20+~a

2 = 1, which then always leads to a an orthogonal
spin transport matrix,

3. only 28 floating point operations are required to compute the combined spin transport quater-
nion of two particle optical elements from their individual quaternions. The multiplication
of the spin transport matrices requires 45 floating point operations.

While particles are propagating along the design curve by a distance dθ, spins are rotated by an
angle |~Ω|dθ around the vector ~Ω. After having been propagated to θ by the quaternion A, a spin

gets propagated from θ to θ + dθ by the quaternion B with b0 = 1 and ~b = 1
2
~Ωdθ. The resulting

total rotation is given by A+ dθ d
dθ
A and one obtains the differential equation

d

dθ

(

a0
~a

)

=
1

2









0 −Ω1 −Ω2 −Ω3

Ω1 0 −Ω3 Ω2

Ω2 Ω3 0 −Ω1

Ω3 −Ω2 Ω1 0









(

a0
~a

)

. (35)
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Writing the vector as ~A and the matrix as Ω, the spin-orbit equation of motion takes the form

d

dθ
~z = ~v(~z, θ) ,

d

dθ
~A =

1

2
Ω(~z, θ) ~A . (36)

The starting conditions at the initial azimuth θ0 are ~z = ~zi, a0 = 1, and ~a = 0. Sometimes, an
equation of motion for the quaternion A itself is used rather than for the component vector ~A,

d

dθ
A = −i1

2
~Ω · ~σA , (37)

with the starting condition A = 12. When ~A(~zi, θ0; θ) is known, R(~zi, θ0; θ) can be constructed

using equation (30) and one can again propagate an initial spin ~Si and a spin field ~f(~zi, θ0) by
equation (28).

2.1.6 Equation of Motion for Spinors

In the SU(2) representation of rotations, a spin ~S is written in terms of the spinor Ψ = (ψ1, ψ2)
T

as ~S = Ψ†~σΨ where ψ1 and ψ2 are two complex numbers. To have |~S| = 1, it is required that
|ψ1|2 + |ψ2|2 = 1. The spinor represents a spin direction in polar coordinates ϑ and φ, which is
illustrated by the fact that the following spinor and the following vector describe the same spin:

Ψ =

(

ψ1
ψ2

)

=

(

cos ϑ2 e
iφ1

sin ϑ
2 e

iφ2

)

=⇒ ~S =





sinϑ cos(φ2 − φ1)
sinϑ sin(φ2 − φ1)

cosϑ



 . (38)

The equation of motion for the spinor is given by

d

dθ
Ψ = −i1

2
(~Ω · ~σ)Ψ , (39)

which leads back to the vector form of the differential equation of spin motion [14],

d

dθ
~S = (

d

dθ
Ψ†)~σΨ+Ψ†~σ(

d

dθ
Ψ) (40)

= i
1

2
Ψ†[(~Ω · ~σ)~σ − ~σ(~Ω · ~σ)]Ψ = Ψ†[~Ω× ~σ]Ψ = ~Ω× ~S .

If a spin rotates by an angle α around a θ independent unit rotation vector ~e while the particle
travels to θ, then equation (39) leads to the spinor propagation relation Ψ(θ) = exp(−i α2~e ·~σ)Ψi. A
spinor is therefore propagated through an accelerator by the spin transport quaternion of equation
(31),

Ψ(θ) = (a012 − i~a · ~σ)Ψi . (41)

If a spin is parallel to the rotation vector ~e, it is not changed during the rotation. The corre-
sponding spinor Ψe however is changed by a phase factor. To show this, the polar coordinates ϑ
and φ of the vector ~e are used and the free phase of the spinor is indicated by eiξ,

Ψe = eiξ
(

cos ϑ2
sin ϑ

2 e
iφ

)

, (42)

Ψ(θ) = exp(−iα
2
~e · ~σ)Ψi = (cos

α

2
− i sin α

2
~σ · ~e)Ψi (43)

=

(

cos α2 − i sin α
2 cosϑ −ie−iφ sin α

2 sinϑ
−ieiφ sin α

2 sinϑ cos α2 + i sin α
2 cosϑ

)(

cos ϑ2
sin ϑ

2 e
iφ

)

eiξ = e−i
α
2Ψe

In the spinor formalism, the phase change of the spinor which describes the rotation vector can
therefore be used to determine the rotation angle α.

Once Ψi at θ0 has been propagated to Ψ at θ, the spin of the particle can be computed as
~S = Ψ†~σΨ. Alternatively, one can propagate the spinor Ψi = (1, 0)T to obtain Ψ = (a0 −
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ia3,−ia1 + a2)
T from equation (41). From the real and imaginary parts one then obtains the spin

transport quaternion, which makes this method equivalent to the transportation of quaternions in
section 2.1.5.

A phase space function Ψ~f
(~z, θ) with |ψ1|2 + |ψ2|2 = 1 can describe a spin field if it satisfies

the equation of motion

d

dθ
Ψ~f

(~z, θ) = ∂θΨ~f
(~z, θ) + [~v(~z, θ) · ∂~z]Ψ(~z, θ) = −i1

2
[~Ω(~z, θ) · ~σ]Ψ(~z, θ) . (44)

In analogy to equation (28), such a spin field is transported by the spin transport quaternion
A(~zi, θ0, θ) from azimuth θ0 to θ,

Ψ(~z, θ) = A(~zi, θ0; θ)Ψ(~zi, θ0) with ~zi = ~M(~z, θ; θ0) . (45)

2.2 Spin Motion in Circular Accelerators

2.2.1 Spin Motion on the Closed Orbit and Imperfection Resonances

Before I analyze spin motion on a general particle trajectory in a circular accelerator, I now take a
look at spin motion on the closed orbit. If no field errors, misaligned elements, or energy deviations
are present, this orbit is the design trajectory of the accelerator. After a particle has traveled one
turn along the closed orbit from azimuth θ0 to azimuth θ0 + 2π the spin has rotated around some
unit rotation axis ~n0(θ0) by a rotation angle 2πν0 . The angle of rotation around ~n0 divided by
2π is called the closed orbit spin tune ν0 and does not depend on the azimuth θ0 at which ~n0 is
determined. This spin rotation for the closed orbit ~z = 0 is described by the spin transport matrix
R(0, θ0; θ0 + 2π). In the following discussion θ0 is an arbitrary but fixed azimuth which will no
longer be indicated.

In a flat accelerator without field errors and misaligned elements, the closed orbit is in the
horizontal plane and passes only through vertical fields. Therefore ~n0 is vertical and ν0 = Gγ.
When ν0 is close to an integer, a case which is referred to as an imperfection resonance, the
rotation matrix is close to the identity and spin directions have hardly changed after one turn.
Misalignments create horizontal field components on the design orbit of a flat ring, which produce
spin precessions away from the vertical direction. For small misalignments, these rotations around
the horizontal might be very small but they can still dominate spin motion when the main fields
hardly produce any spin rotation during one turn, i.e. close to integer values of ν0. Thus the rotation
axis ~n0 for spins is vertical away from imperfection resonances but it can be nearly horizontal in
their vicinity. At a fixed azimuth θ0 , the rotation axis ~n0 changes smoothly with ν0 in between
these extremes.

When a particle’s energy is accelerated such that ν0 crosses an integer value, the rotation vector
~n0 can strongly change with energy. When the spin rotation is much faster than this change of
the rotation vector, then a spin which is nearly parallel to ~n0 is dragged along with the changing
~n0. The projection of a spin on ~n0 hardly changes during this procedure and can be shown to be
an adiabatic invariant [15]. To illustrate this fact, one can imagine that ~n0 changes away from the
spin sometimes and towards the spin at other times while the spin rotates around ~n0. Due to this
rapid rotation, both cases happen in frequent change and the total effect averages out. This causes
the spin to follow the slow change of ~n0.

Since it is inadvisable to let misalignments dominate spin motion, imperfection resonances
ought to be avoided. However, since ν0 = Gγ in a flat ring, the closed–orbit spin tune changes
during acceleration and the crossing of imperfection resonances is unavoidable. There are the
following three possible regimes for resonance crossing:

• If the effects of misalignments are very small, the resonance can be crossed so rapidly that
the spins hardly react and the beam’s polarization is hardly changed.

• When the effect of misalignments is very strong, the rotation axis ~n0 changes very slowly
during acceleration since the precession around the horizontal fields of misaligned elements
starts to dominate already far from an imperfection resonance. Then the spin can follow the
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slow change of ~n0. But while the average spin direction < ~S >N changes, the change of the
polarization P = | < ~S >N | is very limited.

• When the effect of misalignments has an intermediate strength, the polarization will be
reduced.

The following two strategies can therefore be used to limit the reduction of polarization when
imperfection resonances are crossed:

• Careful correction of the closed orbit to limit horizontal field components.

• Increasing the horizontal field components, for example by introducing a solenoid magnet.
Devices which are deliberately used to increase the effect of imperfection resonances are
referred to as partial snakes [16, 17]. A solenoid magnet has been installed in the AGS and
very effectively avoids polarization loss at integer resonances of the closed–orbit spin tune.

Figure 2(left) shows how the spin of a particle on the closed orbit of the DESY III synchrotron
would change while it is accelerated from Gγ = 7.97 to Gγ = 8.03 under the influence of a solenoid
which rotates the spins by 0.8◦. No misalignments are considered. A realistic acceleration rate
of 5keV/turn was assumed. Figure 2 (right) shows that the product s3 = ~S · ~n0 hardly changed
during the slow acceleration. This indicates that s3 is an adiabatic invariant, which was proven
in [1]. A small change close to Gγ = 8 recovers after the resonance is crossed. This is not due to
the adiabatic invariance but due to the symmetry of spin motion above and below the resonance.
The adiabatic following of ~n0 shown in this figure illustrates how a reduction of polarization at
imperfection resonances can be avoided.
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Figure 2: The change of Sy = ~S · ~ey (left) and the change of s3 = ~S · ~n0 (right) during the acceleration
from Gγ = 7.97 to Gγ = 8.03 for particles on the closed orbit in DESY III in the presence of a 0.8◦ solenoid
partial snake.

For the acceleration process in a simple accelerator model, the change of ~S ·~n0 at a fixed azimuth
θ0 is described by the Froissart–Stora formula as will be discribed in section 2.2.6. This formula
allows a quantitative computation of the limited reduction of polarization when either crossing a
weak resonance relatively quickly or when crossing a strong resonance relatively slowly.
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2.2.2 Spin Motion for Phase Space Trajectories and
Intrinsic Resonances

Assuming linearized phase space motion, the particles appear to perform harmonic oscillations
around the closed orbit with the frequencies Qx, Qy, and Qτ for horizontal, vertical, and longitu-
dinal motion when viewed at a fixed azimuth θ0 of the accelerator. These are called the orbital
tunes. Some of the fields through which a particle propagates will therefore oscillate with the
orbital tunes. Whenever the non–integer part of the spin precession frequency is in resonance
with these oscillation frequencies of the particle’s coordinates, a severe reduction of polarization
can occur. The spin precession frequency of particles moving on the closed orbit is determined
by the closed–orbit spin tune ν0. In general the spin tune is denoted by ν and depends on the
amplitude of a particle’s oscillations around the closed orbit. Whenever ν is a linear combination
of the frequencies of the particle’s coordinates, the resulting coherent perturbation can reduce the
beam’s polarization,

ν = j0Ps + j1Qx + j2Qy + j3Qτ , Ps, jn,∈ IN . (46)

A super–periodicity Ps of a ring reduces the number of resonances. These resonances are called
intrinsic resonances of order n for n = |j1|+ |j2|+ |j3|. The depolarizing effect of these resonances
has been experimentally verified in many low energy polarized proton accelerators [18]. The first
order intrinsic resonances are the dominant reason for a reduction of polarization after solenoids
have been introduced to eliminate the effect of imperfection resonances. If the first–order resonances
are avoided, however, higher–order resonances become dominant even for decoupled linear phase
space motion. This is especially true at high energies and has been shown in detail for HERA-p
in [1, 6].

It has been explained in section 2.2.1 that the polarization can be reduced at imperfection
resonances due the fact that field imperfections dominate the spin motion whenever the main
guide fields produce an integer number of spin rotations, and therefore no apparent spin rotation
after one completed turn. The depolarizing effect at intrinsic resonances can be understood in
similar terms. For phase space trajectories which deviate little from the closed orbit, the spin
motion is dominated by the main guide fields on the closed orbit except close to an intrinsic
resonance, where the coherent perturbations described above can dominate over the main guide
fields.

To illustrate for example the ν0 = Qy resonance, the spin directions are expressed in terms of
a coordinate system which rotates by 2π around ~n0 during one betatron period of vertical motion.
In this coordinate system the main guide fields produce a rotation of the spins by 2π(ν0 − Qy)
during one turn. At ν0 = Qy the spin rotation due to the main guide fields vanishes and the
remaining rotations are due to extra fields picked up by the oscillating trajectory some distance
away from the closed orbit. At intrinsic resonances these spurious effects dominate over the effect
of the accelerator’s main guide fields. Since the dominant rotation at an intrinsic resonance is
produced by the fields along a particle’s phase space trajectory, it is different for different particles
and the beam will therefore loose polarization under the influence of an intrinsic resonance.

I have described that spins on the closed orbit follow any slow change of ~n0 as long as the system
does not remain at a resonance for too long. Therefore, a severe reduction of polarization while
accelerating through an imperfection resonances can be avoided by making the acceleration rate
slow enough or by making the change of ~n0 slow enough by means of a partial snake as discussed
in section 2.2.1.

At intrinsic resonances a reduction of polarization can be avoided by a similar mechanism. If a
strong coherent perturbation is slowly switched on and off, an effect similar to adiabatically follow-
ing ~n0 occurs and polarization is conserved. While an intrinsic resonance is crossed, perturbations
influencing particles in the tails of a beam will slowly increase already before the resonance and
an adiabatic conservation of polarization can occur. Polarization in the core of the beam will be
only weakly influenced when crossing intrinsic resonances, but in intermediate parts of the beam,
the polarization is reduced. Such a reduction of polarization can be overcome by slowly exciting
the whole beam coherently at a frequency close to the orbital tune which causes the perturbation.
All spins then follow the adiabatic change of the polarization direction and the resonance can be
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crossed with little loss of polarization. The excitation amplitude is then reduced slowly so that
the beam emittance does not change noticeably during the whole process. This mechanism has
recently been tested successfully at the AGS [19]. There, an RF dipole has been used to slowly
excite all the particle amplitudes coherently. Then the dominant resonances 0 + Qy, 12 + Qy,
36 − Qy, and 36 + Qy were crossed with little loss of polarization. Finally the RF dipole was
slowly switched off. No noticeable increase of emittance has been observed. An older technique of
avoiding the reduction of polarization at strong intrinsic resonances utilizes pulsed quadrupoles to
move the orbital tune within a few microseconds just before a resonance so that the resonance is
crossed so quickly that the spin motion is hardly disturbed.

For the case of a single resonance with frequency κ which is crossed by changing the closed–
orbit spin tune according to ν0 = κ+ αθ, the Froissart–Stora formula to be introduced in section
2.2.7 shows that polarization can be preserved when an intrinsic resonance is crossed either very
quickly or very slowly.

A third method of avoiding loss of polarization at intrinsic resonances uses radial magnetic
fields. The closed–orbit spin tune ν0 is then no longer required to be Gγ, in fact it can be
made independent of energy and low order resonances can then be avoided during the acceleration
process. It was mentioned below equation (5) that in a fixed transverse magnetic field the deflection
angle of high energy particles depends on energy, whereas the spin rotation does not depend on
energy. It is therefore possible to devise a fixed field magnetic device which rotates spins by π
whenever a high energy particle travels through it at the different energies of an acceleration cycle.
Such field arrangements which rotate spins by π while perturbing the orbit only moderately are
called Siberian Snakes [20, 21]. Figure 3 illustrates how two Siberian Snakes make the spin tune
ν0 independent of energy and equal to 1

2 in a flat ring. Starting at the far side of the ring, spins
are rotated around the vertical (dashed line) by Ψ = Gγ π2 while the particles travel through one
quadrant to the left side of the figure. The light arrow represents a spin which is rotated by Ψ
whereas the dark arrow is only rotated by the Siberian Snakes and not by the fields in the arcs.
The difference between the light and the dark arrow therefore indicates the rotation due to the
fields of the quadrants. A radial Siberian Snake rotates all spins by π around the radial direction
before the particles enter the second quadrant. Since the spins have now reversed their vertical
orientation, the rotation due to the first quadrant is rewound during the second quadrant. The
rotation of the third quadrant is rewound during the fourth, due to the longitudinal Siberian Snake
between these quadrants. The rotations of different quadrants cancel for all energies. As indicated
by the dark area, all spins have in total rotated by π around the vertical by the time they have
returned to the far side of the ring. No net rotation due to the arcs remains and the dark arrow
and the light arrow therefore coincide.

Figure 3: Schematic spin motion in a flat ring with a symmetrically arranged longitudinal and radial
snake. The one turn spin motion has ν0 =

1

2
and ~n0 vertical for all energies.
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To be more general, one can consider N Siberian Snakes in a ring where a spin rotation angle
Ψj around the vertical is produced between the jthe and the j +1st Siberian Snake. These angles
are in general energy dependent. The rotation axis of a snake is called the snake axis and the
angle of this axis to the radial direction is referred to as the snake angle ϕj . The spin transport
quaternion of one snake is therefore i[cos(ϕj)σ1+sin(ϕj)σ2] and the total rotation during one turn
is given by

A =

N
∏

j=1

ie−i
Ψj
2
σ3 [cos(ϕj)σ1 + sin(ϕj)σ2] (47)

= iNe−i
∆Ψ
2
σ3

N
∏

j=1

[cos(ϕj)σ1 + sin(ϕj)σ2] . (48)

Since σ3 anti–commutes with the other two Pauli matrices, the exponent is given by ∆Ψ = ΨN −
ΨN−1 ± . . . ±Ψ1 . The total spin rotation is independent of energy when the snake locations are
chosen to let ∆Ψ = 0 . A pair of snakes produces a rotation around a vertical axis of

[cos(ϕ1)σ1 + sin(ϕ1)σ2] · [cos(ϕ2)σ1 + sin(ϕ2)σ2] ·
= cos(ϕ1 − ϕ2)− i sin(ϕ1 − ϕ2)σ3 . (49)

An even number of Siberian Snakes therefore produces a vertical rotation vector ~n0. The polar-
ization direction on the closed orbit is then vertical in the bending magnets of the ring and is not
deflected in these magnets. For an odd number of Siberian Snakes, ~n0 is in the horizontal plane
and rotates by an energy dependent angle in each bending magnet, even though the total rotation
of one turn does not depend on energy. The number N is therefore required to be even. In this
case the total rotation is given by

A = iNe−i(
∆Ψ
2

+∆ϕ)σ3 , (50)

with ∆ϕ = ϕN − ϕN−1 ± . . .− ϕ1 . For N Siberian Snakes in a ring with otherwise spin rotations
only around the vertical, the following three conditions are required:

• ∆Ψ = 0, to make ν0 independent of energy.

• N is even, to make ~ν vertical in the arcs of the ring.

• ∆ϕ = π
2 , to make ν0 = 1

2 .

All imperfection resonances and, since the orbital tunes cannot be 1/2, also all first–order intrinsic
resonances are avoided by the insertion of such Siberian Snakes, and polarized beam acceleration
to very high energy could become possible. Siberian Snakes can only be used at sufficiently high
energies since their fields are not changed during acceleration of the beam and they produce orbit
distortions which are too big for energies below approximately 8GeV [22]. In high energy storage
rings it can be essential to find a sutable choice of snake angles [23, 24].

The orbit deviation in the Siberian Snakes built for RHIC is up to 3cm at injection momentum
of about 25GeV/c as shown in figure 4 (left). The orbit motion outside the Siberian Snake,
however, is hardly changed by the insertion of this device. One such snake is made of 4 helical
dipole magnets of about 2.4m length [25]. Figure 4 (right) depicts the design orbit in a RHIC
Siberian Snake in three dimensions. It is obvious why these devices, first suggested in Novosibirsk,
received their name.

2.2.3 The Invariant Spin Field

In order to maximize the number of collisions of particles inside the experimental detectors of
a storage ring system, one tries to maximize the total number of particles in the bunches and
tries to minimize the emittances so that the particle distribution across phase space is narrow and
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Figure 4: Orbit motion in a helical snake designed for RHIC.

the phase space density is high. If the beam is spin polarized, one additionally requires that the
polarization is high and that it does not change much with time.

When all particles of a beam are initially completely polarized parallel to each other, the
polarization state of the beam is in general not 2π periodic and the average beam polarization can
change from turn to turn. Spin fields are propagated by equation (28). A special spin field ~n(~z, θ)
which is 2π periodic in θ is called an invariant spin field,

~n(~z, θ) = R(~zi, θ0; θ)~n(~zi, θ0) , ~n(~z, θ + 2π) = ~n(~z, θ) . (51)

If the spin of each particle in a beam is initially polarized parallel to ~n(~z, θ0), particles get re-
distributed in phase space during one turn, but they will stay polarized parallel to the invariant
spin field. The beam is then in an equilibrium spin state. Particles change their location in phase
space from some initial phase space coordinate ~zi at azimuth θ0 to some final coordinate after one
turn ~zf = ~M(~zi) according to the one turn map. After one turn, a spin has changed its direction
according to the one turn spin transport matrix R(~zi) = R(~zi, θ0; θ0 + 2π), but it is now parallel
to the invariant spin field at the particle’s new phase space coordinate ~zf , and equation (52) is
therefore equivalent to the periodicity condition

~n( ~M(~z)) = R(~z)~n(~z) . (52)

The invariant spin field was first introduced by Derbenev and Kondratenko in the theory of radia-
tive electron polarization and is often called the Derbenev–Kondratenko ~n–axis. Note that ~n(~z) is
usually not an eigenvector of the spin transport matrix R(~z) at some phase space point since the
spin of a particle has changed after one turn around the ring, but the eigenvector does not change
when it is transported by R(~z).

The guide fields in storage rings are produced by dipole and quadrupole magnets. The dipole
fields constrain the particles to almost circular orbits and the quadrupole fields focus the beam,
thus ensuring that the particles do not drift too far away from the central orbit. In these fields,
spins precess according to the T–BMT equation (22).

In horizontal dipoles, spins precess only around the vertical field direction. The quadrupoles
have vertical and horizontal fields and additionally cause the spins to precess away from the vertical
direction. The strength of the spin precession and the precession axis in machine magnets depends
on the trajectory and the energy of the particle. Thus in one turn around the ring the effective
precession axis can deviate from the vertical and can strongly depend on the initial position of the
particle in 6 dimensional phase space of equation (19). From this it is clear that if an invariant
spin field ~n(~z) exists, it can vary strongly across the orbital phase space.

Once this field ~n(~z) together with the phase space dependent polarization, its direction, and
the phase space density function ρ(~z) of the beam are known, one has a complete specification of
the polarization state of a beam of spin 1/2 particles. Maximizing the polarization of the ensemble
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implies two conditions: the polarization at each point in phase space should be high and the
polarization vector ~n(~z) at each point should be almost parallel to the average polarization vector
of the particles.

At very high energy, as for example in the HERA proton ring [26, 27, 28], it can happen
that ~n(~z) for particles with realistic phase space amplitudes deviates by tens of degrees from the
beam average < ~n > at azimuth θ0. Thus even if each point in phase space were 100% polarized
parallel to ~n(~z), the beam average polarization could be much smaller than 100%. Clearly it is
very important to have accurate and efficient methods for calculating ~n(~z) and for ensuring that
the spread of ~n(~z) is as small as possible.

2.2.4 The Amplitude Dependent Spin Tune

The closed–orbit spin tune ν0 has been introduced as the rotation angle of one turn spin motion
for particles on the closed orbit. For particles which oscillate around the closed orbit, this rotation
angle can depend on the amplitude of their oscillation. For the case that the orbit motion can be
described in terms of action and angle variables ~J and ~Φ, as is always the case for stable linear
motion, and the tunes Qj are not in resonance on the invariant torus described by ~J , it will now

be shown how to define a spin rotation angle which is independent of ~Φ on that torus. Assuming
that an ~n–axis exists, one can introduce two unit vectors ~̃u1(~z) and ~̃u2(~z) to create a right handed

dreibein [~̃u1, ~̃u2, ~n]. The vectors ~̃u1 and ~̃u2 are therefore defined up to a rotation around the ~n–axis

by an arbitrary phase space dependent angle φ(~z). The spin direction ~S is expressed in terms of

this coordinate system by ~S = s1~̃u1 + s2~̃u2 + JS~n. The coefficient JS is called the spin action and
does not change during the particle motion around the ring since the particle transport matrix
R(~z) is orthogonal and ensures that JS = ~S · ~n is invariant. The spin motion in this coordinate
system is a rotation around the ~n–axis by a phase space dependent angle 2πν̃(~z).





sf1
sf2
JS



 =





cos(2πν̃(~z)) − sin(2πν̃(~z)) 0
sin(2πν̃(~z)) cos(2πν̃(~z)) 0

0 0 1









si1
si2
JS



 . (53)

The frequency ν̃(~z) of the spin rotation is not suited to describe resonant perturbations of spin

motion, since it changes from turn to turn with the phase space angles ~φ of the particle. One can,
however, find a spin precession frequency ν( ~J) that only depends on the invariant amplitudes ~J of
phase space motion. Since this amplitude dependent spin tune does not change along a particles
trajectory, it is suitable to describe the coherent buildup of spin perturbations, and it can thus
describe resonance effects.

2.2.5 Maximum Time Average Polarization

If two particles travel along the same trajectory, the angle between their spins does not change.
Since ~n(~z) is a spin field at θ0 and is therefore propagated according to the T–BMT equation (28),
a particle which is initially polarized with an angle ϑ with respect to ~n(~zi) will have the angle ϑ
with respect to ~n(~z) every time it comes back to θ0. This is due to the fact that the scalar product

JS(~z, ~S) = ~S ·~n(~z) is an invariant of spin–orbit motion, which can be seen as follows: When (~zi, ~Si)
are the initial phase space point and the initial spin of a particle then the final coordinates after
one turn around the ring give

JS(~zf , ~Sf ) = JS( ~M(~zi), R(~zi)~Si) = [R(~zi)~Si] · ~n( ~M(~zi))

= [R(~zi)~Si] · [R(~zi)~n(~zi)] = ~Si · ~n(~zi) = JS(~zi, ~Si) . (54)

Whenever the particle comes back to θ0 with a phase space coordinate which is close to ~zi, the spin
will again have the angle ϑ with respect to ~n(~zi), assuming ~n(~z) is sufficiently continuous. Since
the components perpendicular to the ~n–axis average to zero after many turns, the time averaged
polarization at ~zi will be parallel to ~n(~zi), and it can only have the magnitude 1 if the spin was
initially parallel to the invariant spin field. However, even if all particles are initially polarized
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parallel to ~n(~z), the beam polarization is not 1 but | < ~n > | where < . . . > denotes the average
over the beam. The maximum time average beam polarization that can be stored in an accelerator
at a given fixed energy is therefore Plim = | < ~n > |.

2.2.6 The Single Resonance Model (SRM)

In the previous sections, ~n, ~u1, ~u2, and ν have been introduced and the adiabatic invariance of JS
has been described. Now the introduced quantities will be computed for an analytically solvable
model and the adiabatic invariance will be illustrated by examining changes of a parameter of this
model.

For simplicity, a coordinate system is introduced which has the one turn rotation axis ~n0 as one
of its coordinate vectors and in which the spin motion on the closed orbit is as simple as possible.

The precession vector ~Ω(~z, θ) on the closed orbit ~z = 0 is denoted by ~Ω0(θ). The rotation
axis ~n0(θ0) of the one turn spin transport matrix is sometimes called the spin closed orbit [13]; it
satisfies

d

dθ
~n0(θ) = ~Ω0(θ)× ~n0(θ) , ~n0(θ) = ~n0(θ + 2π) . (55)

Two unit vectors ~m0(θ) and ~l0(θ) are now chosen which initially make up a right handed

orthogonal dreibein [~m0(θ0),~l0(θ0), ~n0(θ0)] and propagate around the ring according to the T–
BMT equation on the closed orbit,

d

dθ
~m0 = ~Ω0(θ)× ~m0 ,

d

dθ
~l0 = ~Ω0(θ)×~l0 . (56)

The three unit vectors will always constitute a right handed orthogonal dreibein, since all three
get rotated by the same precession equation. Whereas ~n0 is periodic around the ring, the vectors
~m0 and ~l0 are rotated around ~n0 by the angle 2πν0 after one turn and the dreibein is therefore in
general not 2π periodic in θ. Now a 2π periodic dreibein is defined by rotating ~m0 and ~l0 back
uniformly by 2πν0 during one turn [30, 31],

~m+ i~l = eiν0θ(~m0 + i~l0) ,
d

dθ
(~m+ i~l) = (~Ω0 − ν0~n0)× (~m+ i~l) . (57)

In this coordinate system, a spin can be written as

~S(θ) = s1(θ)~m(θ) + s2(θ)~l(θ) + s3(θ)~n0(θ) , s21 + s22 + s23 = 1 . (58)

The equation of spin motion

~Ω0 × ~S =
d

dθ
~S = ~m

d

dθ
s1 +~l

d

dθ
s2 + ~n0

d

dθ
s3 + (~Ω0 − ν0~n0)× ~S (59)

can be decomposed into its components parallel to ~m, ~l, and ~n0, which leads to

d

dθ
(s1 + is2) = iν0(s1 + is2) ,

d

dθ
s3 = 0 (60)

and describes a uniform rotation around ~n0, which keeps s3 invariant. In fact, s3 is an adiabatic
invariant since it does not change much even when parameters of the spin motion, like the particles’
energy, are slowly changed.

The spin precession vector for particles which oscillate around the closed orbit can be de-
composed in the closed orbit contribution ~Ω0 and a part ~ω due to the oscillation amplitude,
~Ω(~z, θ) = ~Ω0(θ) + ~ω(~z, θ) . The one turn rotation axis ~n0 precesses around ~Ω0 and the 2π periodic

dreibein [~m,~l, ~n0] precesses according to equation (57) around ~Ω0 − ν0~n0.
When the motion in phase space can be transformed to action–angle variables, the spin preces-

sion vector ~ω( ~J, ~Φ, θ) for particles which oscillate around the closed orbit is a 2π periodic function

of ~Φ and θ . With the possibly amplitude dependent orbit tunes ~Q = d
dθ
~Φ, the Fourier spectrum
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of ω has frequencies j0 + ~j · ~Q with integers jn . The integer contributions j0 are due to the 2π
periodicity of ~ω with θ and the contributions of integer multiples of the obit tunes Qk are due to
the periodicity of ~ω with Φk . When one of the Fourier frequencies is nearly in resonance with
ν0, it can be a good approximation to drop all other Fourier components. This is referred to
as the single resonance approximation. However, this can only be good approximation when the
influence of individual resonances is well separated. That model corresponds to the rotating field
approximation often used to discuss spin resonance in solid state physics [32]. For a conventional
flat ring, the first–order resonance due to vertical motion dominates and therefore most often the
resonance κ = j0 ±Qy is considered.

The amplitude of the one remaining Fourier contribution is called the resonance strength εκ.
For first–order resonances, where

∑3
n=1 |jn| = 1, εκ is computed in section 3.2. A method for

computing higher–order resonance strength, where
∑

n = 13|jn| > 1 can be found in [1].

The analytically solvable model which is now considered consists of ~Ω0 = ν0~n0 and of an ~ω
which only has one Fourier contribution, ~ω = εκ(~m cosΦ + ~l sinΦ) , with Φ = j0θ + ~j · ~Φ + Φ0.

Since d
dθ
~Φ = ~Q, the frequency is κ = j0 +~j · ~Q . When the coordinates in the [~m,~l, ~n0] system are

arranged in column vectors [29, 33], one obtains

d

dθ
Φ = κ ,

d

dθ
~s = ~Ω(Φ)× ~s , ~Ω =





εκ cosΦ
εκ sinΦ
ν0



 . (61)

Initial coordinates ~zi are taken into final coordinates ~zf by ~Φf = ~Φi + 2π ~Q and therefore Φf =
Φi + 2πκ . Now the orthogonal matrix T (~e, ϕ) is introduced to describe a rotation around a
unit vector ~e by an angle ϕ. Transforming the spin components of ~s into a rotating frame by
~sR = T (~e1,−Φ) · ~s, one obtains the simplified equation of spin motion

d

dθ
~sR = ~ΩR × ~sR , ~ΩR =





εκ
0
δ



 , δ = ν0 − κ . (62)

If a spin field is oriented parallel to ~ΩR in this frame, it does not change from turn to turn.
Therefore ~nR = ~ΩR/|~ΩR| is an ~n–axis. In the original frame, this ~n–axis is

~n(Φ) = sig(δ)
1

Λ





εκ cosΦ
εκ sinΦ

δ



 , Λ =
√

δ2 + ε2κ , (63)

where the ‘sign factor’ sig(δ) has been chosen so that on the closed orbit (εκ = 0) the ~n–axis ~n(Φ)
coincides with ~n0 = ~e3. As with any function of phase space, this ~n–axis is a 2π periodic function
of the angle variables ~Φ and of θ . As required, ~n is a solution of the T–BMT equation (61),
d
dθ
~n = sig(δ)Q(~e2 cosΦ− ~e1 sinΦ) = ~Ω× ~n .
This analytically solvable model can also be used to illustrate the construction of a phase

independent but amplitude dependent spin tune ν( ~J) [1]. It will be seen that this spin rotation
angle, and no other angle which might be alternatively proposed [14], determines the location of
resonances. Having got an ~n–axis, one can transform the components of ~s into a coordinate system
[~n, ~̃u1, ~̃u2] . With the simple choice

~̃u2(Φ) =
~e3 × ~n
|~e3 × ~n|

= sig(δ)





− sinΦ
cosΦ
0



 , ~̃u1(Φ) =
1

Λ





δ cosΦ
δ sinΦ
−εκ



 , (64)

~̃u1 is equal to ~̃u2 × ~n and the basis vectors are clearly 2π periodic in ~Φ and in θ as required. Since
the basis vectors ~̃u1 and ~̃u2 build an orthogonal dreibein with ~n for all θ, and since ~n precesses
around ~Ω, one obtains d

dθ
~̃u2 = (~Ω− ν̃~n)× ~̃u2 for some function ν̃ of phase space,

ν̃ = (
d

dθ
~̃u2 − ~Ω× ~̃u2) · ~̃u1 = sig(δ)[





−κ cosΦ + ν0 cosΦ
−κ sinΦ + ν0 sinΦ

−εκ



] · ~̃u1 = sig(δ)Λ . (65)
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On the design orbit this rotation angle is δ = ν0−κ. In order to let the amplitude dependent spin
tune reduces to ν0 on the design orbit, we can choose a coordinate system [~n, ~u1, ~u2] that rotates

around ~n by κ during one turn with respect to the original coordinate system [~n, ~̃u1, ~̃u2] . This is
achieved by rotating the basis vectors with φ,

~u1 = ~̃u1 cosΦ− ~̃u2 sinΦ , ~u2 = ~̃u2 cosΦ + ~̃u1 sinΦ . (66)

The spin rotation angle then becomes

ν = sig(δ)Λ + κ . (67)

In the SRM, εκ = |~ω(~z)| , and therefore ν̃ depends on the orbital amplitude and ν( ~J) is the
amplitude dependent spin tune.

On the closed orbit, the coordinate system now reduces to

~n→ ~n0 , ~u1 → sig(δ)~m , ~u2 → sig(δ)~l , ν → ν0 . (68)

This model leads to the average polarization

Plim = | < ~n(~z) > | = |δ|
√

δ2 + ε2κ
=

√

1−
(εκ
∆

)2

, ∆ = ν − κ , δ = ν0 − κ (69)

which is plotted in figure 5 (top). The distance of the amplitude dependent spin tune ν from
resonance has here been denoted by ∆, which is equivalent with ν̃ = sig(δ)Λ . In the bottom
figure, the spin tune ν of equation (67) jumps by 2εκ at the resonance where ν0 = κ . This jump of
the spin tune could in general be transformed away since the sign of the spin tune is not uniquely
determined. This however requires a change of the sign of ~n. Here the sign of ~n in equation (63)
has been fixed by choosing ~n0 · ~n > 0 ; and the tune jump at resonance can therefore not be
transformed away.
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Figure 5: Plim and the amplitude dependent spin tune ν(εκ) for the SRM in the vicinity of ν0 = κ , for
κ = 0.5 and εκ = 0.1 .

2.2.7 The Froissart–Stora Formula

The adiabatic spin invariant was established for general systems in section [1]. For the analytically
solvable SRM the change of this adiabatic invariant can be computed. When the closed–orbit spin
tune ν0 changes during the acceleration process, intrinsic resonances and imperfection resonances
have to be crossed. While the spin is under the strong influence of an approximately resonant
Fourier contribution of ω, a reduction of polarization can occur which does not recover after the
energy has increased and the resonance is crossed.

The reduction of polarization during resonance crossing is traditionally described in the frame-
work of the SRM by the Froissart–Stora formula. To describe resonance crossing, a changing
closed–orbit spin tune ν0 has to be inserted in the equation of motion (61). For various functions
ν0(θ), different approaches are possible [34, 35, 13]. If the closed–orbit spin tune changes like
ν0 = κ + αθ, the corresponding spinor equation of motion (39) can be solved in terms of conflu-
ent hypergeometric functions. The equations for arbitrary initial conditions are quite complicated
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but when at θ → −∞ a vertical spin s3(−∞) = 1 is chosen as initial condition then the vertical
component at θ → +∞ is given by the Froissart–Stora formula

s3(∞) = 2e−π
ε2κ
2α − 1 . (70)

In the case of a strong perturbation εκ, or when the acceleration is very slow, spins follow the change
of ~n(Φ). The ~n–axis in equation (63) has a discontinuity from ~n− = −εκ(~e1 cosΦ + ~e2 sinΦ) just
below resonance to ~n+ = −~n− just above resonance. Spins do not follow this instantaneous change
of sign, but they then follow−~n adiabatically after the resonance has been crossed. Therefore s3(∞)
is close to −1 for a slow change of ν0 . When the perturbation is weak or crossed very quickly,
then spin motion is hardly affected and s3(∞) is close to 1 in equation (70). In intermediate cases,
the polarization is reduced.

3 First–Order Spin Motion

3.1 Linearized Spin–Orbit Motion

At azimuth θ, a spin can be described by a complex coordinate α with

~S = Re{α}~m(θ) + Im{α}~l(θ) +
√

1− |α|2~n0(θ) , (71)

where the right handed orthonormal dreibein [~m,~l, ~n0] is used which was introduced in section

2.2.6 [30, 31]. The coordinate vectors ~m and ~l satisfy the equation of motion

d

dθ
(~m+ i~l) = (~Ω0 − ν0~n0)× (~m+ i~l) . (72)

The spin of a particle which travels on the closed orbit precesses around ~Ω0 and has rotated ν0
times around ~n0 after one turn. According to equation (72), ~m and ~l also precess around ~Ω0, but
in addition a precession around ~n0 is subtracted, leaving no net rotation after one turn. Therefore,
the dreibein [~m,~l, ~n0] is 2π periodic in θ.

When the spin coordinate α and the phase space coordinates ~z are small so that the equation of
spin–orbit motion can be linearized, then one approximates an initial spin of a particle at azimuth
θ0 by ~Si ≈ Re{αi}~m(θ0) + Im{αi}~l(θ0) + ~n0(θ0) and after the particle has traveled to azimuth

θ, one has ~S = Re{α}~m(θ) + Im{α}~l(θ) + ~n0(θ) where α is determined by the 7 × 7 spin–orbit
transport matrix,

(

~z
α

)

=M77(θ0; θ)

(

~zi
αi

)

=

(

M(θ0; θ) ~0
~GT (θ0; θ) eiν0(θ−θ0)

)(

~zi
αi

)

, (73)

where M(θ0; θ) is the 6 × 6 dimensional transport matrix for the phase space variables. For a
particle on the closed orbit, the exponential describes the rotation of the spin component α around
~n0 with respect to ~m and ~l. This rotation appears in equation (73) since spins precess around ~Ω0

for ~z = 0, while the coordinate vectors ~m and ~l rotate around ~Ω0− ν0~n0 . The complex row vector
~GT (θ0; θ) describes additional spin motion with respect to ~m and ~l due to off closed–orbit fields.
The 6 dimensional zero vector ~0 shows that the effect of Stern Gerlach forces on the orbit motion
is not considered.

The linearized spin–orbit transport through two successive optical elements is described by the
product of their 7 × 7 matrices. These matrices were derived long ago [30, 36] for all standard
optical elements and were initially used for the description of polarized electron beams.

Alternatively, the spin transport can be described by a spin transport quaternion as discussed
in section 2.1.5. When linearizing with respect to phase space variables, indicated by =1, a spin
transport quaternion ~C =1

~C0+ ~C1(~z) is separated into the quaternion for closed orbit motion ~C0

and a contribution ~C1 which is linear in the phase space variables. The spin–orbit transport through
two successive optical elements is described by the action of first the quaternion ~A associated with
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the first element and then the quaternion ~B of the second element. The quaternion ~C describing
the combined rotation is computed using the orthogonal 4× 4 matrix Ã as described in equation
(34),

~C0 = Ã0 ~B0 , ~C1 = Ã0 ~B1 + Ã1 ~B0 . (74)

The spin transfer quaternion of an optical element does not depend on the basis vectors [~m,~l, ~n0]
and is therefore the same for two identical optical elements which are at different locations of the
ring. The 7× 7 matrix of individual optical elements does not have this advantage.

The spin transport quaternion can be written as the concatenation of first the closed orbit spin
transport described by ~C0 and then a purely phase space dependent spin transport which does not
change the spin of particles on the closed orbit. With the quaternion ~e1 = (1, 0, 0, 0)T describing

the identity transformation and with a quaternion ~D1 which vanishes for particles on the closed
orbit, the purely phase space dependent spin transport is described by ~e1 + ~D1,

~C = C̃
0
(~e1 + ~D1) , ~D1 = C̃

0T ~C1 . (75)

Advantage has here been taken of the fact that the 4 × 4 dimensional matrix C̃
0
is orthogonal,

as has been pointed out after equation (34), and thus inverted by transposition. The 3 × 3 spin
rotation matrix on the closed orbit is written as R0 and the rotation matrix corresponding to
the concatenated quaternion in equation (75) is the product RDR0 . Equation (30) relates the

quaternion ~e1+ ~D1 with ~D1 = (d10,
~d 1)T with the rotation matrix RD, which to first order, becomes

RD
ij = [(1 + d10)

2 − (~d 1)2]δij + 2d1i d
1
j − 2(1 + d10)εijkd

1
k =1 (1 + 2d10)δij − 2εijkd

1
k . (76)

By the total spin rotation RDR0, the initial spin ~Si = ~n0(θ0) is first transported to ~n0(θ) =
R0~n0(θ0) and then to

~Sf = (1 + 2d10)~n0(θ) + 2~d 1 × ~n0(θ) . (77)

When a spin with ~Si = ~n0 is transported by the 7 × 7 spin–orbit transport matrix, then αf =
~Sf · [~m(θ) + i~l(θ)] is given by ~G · ~z which now equates to

~G · ~z = 2[~d 1 × ~n0(θ)] · [~m(θ) + i~l(θ)] = −i2~d 1 · [~m(θ) + i~l(θ)] . (78)

This illustrates how the spin–orbit transport matrix M 77 can easily be computed when its spin
transfer quaternion is known.

3.1.1 The Invariant Spin Field for Linearized Spin–Orbit Motion

Although it is difficult to compute ~n in general, an approximation for ~n at azimuth θ0 can easily be
obtained [31, 29, 38] for linearized spin–orbit motion. Its components perpendicular to ~n0(θ0) are
written as a complex function nα(~z) and use a 7 dimensional vector ~n1 to obtain the first–order
expansion of ~n(~z). Using the one turn matrixM 7×7 =M7×7(θ0; θ0+2π), the linearized periodicity
condition for the invariant spin field is

~n1(~z) =

(

~z

αn(~z)

)

, ~n1(M~z) =M77~n1(~z) . (79)

This equation can be solved for ~n1 after the matrices are diagonalized. Let A−1 be the column
matrix of eigenvectors ~v±k of the one turn matrix M . The eigenvalues are e±i2πQk with the orbital
tunes Qk. The matrix Λ = A M A−1 is the diagonal matrix of these eigenvalues. Now the 7 × 6
dimensional matrix T is needed which is the column matrix of the first 6 eigenvectors of M 77 and
has the form

T =

(

A−1

~BT

)

, T Λ =M77T , (80)

where the 7th components of the eigenvectors form a vector ~B. If a linear function ~n1(~z) = K~z
of the phase space coordinates can be found which satisfies the periodicity condition (79), then an
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invariant spin field has been determined. Since the upper 6 components of ~n1(~z) are ~z, the upper
6 rows of K form the identity matrix 16. Inserting ~n1 = K~z into equation (79) and multiplying
the resulting condition K M = M 77K by A−1 from the right leads to K A−1Λ = M77K A−1 .
Therefore the columns of K A−1 are eigenvectors of M7×7 and are therefore proportional to the

columns of T . The upper 6 rows 16A
−1 agree with those of T ; this requires the 6 proportionality

constants to be 1. Therefore K A−1 = T and I conclude that there exists a unique linear invariant
spin field given by

~n1(~z) = T A~z , αn = ~B · (A~z) . (81)

Now the steps which lead to the amplitude dependent spin tune are performed for linearized
spin–orbit motion. Together with ~n(~z) =1 Re{αn}~m + Im{αn}~l + ~n0, the following two basis
vectors build an orthonormal dreibein in linear approximation at θ0:

~u1(~z) =1 ~m− Re{αn}~n0 , ~u2(~z) =1
~l − Im{αn}~n0 . (82)

A spin ~Si =1 Re{αi}~m + Im{αi}~l + ~n0 is transported to ~Sf =1 Re{G + ei2πν0αi}~m + Im{G +

ei2πν0αi}~l + ~n0 after one turn, where

~u1(M~z) =1 ~m− Re{G+ ei2πν0αn}~n0 , ~u2(M~z) =1
~l − Im{G+ ei2πν0αn}~n0 . (83)

At the initial phase space point this leads to the projections ~Si · (~u1(~zi) + i~u2(~zi)) =1 αi − αn and

after one turn to ~Sf · (~u1(~zf ) + i~u2(~zf )) =1 e
i2πν0(αi − αn) . The amplitude dependent spin tune

ν in linearized spin–orbit motion is therefore simply given by ν0 .
The eigenvector condition

M77

(

~v±k
B±
k

)

= e±i2πQk
(

~v±k
B±
k

)

(84)

leads to ~G ·~v±k + ei2πν0B±
k = e±i2πQkB±

k . Therefore αn diverges at first–order intrinsic resonances
where ν0 = j0 ±Qk due to

B±
k = ~G · ~v±k /(e±i2πQk − ei2πν0) . (85)

In the normal form space belonging to the diagonal matrix Λ, the coordinates are given by the
actions Jj and the angle variables Φj with

A~z = (
√

J1e
iΦ1 ,

√

J1e
−iΦ1 ,

√

J2e
iΦ2 ,

√

J2e
−iΦ2 ,

√

J3e
iΦ3 ,

√

J3e
−iΦ3)T . (86)

The average over all angle variables on an invariant torus is described by < . . . >~Φ. It leads to the
average opening angle of

< ϑ(~n, ~n0) >~Φ≈ atan(
√

< |αn|2 >~Φ) = atan





√

√

√

√

3
∑

k=1

(|B+
k |2 + |B−

k |2)Jk



 , (87)

where the B±
k are the 7th components of the eigenvectors in equation (80). The maximum time

average polarization is approximately

Plim =< cos(ϑ(~n, ~n0)) >~Φ≈ [1 +

3
∑

k=1

(|B+
k |2 + |B−

k |2)Jk]−
1
2 . (88)

These approximations for ~n(~z), < ϑ >, and Plim can only be accurate if |αn| is small.
In a ring with midplane symmetry, the one turn spin–orbit matrix M 7×7 has a block structure

with 2× 2 matrix blocks and 2 dimensional zero and non–zero vectors,

M7×7 =









∗ 0 ∗ ~0

0 ∗ 0 ~0

∗ 0 ∗ ~0
~0T ~∗T ~0T ∗









. (89)
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The 6× 6 dimensional phase space transport matrix has a chequer–board structure, since there is
no coupling between vertical motion and the other two degrees of freedom in a midplane–symmetric
ring; and ~G has only contributions from vertical motion since a spin with ~Si = ~n0 (αi = 0) is not
deflected out of the vertical unless the particle flies through horizontal magnetic field components,
which only happens for particles with a vertical oscillation amplitude. The opening angle < ϑ >
and Plim then only depend on the vertical action Jy.

3.1.2 Spin–Orbit–Coupling Integrals

Instead of computing the one turn matrix M7×7 as the product of spin–orbit transport matrices
of individual elements or by concatenation of their spin transport quaternions, one can also solve
the linearized equation of motion for α directly. To obtain simplified formulas, now the dreibein
[~m0,~l0, ~n0] is used which was introduced in section 2.2.6. The vectors ~m0 and ~l0 are perpendicular
to ~n0, precess according to the T–BMT equation on the closed orbit, and are therefore related to
~m and ~l by a rotation around ~n0 with ~m + i~l = eiν0(θ−θ0)(~m0 + i~l0), which was already derived
in equation (57). Here it is assumed that the two dreibeins coincide at azimuth 0. Whereas the

dreibein [~m,~l, ~n0] constitutes a coordinate system which is 2π periodic in θ, [~m0,~l0, ~n0] does not.
The precession vector for spins can be separated into a part for particles on the closed orbit

and a part due to phase space amplitudes, ~Ω(~z, θ) = ~Ω0(θ) + ~ω(~z, θ). The spin direction and the
phase space dependent part ~ω of the precession vector will be written in complex notation in the
dreibein [~m0,~l0, ~n0] as

~S = Re{α0}~m0 + Im{α0}~l0 + ~n0
√

1 + |α0|2 , (90)

~ω = Re{ω0}~m0 + Im{ω0}~l0 + ~n0ω3 . (91)

Inserting this into the T–BMT equation (24), one obtains

~Ω× ~S =
d

dθ
~S = Re{ d

dθ
α0}~m0 + Im{ d

dθ
α0}~l0 + ~n0

d

dθ

√

1− |α0|2 + ~Ω0 × ~S . (92)

This leads to a differential equation for α0,

d

dθ
α0 = (~ω × ~S) · (~m0 + i~l0) = ~ω · [~S × (~m0 + i~l0)] (93)

= ~ω · [iα0~n0 +
√

1− |α0|2 (~l0 − i~m0)] = −iω0
√

1− |α0|2 + iα0ω3 .

Linearization with respect to ~z and α0 leads to d
dθ
α0 = −iω10 , where the superscript signals

the first–order expansion of ω(~z, θ) with respect to ~z. Since α = α0e
iν0(θ−θ0), and since αi = 0 at

azimuth θ0 is transported to αf = ~G · ~zi after one turn, one now obtains

~G · ~zi = −iei2πν0
∫ θ0+2π

θ0

ω10(~z(θ), θ)dθ , (94)

where the trajectory ~z(θ) has started with ~zi at azimuth θ0.
In flat rings it is advantageous to use the comoving dreibein [~ex, ~eθ, ~ey] introduced in section

(2.1.2) with ~ey vertical and with ~eθ parallel to the closed orbit. In such a ring, ~n0 and ~Ω0 = Ω0~ey

are vertical, and for a particle on the closed orbit, a spin has rotated by the angle Ψ =
∫ θ

θ0
Ω0dθ

between azimuth θ0 and θ. Therefore ~m0 + i~l0 = e−iΨ(~ex + i~ey) and ω
1
0 = e−iΨ(ω1x + iω1θ) .

In a midplane–symmetric ring, there are no skew elements or solenoids and horizontal compo-
nents of ~ω only occur when a particle oscillates vertically around the closed orbit. When linearizing
in ~z, these components are produced by the quadrupole focussing strength k (k > 0 for a hori-
zontally focussing effect). The spin rotations in these fields are (Gγ + 1) larger than the orbit
deflections created by the quadrupoles, and one obtains ω1

0dθ = (Gγ+1)e−iΨykdl , where L is the
circumference of the ring and l = L θ

2π is the path–length of the design trajectory. In terms of the
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vertical betatron function βy and the betatron phase Φy, one has y =
√

2Jyβycos(Φy +Φyi). This
has lead to the definition of the one turn spin–orbit–coupling integrals

I±y = −i(Gγ + 1)
1√
2

∮ l0+L

l0

ei(−Ψ±Φy)
√

βykdl , (95)

where Ψ(θ0) = 0 and the initial betatron phase is Φy(θ0) = 0. When the initial phase space
coordinate ~zi has the vertical phase Φyi and the Courant–Snyder invariant [12] 2Jy, equation (94)
leads to

~G · ~zi = ei2πν0(I+y e
iΦyi + I−y e

−iΦyi)
√

Jy . (96)

With ~zi =
√

Jy(~v
+
2 e

iΦyi + ~v−2 e
−iΦyi) one obtains ~G · ~v±2 = ei2πν0I±y . Spin–orbit–coupling integrals

are therefore useful for analyzing linear spin–orbit motion in the case of a midplane–symmetric
ring.

In a general setting, where ~ω 1(~z(θ), θ) not only has radial components, generalized spin–orbit–

coupling integrals at θ0 are defined as I±k = e−i2πν0 ~G · ~v±k . This brings them into close relation
with the components B±

k of the ~n–axis, which can be written as

αn =

3
∑

k=1

√

Jk(B
+
k e

iΦk +B−
k e

−iΦk) , B±
k =

I±k
ei2π(±Qk−ν0) − 1

. (97)

So far eigenvectors of the one turn matrix have only been used at the initial azimuth θ0. Now
the eigenvectors ~v±k (θ) of the one turn matrix at θ are needed which lead to the trajectory ~z(θ) for
a particle which started with the initial phase variables Φki at azimuth 0,

~z(θ) =

3
∑

k=1

√

Jk[~v
+
k (θ)e

i(Qk(θ−θ0)+Φki) − ~v−k (θ)e−i(Qk(θ−θ0)+Φki)] , (98)

By inserting this into equation (94) and taking advantage of the linearity of ω1
0 , one obtains

I±k = e−i2πν0 ~G · ~v±k = −i
∫ θ0+2π

θ0

~ω1(~v±k (θ), θ) · (~m+ i~l)ei(±Qk−ν0)(θ−θ0)dθ . (99)

One might be lead to think that |I+2 |2 + |I−2 |2 could be used as a quality factor for polarized
proton synchrotrons. Due to the central importance of the invariant spin field for the acceleration
process and for storage of polarized beams, it now becomes clear that the quality factor should

in general rather be
∑3

k=1[
|I+
k
|2

sin2(π(Qk−ν0))
+

|I±
k
|2

sin2(π(−Qk−ν0))
] . Close to intrinsic resonances where

±Qk − ν0 is integer for some k, the opening angle of the ~n–axis diverges in linearized spin–orbit
motion.

3.1.3 Restrictions of Linearized Spin–Orbit Motion

The approximation of linearized spin–orbit motion is no longer justified when Plim is not close to
1, which happens close to intrinsic resonances in the figures 6. Linearized spin–orbit motion can
be applied even when the resonances are not well separated, but when computing the average po-
larization of a polarized beam, |αn| must be small enough to justify the underlying approximation.
If |αn| ≤ 0.5 is accepted, the average polarization computed with linearized spin–orbit motion is
only trustworthy as long as it is above about 87%.

Figure 6 shows for DESY III (top) and for PETRA (bottom), that at most energies spin
dynamics can be described well by linearized spin–orbit motion.

3.2 The Resonance Spectrum

The spin dynamics close to intrinsic resonances can be analyzed by Fourier expanding the field
components ~ω(~z, θ) which perturb the spin of a particle that oscillates around the closed orbit.
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Figure 6: Plim as approximated by linearized spin–orbit motion for DESY III (top) and for the high
energy end of PETRA (bottom). The dips have been cut in order to magnify the interesting region where
|αn| is small.

For spins parallel to the rotation vector on the closed orbit ~n0(θ), only the components of ~ω(~z, θ)
which are perpendicular to ~n0 perturb the polarization.

As described in section 2.2.6, a depolarizing resonance occurs when a Fourier component of
~ω(~z(θ), θ) rotates with the same frequency around ~n0 as the spins so that there is a strong pertur-

bation. In the 2π periodic coordinate system constituted by [~m,~l, ~n0], the Fourier component of

ω = ~ω · (~m+ i~l) for the frequency κ is computed by

ε̃κ = lim
N→∞

1

2πN

∫ 2πN

0

ω(~z(θ), θ)e−iκθdθ . (100)

A warning is needed. The picture of perturbing effects suggests that the beam is slowly depo-
larized after it has been injected with 100% polarization. In fact the spins get deflected from their
initial polarization direction ~n0 during one turn, only because the ~n–axis ~n(~z) is tilted away from
the closed orbit spin direction ~n0. If an ensemble of the spins had started parallel to their invariant
spin field, no net deflection due to the perturbing fields would have occurred and no reduction
of polarization would be noticed after one turn. However, since ~n(~z) is tilted away from ~n0, the
average polarization Plim = | < ~n(~z) > | for such an initial distribution is smaller than 1 to start
with.

For each energy of the particle, there is in general a different Fourier spectrum of ω. Since at
each energy the most important frequencies κ are those which are close to resonance with ν0, it
is customary to compute εν0(E) = |ε̃ν0(E)|, which is called the resonance strength, for all energies
of the acceleration cycle. Obviously, εν0(E) is zero, except when a Fourier frequency of ω(~z(θ), θ)
at energy E is equal to ν0(E). The resulting line spectrum of over E is called the depolarizing
resonance spectrum of an accelerator.

For the proton synchrotrons DESY III and PETRA, these resonance strengths εν0 are shown in
the top figures 7 and 8. They were all computed for an oscillation amplitude of ~z(θ) corresponding
to the 2.5σ vertical emittance of 25πmm mrad.

It is possible to recover the first–order isolated resonance strength from the one turn spin–orbit
transport matrix. For a spin which was initially parallel to ~n0, equation (93) yields

α0(θ) ≈ −i
∫ θ

0

ω0dθ , ω0 = ~ω · (~m0 + i~l0) = e−iν0θ~ω · (~m+ i~l) . (101)

Comparing with equation (100), one can express the resonance strength by

ε̃ν0 = i lim
N→∞

1

2πN
α0(2πN) . (102)

The resonance strength can therefore be computed from 1
N
MN

77 for large N . The computation

becomes very efficient if one uses M 2N
77 = (MN

77)
2 iteratively.
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The coordinate vectors ~m0(2π) and ~l0(2π) to which α0(2π) refers have rotated by 2πν0, whereas

the final spin coordinate αf computed by M77 refers to the coordinate vectors ~m0(0) and ~l0(0).
Therefore α0(2πN) = αf exp(−i2πNν0). The resonance strength εν0 can most easily be computed
when the powers of the one turn matrix are evaluated in diagonal form using the diagonal matrix
Λ with the elements e±i2πQk . For ease of notation, Q̆k is used with Q̆2k−1 = Qk and Q̆2k = −Qk ,

ε̃ν0 = i lim
N→∞

1

2πN
α0(2πN) = i lim

N→∞

1

2πN
(0, e−iN2πν0)

(

M 0
~GT ei2πν0

)N(
~z

0

)

= i lim
N→∞

e−iN2πν0
1

2πN

N−1
∑

j=0

[ei(N−j−1)2πν0 ~GTA−1Λj ]A~z

= ie−i2πν0
6
∑

k=1

GlA
−1
lk Akmzm lim

N→∞

1

2πN

N−1
∑

j=0

ei2πj(Q̆k−ν0) (103)

where one has to sum over equal indices l, and m. This formula shows that the resonance strength
is always zero, except at a resonance condition ν0 = κ = j0±Qk. At such a closed–orbit spin tune,
the resonance strength is given by

2πεν0 = | ~GTA−1diag(0...1...0)A~z| = | ~GTA−1(0...
√

Jke
±iΦk ...0)T |

= | ~G · ~v±k |
√

Jk = |I±k |
√

Jk (104)

and ε̃ν0 = εν0e
i2π(±Φk−ν0) . The 1 in the diagonal matrix is in position 2k − 1 for ν0 = j0 + Qk

and at position 2k for ν0 = j0 −Qk . Here A−1(0...
√
Jke

±iΦk ...0)T is the initial value for a phase
space trajectory which has only Fourier components with frequencies ±Qk plus integers and the
eigenvector ~v±k of M has been used. The infinite Fourier integral in equation (100) has been
reduced to the scalar product between the bottom row vector of M 77 and an eigenvector of M
which happens to equal the absolute value of the spin–orbit–coupling integral in equation (97).
This very simple formula [39] is used in the program SPRINT [37, 33].

After the first–order resonance strength for a frequency κ has been computed, one can investi-
gate the influence of only the one corresponding Fourier contribution of ω to the spin motion. The
resulting single resonance model (SRM) has been described in section 2.2.6.

3.2.1 Limitations of the SRM

Approximating the spin motion by the SRM is only accurate if the resonances are well separated so
that one Fourier harmonic of ω dominates the dynamics. When a ring is not flat and has no exact
super–periodicity, the first–order resonances appear when the spin tune comes close to j0 ± Qk,
where the tunes Qk of all three degrees of motion can appear. HERA–p is not flat, but after the
installation of flattening snakes, the first–order spin motion is very similar to that of a flat ring,
where only resonances due to vertical motion appear. With a vertical orbit tune of approximately
1
3 in HERA–p, the variation of ν0 between resonances is 1

3 or 2
3 . The resonance strength is related

to the width of the resonance as shown in section 2.2.6; and to justify a single resonance approach,
the resonance strength of two neighboring resonances should therefore be significantly less than 1

3 .

In linearized spin–orbit motion, the opening angle of the invariant spin field is approximately
given by equation (87). In figure 7 the peaks in the resonance strength (top) are located exactly at
the peaks of the big opening angles computed with the linearized approach (bottom); furthermore
the widths of the peaks in opening angle are correlated with the resonance strengths. The reso-
nances are well separated and in DESY III, first–order theories for analyzing polarization dynamics
along with classical means of controlling depolarizing effects [40] are therefore applicable.

The corresponding figure for PETRA shows again that large opening angles of linearized spin–
orbit motion are correlated with large resonance strength. However, the first–order resonances
are getting so close at the high energy end of 39GeV that several pairs of resonances are close
to overlapping. The resonance strengths are still far away from PETRA’s fractional vertical tune
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Figure 7: Resonance strength (top) and opening angles of linearized spin–orbit motion (bottom) for
particles with a normalized vertical amplitude of 25πmm mrad in DESY III. The number of resonances is
very low due to a super–periodicity 8.
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Figure 8: Resonance strength (top) and opening angles of linearized spin–orbit motion (bottom) for
particles with normalized vertical amplitude of 25πmm mrad in PETRA.

of about 0.2 and therefore also in this energy regime classical means of controlling depolarizing
first–order resonances can be applied.

The average polarization computed with either of these two models, linearized spin–orbit motion
or the single resonance model with first order resonances, is in any case only accurate if there
are only effects which are dominated by first–order resonances. Effects which are not related to
first–order resonances cannot be simulated by a first–order resonance strength or by linearized
spin–orbit motion and therefore the first–order theories cannot be used to decide whether non–
first–order effects are small or not. In general, therefore, a higher–order extension is needed to
decide about the validity of the first–order theories. Dealing with higher–order effects is outside
the scope of this article but has been dealt with in detail in [1, 6].
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