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Coherent beam-beam tune shift of unsymmetrical beam-beam interactions was studied experimentally and
numerically in HERA, where the lepton beam has such a large beam-beam parametersup tojy=0.272d that the
single-particle motion is locally unstable at the originsclosed orbitd. Unlike the symmetrical case of beam-
beam interactions, the ratio of the coherent beam-beam tune shift and the beam-beam parameter in this
unsymmetrical case of beam-beam interactions was found to decrease monotonically with an increase of the
beam-beam parameter. The results of self-consistent beam-beam simulation, the linearized Vlasov equation,
and the rigid-beam model were compared with the experimental measurement. It was found that the coherent
beam-beam tune shifts measured in the experiment and calculated in the simulation agree remarkably well but
they are much smaller than those calculated by the linearized Vlasov equation with the single-mode approxi-
mation or the rigid-beam model. The study indicated that the single-mode approximation in the linearization of
the Vlasov equation is not valid in the case of unsymmetrical beam-beam interactions. The rigid-beam model
is valid only with a small beam-beam parameter in the case of unsymmetrical beam-beam interactions.
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I. INTRODUCTION

To achieve a substantial increase of luminosity in a
storage-ring collider, limited options include increase of
bunch currents, reduction of beam sizes at interaction points
sIPsd, and increase of the number of colliding bunches. The
first two measures unavoidably increase head-on beam-beam
forces which could lead to collectivescoherentd beam-beam
instabilitiesf1,2g. Understanding of coherent beam-beam ef-
fects especially in the nonlinear regime is therefore of pri-
mary importance for achieving high luminosity in a storage-
ring collider with high-intensity beams.

To study the coherent beam-beam effect, one important
quantity that can be measured experimentally is the coherent
beam-beam tune shift. Without beam-beam interactions and
without considering nonlinearities in the lattice, the two
counter-rotating beams oscillate transversely with frequen-
cies that correspond to lattice tunessbetatron tunes without
collisiond if they deviate from close orbits. With beam-beam
interactions, the particle distributions of the beams are per-
turbed and evolve with time according to the Vlasov equa-
tion f1g. The dynamics of the beams could therefore be com-
plicated by multimode oscillations of the beam distributions.
When considering only the stable oscillation of beam cen-
troids scoherent dipole oscillationd, the frequency spectrum
of the beam-centroid oscillation has two primary frequencies
for each degree of freedom of the transverse motion. These
primary frequencies correspond to the tunes measured during
collision. The differences between these measured collision

tunes and the lattice tunes are the coherent beam-beam tune
shifts f1,3,4g. Over decades, many studies have been con-
ducted on the relationship between the coherent beam-beam
tune shift and the beam-beam parameter that measures the
strength of the beam-beam interactionf3–13g. Two theoreti-
cal models, the linearized Vlasov equationf1g and the rigid-
beam modelf5g, have been studied extensively for cases of
weak beam-beam perturbation in which the beam-beam pa-
rameter is relatively small. When the two beams have the
same or very close lattice tunes, the calculation of the coher-
ent beam-beam tune shift based on the linearized Vlasov
equation with the single-mode approximation agrees with
beam measurements and computer simulationsf3,4,6,7g. The
rigid-beam model is inconsistent with the linearized Vlasov
equation and was therefore proven to be wrong by beam
measurements in this casef6,7g. When the two beams have
very different lattice tunes, on the other hand, the calculation
based on the rigid-beam model provides a good agreement
with beam measurementsf5,8,14g. In both of these models,
the equilibrium beam distributions were assumed to be
Gaussian distributions for easing the calculations. In the case
of weak beam-beam perturbation, this assumption is fairly
good as the beams were observed to stay close to a Gaussian.

The situation of strong beam-beam perturbations with a
relatively large beam-beam parameter is much more compli-
cated and less understood. When the beam-beam parameter
exceeds a threshold, the beam-beam interaction could induce
a chaotic coherent beam-beam instability. After the onset of
the instability, the closed orbits could become unstable for
the beam centroids and two beams could develop a sponta-
neous unstable coherent oscillationf2,15g. When the beam-
beam parameter is below the beam-beam threshold, the co-
herent beam oscillation is stable. It is, however, not clear
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whether the linearized Vlasov equation or the rigid-beam
model are still valid in the regime of strong beam-beam per-
turbation. As many efforts are being made to further increase
the beam-beam parameter in upgrades of current and devel-
opments of future storage-ring colliders, an understanding of
the coherent beam-beam tune shift in this regime is not only
necessary for the interpretation of the tune measurement dur-
ing operation of colliders with high-intensity beams, but also
could shed light on the onset of the chaotic coherent beam-
beam stability.

To explore the beam-beam effect with a large beam-beam
parameter, a beam experiment, the HERA 2000 beam study,
was performed on HERAfHadron Electron Ring Accelerator
at DESY sDeutsches Elektronen-Synchrotrond, Hamburg,
Germanyg in which a 920 GeV protonspd beam and a
27.5 GeV positronse+d beam collided at two IPs, H1 and
ZEUS f16g. The beam-beam interaction in HERA is a typical
case of unsymmetrical beam-beam interaction as the two
beams have very different lattice tunes and beam-beam pa-
rameterssstrongp beam and weake+ beamd. In the experi-
ment, the vertical beam-beam parameter of thee+ beam was
varied from 0.068 to 0.272 by changing the vertical beta
function of thee+ beam at two IPs. The emittance of thee+

beam and the luminosity were measured as functions of the
beam-beam parameter. One important phenomenon observed
in this experiment is that the measured coherent beam-beam
tune shifts of thee+ beam are much smaller than those cal-
culated from the rigid-beam model. This is the first experi-
mental evidence indicating that the traditional models of the
coherent beam-beam tune shift are no longer valid in the
situation of strong beam-beam perturbations. It should be
noted that in all the cases in the HERA experiment, the
single-particle motion is locally unstable at the originsclosed
orbitd due to beam-beam interactions. In the experiment,
however, the beam was observed to have a very good life-
time and operation condition in all the cases. This is the first
direct experimental observation of the global stability of a
beam coexisting with the local instability of the beam par-
ticles due to beam-beam interactions.

To have a better understanding of the experimental data,
we reconstructed the HERA beam experiment with a self-
consistent beam-beam simulation. Remarkable agreement
between the experiment and the simulation was observed on
emittance growth and luminosity reduction. More signifi-
cantly, the computer simulation confirmed the experimental
result of very small coherent beam-beam tune shifts in this
case of a very large beam-beam parameter. To examine the
validity of the theoretical models for the coherent beam-
beam tune shift, the linearized Vlasov equation and the rigid-
beam model were solved for the HERA experiment. Since
the distribution of thee+ beam significantly deviated from
the Gaussian due to the strong beam-beam interaction, the
solutions of the linearized Vlasov equation and the rigid-
beam model were calculated with the beam distributions ob-
tained from the beam-beam simulation instead of assuming
Gaussian distributions. It was found that for the unsymmetri-
cal beam-beam interaction with a large beam-beam param-
eter, the result of the rigid-beam model is inconsistent with
the beam experiment and beam simulation even though a
more accurate beam distribution was used in the calculation.

The coherent beam-beam tune shifts calculated from the lin-
earized Vlasov equation with the single-mode approximation
were also found to be significantly different from the result
of the beam experiment and beam simulation regardless of
whether the beam-beam parameter is large or small. As the
linearization of the Vlasov equation is expected to be valid
for at least a small beam-beam parameter, this discrepancy
suggests that the single-mode approximation used for solving
the linearized Vlasov equation may not be valid in the case
of unsymmetrical beam-beam interactions. Unfortunately,
without the single-mode approximation, the linearized Vla-
sov equation for the problem of beam-beam interactions is
currently unsolvable computationally due to the unsolved de-
generacy problem of a matrix with mode coupling.

This paper is organized as follows. Section II summarizes
the results of the HERA 2000 beam experiment. In Sec. III,
the self-consistent beam simulation for the HERA beam ex-
periment is discussed. In Sec. IV, the coherent beam-beam
tune shifts calculated by using the rigid-beam model or the
linearized Vlasov equation are compared with the
experiment/simulation results. The details of the coherent
tune calculation with the theoretical models are presented in
Appendixes A and B. The characteristics of the coherent
beam-beam tune shift in the unsymmetrical case of beam-
beam interactions are discussed in Sec. V. Section VI con-
tains a summary remark.

II. HERA 2000 BEAM EXPERIMENT

In the luminosity upgrade of HERA, the beam-beam pa-
rameters of the electron beam have been nearly doubled. To
examine any possible luminosity reduction due to beam-
beam effects, a series of beam experiments were performed
in HERA f14,16g. In the HERA 2000 beam experiment, the
e+ beam was used to collide with thep beam at the two IPs
and the effect of a large beam-beam parameter of the lepton
beam was explored by increasing the vertical beta function
sbe,yd of the e+ beam at the IPs. The vertical beam-beam
parametersje,yd of the e+ beam is related tobe,y by f17g

je,y =
reNp

2pge

be,y

sp,yssp,x + sp,yd
, s1d

wherere andge are the classic radius and Lorentz factor of
positron, respectively, andNp is the number of protons per
bunch. The horizontal and vertical sizes of thep beam at the
IPs are given bysp,x andsp,y. In the experiment, thep beam
currentsIpd was fixed. Since the beam-beam parameter of the
p beam is very small, there was little change in thep beam
size as it was observed during the experiment. The vertical
beam-beam parameterje,y is therefore linearly proportional
to be,y in this case. During the experiment, after the proton
current was filled,je,y was increased from 0.068 to 0.272 as
be,y was changed from 1.0 to 4.0 m while other lattice pa-
rameters were kept as constants. Table I lists some beam
parameters used in the HERA experiment and Table II lists
the e+ beam currentsIed and the beam-beam parameters of
the e+ and p beam atbe,y where the measurement was per-
formed. Thee+ and p beam sizes were not matched during
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the collision. Other accelerator parameters can be found in
f16g. It should be noted that with two IPs in the HERA
experiment, a beam-beam parameter of 0.272 is among the
highest ever achieved in storage-ring colliders. It can be eas-
ily verified by using the transfer matrix with Courant-Snyder
parameters that the single-particle dynamics of thee+ beam
including the beam-beam interactions is linearly unstable
near the closed orbit. In the HERA experiment, however, the
beam was observed to have a very good lifetime and opera-
tion condition even atje,y=0.272. As shown by the beam-
beam simulation in the next section, the global stability of
thee+ beam is the result of the formation of a beam halo due
to the beam-beam interactions.

In the experiment, the emittance of thee+ beam and the
luminosity were measured as functions ofbe,y at both the
IPs. In Figs. 1 and 2, the measured emittance and the specific
luminosity were plotted, with discrete points, as functions of
je,y. For eachje,y where the measurement was performed,
two data points correspond to the measurement at the two
IPs, respectively. The specific luminosity is defined asLs
=NcolL / sIeIpd, whereNcol andL are the number of colliding
bunches and the luminosity, respectivelyf14g. As shown in

Fig. 1, the vertical emittance growth of thee+ beam increases
monotonically and smoothly with the increase ofje,y. This is
the characteristics of the incoherent beam-beam effect, in
contrast to the coherent beam-beam effect of which the emit-
tance growth as a function of the beam-beam parameter
could experience certain jumpssphase transitionsd due to the
onset of the coherent beam-beam instabilityf2g. To confirm
that the luminosity reduction in Fig. 2 is indeed due to the
emittance blowup, the luminosity calculated with the mea-
sured emittance by using the standard formulaf16g is also
plotted in Fig. 2. The agreement between the measured lu-
minosity and the calculated luminosity in Fig. 2 shows a
consistency in the emittance and luminosity measurement. In
the experiment, the collision tunes of thee+ beam were also
measured atbe,y=4.0 m asnx=52.160 andny=52.233. The
coherent beam-beam tune shift of thee+ beam is therefore
only Dnx=0.009 andDny=0.013, while from the rigid-beam
model Dnx=0.016 andDny=0.042 if both the beams are
Gaussianf14g. The measured coherent beam-beam tune
shifts in this case are inconsistent with the traditional under-

TABLE I. Some beam parameters used in HERA 2000 beam
experiment, wheref rev is the revolution frequency, Ntot and are the
total number of bunches and the number of colliding bunches, I is
the beam current,bx and by are the horizontal and vertical beta
function at the IPs,sx andsy are the horizontal and vertical beam
size without collision at the IPs,ex and ey are the horizontal and
vertical emittance without collision,nx andny are the horizontal and
vertical betatron tune, andtx andty are the horizontal and vertical
damping time.

Parameter Positron beamse+d Proton beamspd

EnergysGeVd 27.5 920

f rev skHzd 47.317 47.317

Ntot/Ncol 189/174 180/174

I smAd ssee Table IId 90

bx/by smd 2.5/ssee Table IId 7.0/0.5

sx/sy smmd 283/ssee Table IId 164/39.9

ex/ey snmd 32.0/1.28 3.82/3.18

nx/ny 52.169/52.246 31.291/32.297

tx/ty smsd 9.2/12.7

TABLE II. The beam parameters that change with the vertical
beta functionsbe,yd of the e+ beam at the IPs in HERA 2000 beam
experiment, where the subscriptse and p indicate thee+ and p
beam, respectively.

be,y smd Ie smAd se,y smmd je,x/je,y jp,x/jp,y s10−4d

1.0 19 35.8 0.041/0.068 2.54/1.40

1.5 18 43.8 0.041/0.102 2.35/1.06

2.0 17 50.6 0.041/0.136 2.18/0.85

3.0 3.5 62.0 0.041/0.204 0.43/0.14

4.0 2.6 72.0 0.041/0.272 0.31/0.09

FIG. 1. Emittance of thee+ beam as a function ofje,y. e0 is the
emittance without collision. Discrete points are from the experiment
and continuous curves from the beam simulation. Circles and curve
a are the vertical emittance. Crosses and curveb are the horizontal
emittance. The two experimental data points at eachje,y where the
measurement was performed correspond to the measurements at H1
and ZEUS.

FIG. 2. The specific luminosity as a function ofje,y. Circles are
from the experiment and continuous curves from the beam simula-
tion. The two experimental data points at eachje,y where the mea-
surement was performed correspond to the measurements at H1 and
ZEUS. Crosses are the luminosity calculated with the measured
emittance in Fig. 1 assuming Gaussian beam distributions.
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standing of beam coherent oscillation. Moreover, in the sym-
metrical case of beam-beam interactions, the ratio of the co-
herent beam-beam tune shift and the total beam-beam
parameter has a value approximately ranging from 1.2 for
round beams to 1.3 for flatsone-dimensionald beamsf4g,
where the total beam-beam parameter is defined as the sum
of the beam-beam parameter at each interaction point. In the
HERA experiment, this ratio was found to beDne,x/ s2je,xd
=0.11 in the horizontal plane andDne,y/ s2je,yd=0.024 in the
vertical plane, respectively, for thee+ beam atbe,y=4.0 m.
The coherent beam-beam tune shifts in this case of unsym-
metrical beam-beam interactions with a large beam-beam pa-
rameter are therefore extremely small as compared with the
symmetrical case of beam-beam interactions.

III. RECONSTRUCTION OF THE HERA BEAM
EXPERIMENT WITH NUMERICAL SIMULATION

To have a better understanding of the measured data in the
HERA experiment, we have reconstructed the experiment
with a self-consistent beam-beam simulation. The computa-
tional code used in this study is an expanded version off2g
that is currently capable of studying beam-beam effects of
hadron or lepton beams with any aspect ratiosratio between
vertical and horizontal beam sized. In the simulation, the lin-
ear HERA lattice with the two IPs was used. The two collid-
ing beams were represented by a million macroparticles with
given initial Gaussian distributions in transverse phase space.
Without beam-beam interactions, the initial beam distribu-
tion used in the simulation matches exactly with the lattice.
Beam-beam interaction at each IP was represented by a kick
in transverse phase space and the kick was calculated by
using the particle-in-cell method as described in Ref.f2g.
Since the beams in the HERA experiment were flat, a uni-
form mesh extending to ±20s in the configuration space with
a grid constant of 0.2s was necessary in this case. All the
computational parameters in the code were carefully tested
for the numerical convergence. Tracking of particle motion
was conducted in four-dimensional transverse phase space
without synchrotron oscillations and momentum deviations.
For lepton beams, the quantum excitation and synchrotron
damping were treated as kicks in each turn during the track-
ing. The horizontal kick isf18g

Dx = e−1/s2txdx + fs1 − e−1/s2txddexg1/2w1,

Dpx = e−1/s2txdpx + fs1 − e−1/s2txddexg1/2w2, s2d

wherex andpx are the normalized horizontal coordinate and
its conjugate momentum,ex is the horizontal emittance, and
w1 andw2 are random numbers with a Gaussian distribution
that is centered at zero and has unit standard deviation. The
damping time in the horizontal and vertical directions,tx and
ty, has the unit of turns. For HERA,tx=436 andty=600,
respectively. The vertical kick has a similar formula.

With the beam-beam simulation, the emittance growth of
the e+ beam and the specific luminosity were calculated as
functions of je,y for the HERA experiment and the results
were plotted in Figs. 1 and 2 as solid lines. Both the emit-
tance and the luminosity plot show a remarkable agreement

between the experiment and the simulation. Figure 3 plots
the evolution of the vertical emittance of thee+ beam at
different be,y. In all these cases, after a quick emittance
blowup, the beam emittance is restabilized and, conse-
quently, an equilibriumsor quasiequilibriumd state of thee+

beam was reached. A study of the motion of particles in the
core of thee+ beam showed that the single-particle motion is
locally unstable at the origin due to beam-beam interactions
and the vertical phase-space area in the vicinity of the origin
is chaotic in all those cases. During the emittance blowup,
the particles in the beam core escape quickly to the beam
tails due to the local instability at the origin. Without the
onset of the coherent beam-beam instability, on the other
hand, the particles in the beam tails are stable for the beam-
beam interaction. This restabilization of the beam emittance
is therefore due to a depopulation of the beam core and for-
mation of a beam halo. This is consistent with the experi-
mental observation that the beam lifetime and operation con-
ditions were good during the experiment even in the case of
je,y=0.272f16g.

In the beam simulation, the coherent beam-beam tune
shift was also calculated. Figure 4 is the calculated power
spectrum of the coherent oscillation of thee+ beam atbe,y
=4.0 m. Due to the quantum fluctuation, thee+ beam always
has a very small oscillation which is enough for the calcula-
tion of the coherent frequency if the numerical noise is small.
Since a large number of particles were used for each of the
beams, in this simulation the numerical noise was very low
and we were able to calculate the coherent frequency without
applying off-center kicks on the beams. The spectrum was
calculated by the fast Fourier transformationsFFTd of the
beam centroid motion from the 5000th to 9000th turn. Since
at the 5000th turn the beam has already reached its quasi-
equilibrium, the transient state of the beam was thrown out
during the tune calculationssee Fig. 3d. As shown in Fig. 4,
the power spectrum peaks at 0.1605 and 0.2331 in the hori-
zontal and vertical planes, respectively, which corresponds to
nx=52.161 andny=52.233 for the beam coherent tunes dur-
ing collision. This simulation result agrees excellently with
the experimental measurement ofnx=52.160 and ny
=52.233. The beam-beam simulation therefore confirmed the
coherent beam-beam tune shift measured in the HERA beam
experiment.

FIG. 3. Evolution of the vertical emittance of thee+ beam cal-
culated with the beam simulation for the cases of HERA beam
experiment atsad be,y=1.0 m; sbd be,y=1.5 m; scd be,y=2.0 m; sdd
be,y=3.0 m; andsed be,y=4.0 m.
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The very small coherent beam-beam tune shift in this case
of very large beam-beam parameter could be understood as
the result of the depopulation of the beam core. To further
confirm this, the dynamics of the beam particle distributions
was studied during the beam simulation. Figure 5 plots the
projection of the distribution in the verticalsyd direction and
shows that the distribution of thee+ beam deviates from a
Gaussian distribution with a significant drop at the beam core
and a growth of the beam tails. Due to the beam-beam inter-
actions, the fixed point at the origin becomes unstable in the
vertical phase space and bifurcates into a pair of new stable
fixed points that locate symmetrically on the two sides of the
origin and at a distance about 2se,y from the origin, where
se,y is the normalized vertical size of thee+ beam without
collision. Particles remaining inside the beam core are either
chaotic or move around these two new fixed points in the
vertical phase space. In the horizontal phase space, the par-
ticles in the beam core are still oscillating around the origin.
Compared with the distribution of thee+ beam, a Gaussian
beam that has the same emittance of thee+ beam has many
more particles in the beam core. The real coherent beam-
beam tune shift measured in the experiment and calculated
with the beam simulation is therefore smaller than that cal-
culated from the rigid-beam model with Gaussian beams.
Moreover, the assumption of Gaussian beams in all the the-
oretical models of the coherent beam-beam oscillation ne-

glects the effect of thef dependence of the beam equilib-
rium distributions, wheref is the angle of the action-angle
variable. In the HERA beam experiment, the equilibrium
squasiequilibriumd distribution of thee+ beam in fact has a
strongf dependence as shown in Fig. 6. For a comparison,
the initial distribution used in the simulation was also plotted
in the figure and shows nof dependence, as it should be. In
order to compare the experimental/simulation result with cal-
culations of theoretical models, the theoretical models need
to be modified to include thef dependence of non-Gaussian
equilibrium distributions.

To further insure the simulation code used in this study,
we also tested our code on PEP-II, the B-factory at the Stan-
ford Linear Accelerator Center. Beam-beam interactions in
PEP-II are due to collisions between unsymmetrical electron
se−d and positron beams. The luminosity and the collision
tune calculated from the beam simulation were found to
agree very well with the beam measurement performed on
PEP-II f19,20g. For example, with the accelerator parameters
given in Ref. f19g, the calculated luminosity is 2.2

FIG. 4. Power spectrum of the centroid motion of thee+ beam in
sad the horizontal andsbd the vertical direction for the case of
HERA beam experiment atje,y=0.272 sbe,y=4.0 md. The beam
centroid motion was calculated during the beam simulation. Note
that in this case the total beam-beam parameters for the two IPs are
0.082 and 0.544 in the horizontal and vertical plane, respectively.

FIG. 5. The projection of the particle distribution of thee+ beam
in the vertical direction obtained by the beam simulation for the
case of HERA beam experiment atje,y=0.272 sbe,y=4.0 md. sad
The initial Gaussian distribution,sbd the distribution at the 5000th
turn, andscd the Gaussian distribution of which the standard devia-
tion is the same as that of the beam distribution insbd.

FIG. 6. The angle dependence of the particle distribution of the
e+ beam obtained by the beam simulation for the case of HERA
beam experiment atje,y=0.272sbe,y=4.0 md. sad The initial Gauss-
ian distribution,sbd the fx dependence, andscd the fy dependence
of the distribution at the 5000th turn.
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31033 cm−2 s−1 when Ie+=1.1 A and Ie−=0.61 A while the
measured luminosity is 2.131033 cm−2 s−1. With the param-
eters given in Ref.f20g, the horizontal collision tune of the
e− beam calculated from the beam simulation is 0.521 while
the beam measurement is 0.524.

IV. VALIDITY OF THEORETICAL MODELS FOR BEAM
COHERENT OSCILLATION

Two theoretical models, the rigid-beam model and the lin-
earized Vlasov equation with the single-mode approxima-
tion, were examined with the HERA experiment. For the
rigid-beam model, the coherent tunes were calculated with
two different methods: assuming a Gaussian distribution as
the equilibrium distribution of thee+ beamfEqs.sA10d and
sA14d in Appendix A 1g or using the non-Gaussian quasi-
equilibrium distribution of thee+ beam obtained in the beam-
beam simulationsAppendix A 2d. In the case of the Gaussian
distribution, the beam sizes used in Eq.sA14d are of the
experimental measurement or the beam-beam simulation.
The small differences in the beam sizes measured in the ex-
periment or calculated from the simulationssee Fig. 1d made
little difference in Eq.sA14d. For the linearized Vlasov equa-
tion, the horizontal coherent tunes were obtained by solving
the initial-value problem of the linearized Vlasov equation
with the single-mode approximation in the horizontal plane.
The details of the calculations are in Appendixes A and B.

Tables III and IV list the ratio of the coherent beam-beam
tune shifts and the total beam-beam parameters of thee+

beam,Dne,x/ s2je,xd andDne,y/ s2je,yd, calculated in the beam

simulation or calculated with the theoretical models for the
cases ofbe,y=1.0 and 4.0 m, whereDne,x and Dne,y are the
horizontal and vertical coherent beam-beam tune shift of the
e+ beam. The experimental measurement atbe,y=4.0 m is
also included in Table III. The significant discrepancy be-
tween the results of the models and the results of the
experiment/simulation shows that the theoretical models are
inconsistent with the experiment and simulation. Note that
the rigid-beam model with the beam distribution from the
simulation did a little better than that with Gaussian distri-
bution. To further examine the failure of the theoretical mod-
els, a beam-beam simulation was conducted for the case of
be,y=1.0 m but with only one-tenth of thep-bunch current
used in the experiment, i.e.,je,y=0.0068. The result is listed
in Table V and shows that the rigid-beam model with either
the Gaussian distribution or the distribution obtained from
the simulation is in good agreement with the beam simula-
tion. In fact, the quasiequilibrium distribution of thee+ beam
in this case is very close to a Gaussian. This reconfirms many
previous studies that the rigid-beam model is correct for un-
symmetrical beam-beam interactions with a relatively small
beam-beam parameter. Contrary to the cases of the HERA
experiment, in the case ofje,y=0.0068 the single-particle dy-
namics including beam-beam interactions is stable at the ori-
gin sclosed orbitd. The failure of the rigid-beam models in
the cases of the HERA experiment could therefore be due to
the chaotic single-particle dynamics in the core of thee+

beam.
In the case of the linearized Vlasov equation, as shown in

Tables III–V, the calculation yielded wrong results no matter
how small the beam-beam parameter is. In the calculation
with the Vlasov equation, several approximations were em-
ployed. Among them, the linearization, the one-dimensional
beam, and the single-mode approximation are the three ma-
jor approximations that cannot be directly justified by the
experimental observationsssee Appendix Bd. The lineariza-
tion of the Vlasov equation should not play the leading role
in its failure for the unsymmetrical beam-beam interaction
since the linearization should be valid for a relatively small
beam-beam parameter. To verify the validity of the one-
dimensional approximation, we did a series of beam-beam
simulations for the case ofbe,y=1.0 m,je,y=0.068 or 0.0068,
but with a different beam aspect ratiossy,e/sx,ed ranging
from 0.063 to 0.120. In all these cases, the horizontal coher-
ent beam-beam tune shift was found to be very similar to that
of the HERA experiment. Note that in the HERA experiment
and in all the cases in Tables III–V,sy,e/sx,e=0.126. This
indicates that the horizontal coherent beam-beam tune shift
is not sensitive to the aspect ratio of the beam. A similar

TABLE III. The coherent beam-beam tune shifts of thee+ beam
at be,y=4.0 msje,y=0.272d. “Experiment” and “Simulation” are the
coherent tunes measured in the experiment and calculated in the
beam simulation, respectively. “Rigid-Real” and “Rigid-Gaussian”
are the coherent tunes calculated by using the rigid-beam model
with a Gaussian distribution and with the distribution from the
simulation, respectively. “Vlasov Eq.” is the coherent tunes calcu-
lated with the linearized Vlasov equation.

be,y=4.0 m ne,x Dne,x/ s2je,xd ne,y Dne,y/ s2je,yd

Experiment 0.1600 0.110 0.2330 0.024

Simulation 0.1605 0.104 0.2331 0.024

Rigid-Real 0.1555 0.164 0.2194 0.049

Rigid-Gauss 0.1531 0.194 0.2040 0.077

Vlasov Eq. 0.1123 0.69

TABLE IV. The same as Table III but forbe,y=1.0 m sje,y

=0.068d.

be,y=1.0 m ne,x Dne,x/ s2je,xd ne,y Dne,y/ s2je,yd

Simulation 0.1600 0.110 0.2172 0.212

Rigid-Real 0.1517 0.212 0.2074 0.284

Rigid-Gauss 0.1475 0.263 0.1996 0.341

Vlasov Eq. 0.121 0.58

TABLE V. The same as Table IV, but with only one-tenth of the
p-bunch current used in the experimentsje,y=0.0068d.

be,y=1.0 m ne,x Dne,x/ s2je,xd ne,y Dne,y/ s2je,yd

Simulation 0.1672 0.224 0.2414 0.337

Rigid-Real 0.1668 0.263 0.2406 0.396

Rigid-Gauss 0.1668 0.268 0.2406 0.399

Vlasov Eq. 0.165 0.53
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phenomenon has also been observed in the symmetrical case
of beam-beam interactionsf4g. The large discrepancy in the
coherent beam-beam tune shifts calculated with the linear-
ized Vlasov equation as compared to that obtained from the
experiment/simulation is apparently not due to the approxi-
mation of the one-dimensional beam. With the single-mode
approximation, on the other hand, the only oscillation mode
of the beam distribution that was kept in the calculation is
the m=1 mode in Eq.sB6d. As shown in Fig. 6, the equilib-
rium distribution of thee+ beamff1,0sI ,fd in Eq. sB4dg de-
pends strongly onf. In this case, the dominant mode of the
equilibrium distribution is them=2 mode, which has af
dependence ofei2f. As them=2 mode could be a dominant
intrinsic mode of the system, the single-mode approximation
could be inconsistent with the dynamics of the beam. In or-
der to study the effect of mode couplings in the linearized
Vlasov equation, we have derived the eigenvalue equation of
the linearized Vlasov equation that is similar to Eq.sB13d
but includes high-order modes. After truncating higher-order
modes atm=mp, M in Eq. sB13d becomes as2mp+1ds2lp
+2d3 s2mp+1ds2lp+2d matrix where lp is the number of
grids on the mesh of the action space andM 1 andM 2 in Eq.
sB14d are no longer diagonal matricesssee Appendix Bd. We
have, however, failed in obtaining a set of orthogonal eigen-
vectors for the eigenvalue equation of the linearized Vlasov
equation becauseM is a singularsill-conditionedd matrix
when the mode couplings are included. A similar problem
has also been encountered when including the mode cou-
pling in the case of symmetrical beam-beam interactions.

V. COHERENT BEAM-BEAM TUNE SHIFT VERSUS
BEAM-BEAM PARAMETER

In the symmetrical case of beam-beam interactions, the
ratio of the coherent beam-beam tune shift and the total
beam-beam parameter is approximately a constant of 1.2 for
round beams and 1.3 for flat beamsf4g. Note that with sym-
metrical beam-beam interactions, the beam-size growths of
the two beams are symmetrical and the beam distributions
are usually close to a Gaussian when the beam-beam param-
eter is below the threshold of the onset of coherent beam-
beam instabilityf2,15g. The coherent beam-beam tune shift
thus depends linearly on the beam-beam parameter in a fairly
large range of beam-beam parameterf4g. On the contrary, in
the HERA experiment the ratio of the coherent beam-beam
tune shift and the beam-beam parameter of thee+ beam de-
creases monotonically with the increase of the beam-beam
parameter as shown in Fig. 7. This different characteristic of
the coherent beam-beam tune shift stems mainly from the
mismatch in the equilibrium distributions of two unsym-
metrical colliding beams. In the HERA experiment, the beam
size of thee+ beam at the IPs is slightly larger than that of
thep beam initially without collisionssee Table Id. When the
beam-beam parameter is small such as in the case ofje,y
=0.0068, the beam-size growth is insignificant and the
beams are very close to the initial Gaussian distributions.
The ratio of the coherent beam-beam tune shift and the
beam-beam parameter of thee+ beam is simply determined
by the mismatch in the initial beam sizes without collision as

described by Eq.sA14d of the rigid-beam model. When the
beam-beam parameter is large, on the other hand, the equi-
librium size of thee+ beam is much larger than that of thep
beam and the beam-size growth of thee+ beamssee Fig. 1d
dominates the beam-size mismatch. Moreover, the particle
distribution of the e+ beam deviates significantly from a
Gaussian distributionssee Fig. 5d. In this case, the origin
sclosed orbitd of the phase space of thee+ beam is unstable
for the single-particle motion and a large number of posi-
trons initially in the core of thee+ beam escape to the beam
tails and form a halo near the tail of thep beam. The coher-
ent beam-beam tune shift of thee+ beam thus becomes much
smaller than that in the case of two matched Gaussian beams.
Note that for two matched Gaussian beams, the ratio of the
coherent beam-beam tune shift and the total beam-beam pa-
rameter is 0.5 for unsymmetrical beam-beam interactions.
For thee+ beam in the HERA experiment, as the beam-size
growth and the resultant beam-size mismatch increase with
the beam-beam parameter, the ratio of the coherent beam-
beam tune shift and the beam-beam parameter decreases with
the beam-beam parameter. In general, in the unsymmetrical
case of beam-beam interactions, the two colliding beams
have different equilibrium distributions described as the
equilibrium states of the Vlasov equation in Eq.sB4d. The
mismatch in the distributions as well as the beam sizes is, in
principle, independent of the initial states of the beam distri-
butions and the initial beam-size mismatch as long as the
considered equilibrium state of the Vlasov equation is well
isolated and is the only one that is close to the initial beam
distributions. The beam-size mismatch in the unsymmetrical
case of beam-beam interactions is therefore intrinsic and un-
avoidable, especially when the beam-beam parameter is
larger. Moreover, this beam-size mismatch increases with the
strength of beam-beam perturbations. The functional depen-
dence of the coherent beam-beam tune shift on the beam-
beam parameter in Fig. 7 is therefore a general characteristic
of unsymmetrical beam-beam interactions.

Figure 7 also plotsDne,y/ s2je,yd as a function ofje,y cal-
culated based on the rigid-beam model. It shows that when
the beam-beam parameter is large, the rigid-beam model re-
sults in a similar je,y dependence ofDne,y/ s2je,yd even

FIG. 7. The ratio of the coherent beam-beam tune shift and the
beam-beam parameter as a function of the beam-beam parameter of
thee+ beam in the vertical plane calculated fromsad the beam-beam
simulation and sbd the rigid-beam model with the Gaussian
distribution.
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though it overestimates the coherent beam-beam tune shift.
Note that in the rigid-beam model, thisje,y dependence is
due to the beam-size mismatch as given in Eq.sA14d. At a
largeje,y, the beam-size mismatch is dominated by the beam-
size growth of thee+ beam. This suggests that the result of
the rigid-beam model in Eq.sA14d provides an approxima-
tion of the functional dependence of the coherent beam-beam
tune shift to the intrinsic beam-size mismatch in unsym-
metrical beam-beam interactions with large beam-beam pa-
rameters. The overestimate of the rigid-beam model could be
due to the chaotic dynamics of the particles in the beam core.
The linearization in theoretical models usually distorts the
characteristics of the chaotic dynamics of a nonlinear system.
The importance of the chaotic single-particle dynamics in the
beam core to the beam coherent motion is, however, not very
clear and needs to be further studied.

VI. CONCLUSION

The coherent beam-beam tune shift was studied in the
case of unsymmetrical beam-beam interactions where the
two beams have very different beam-beam parameters and
betatron tunes. The results of a self-consistent beam-beam
simulation, the rigid-beam model, and the linearized Vlasov
equation were compared with the beam measurement in the
HERA 2000 Beam Study. Remarkable agreement was found
between the beam simulation and the HERA experiment in a
wide range of, and, especially, at very large beam-beam pa-
rameters of, the lepton beam. The rigid-beam model was
found to be only correct when the beam-beam parameter is
small. The result of the linearized Vlasov equation with the
single-mode approximation is inconsistent with the result of
the beam experiment/simulation in either cases of large or
small beam-beam parameter. The failure of the linearized
Vlasov equation could be due to the single-mode approxima-
tion used in solving the linearized Vlasov equation. A study
of the dynamics of the beam distribution showed that the
high-order modes are important to the beam dynamics in this
situation. An attempt to include high-order modes in the cal-
culation has, however, not been successful because of the
difficulty in finding a set of orthogonal eigenvectors for the
linearized Vlasov equation. Recently, efforts have been made
to include the angle dependence of beam distributions in an
expansion of the Vlasov equationf21g. More studies are
needed for a relevant solution of the linearized Vlasov equa-
tion for the unsymmetrical beam-beam interaction. Currently,
the numerical simulation is the only reliable approach for a
prediction of the coherent beam-beam tune shift in this situ-
ation.

One interesting phenomenon observed in this study is the
very small coherent beam-beam tune shift in this unsym-
metrical case of beam-beam interactions. It was found that
the ratio of the coherent beam-beam tune shift and the total
beam-beam parameter of the weak lepton beam in HERA
decreases from 0.3 to 0.02 as the total beam-beam parameter
increases from 0.01 to 0.54. On the contrary, in the sym-
metrical case of beam-beam interactions, this ratio maintains
approximately a constant of 1.2 for a round beam or 1.3 for
a flat beam in a large range of beam-beam parameter. The

reason for this different characteristic of the coherent beam-
beam tune shift is the intrinsic beam-size mismatch between
two unsymmetrical colliding beams due to the difference in
the equilibrium distributions of the two beams. This intrinsic
mismatch in the beam distributions due to beam-beam inter-
actions becomes more pronounced as the strength of beam-
beam perturbations increases. The ratio of the coherent
beam-beam tune shift and the beam-beam parameter de-
creases, in general, with the increase of beam-beam param-
eters in the unsymmetrical case of beam-beam interactions.
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APPENDIX A: COHERENT BEAM-BEAM TUNE SHIFT
FROM THE RIGID-BEAM MODEL

The coherent beam-beam tune shift in the rigid-beam
model has been studied before for the unsymmetrical beam-
beam interaction. Previous studies are, however, limited to
the special cases where either the two beams have the same
f8g or very differentf14g beam-beam parameters. Moreover,
all of them assumed that the beams are Gaussian. In the
following, a general formula of the rigid-beam model is de-
rived that can be applied to any case of unsymmetrical beam-
beam interaction with either Gaussian or non-Gaussian
beams.

Let risrW ,ud be the distribution of beami in the normalized
configuration space wherei =1 or 2,rW=sx,yd are the normal-
ized coordinates of the transverse space, andu is the azi-
muthal angle associated with the path length along the closed
orbit. The beam centroid in the normalized space can be

calculated byRW i =erWrisrW ,uddrW. Considering a linear lattice
with one IP, the transverse motion of the beam centroid can
be described by

d2RW i

du2 + Vi ·RW i = s− 1di+1liFWF2po
n

dsu − 2pndG . sA1d

In Eq. sA1d, Vi is a 232 diagonal matrix withsVid11=ni,x
2

and sVid22=ni,y
2 , wheresni,x,ni,yd are the fractional parts of

the betatron tunes of the lattice for beami. The main part of
the beam-beam kick in Eq.sA1d is

FW =E
−`

+` E
−`

+`

r1srW1,udr2srW2,ud

3GW sb1,x
1/2x1 − b2,x

1/2x2,b1,y
1/2y1 − b2,y

1/2y2ddrW1drW2, sA2d

whereGW sx,yd=rW / r2 is the Green function of the beam-beam
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interaction andsbi,x,bi,yd are the horizontal and vertical beta
function of beami at the IP, respectively. The strength of the
beam-beam kick for the horizontal component of Eq.sA1d is

li = li,x =
aiNj

pgi
ni,xbi,x

1/2,

where i =1 or 2, j =1 or 2, but i Þ j ; Nj is the number of
particles per bunch of beamj ; ai is the classical radius of the
particle in beami; and gi is the Lorentz factor of beami.
With the definition of the beam-beam parameters in Eq.s1d,
this kick strength can be written as

li,x =
2ni,xji,x

bi,x
1/2 s j ,xss j ,x + s j ,yd, sA3d

wheresji,x,ji,yd andssi,x,si,yd are the beam-beam parameters
and the rms beam sizes at the IP of beami. For the vertical
component of Eq.sA1d, li =li,y can be easily obtained by
exchangingx andy in Eq. sA3d.

In the rigid-beam model of the coherent beam-beam os-
cillation, the shapes of the particle distributions in phase
space are assumed not to change with time during the beam
oscillation while the centers of the distributions oscillate
with the beams’ coherent tunes. The distribution during the

beam oscillation is thus assumed to berisrW ,ud=r0isrW−RW id,
wherer0isrWd is the equilibrium distribution when the beam is

centered at the closed orbit. In general,FW in Eq. sA2d is a
function of moments of phase-space variables and the time

dependence ofFW is implicitly through all the moments.sTo
have a better picture of this, one may consider a moment
expansion of beam particle distributions in phase space.d
With the rigid-beam approximation,FW depends on the

lowest-order momentsRW 1 andRW 2 only,

FW =E
−`

+` E
−`

+`

r01srW1 − RW 1dr02srW2 − RW 2d

3GW sb1,x
1/2x1 − b2,x

1/2x2,b1,y
1/2y1 − b2,y

1/2y2ddrW1drW2. sA4d

Note that the rigid-beam model may fail in cases where the
variation of the distributions is important during the beam

coherent oscillation. To find the oscillation frequencies ofRW i,
one can average the beam-beam kick in Eq.sA1d over one

turn s2p in the longitudinal directiond and expandFW into a

Taylor series ofRW i. Keeping only the linear terms ofRW i, Eq.
sA1d becomes a coupled four-dimensional harmonic oscilla-
tor,

d2RW i

du2 + Vi ·RW i = s− 1di+1lisA1 ·RW 1 + A2 ·RW 2d, sA5d

wherei =1 or 2, andA i are 232 matrices with

A i = U ]FW

]RW i

U
RW 1=0,RW 2=0

. sA6d

If both the beams are mirror symmetric with respect to the
horizontal and vertical plane,A i are diagonal matrices and

the horizontal and vertical coherent oscillations are decou-
pled. The two eigenfrequencies for the coherent oscillation in
the horizontal plane can then be solved as

n± =
1
Î2

Îv1
2 + v2

2 ± Îsv1
2 − v2

2d2 + 16n1,xn2,xdv1dv2,

sA7d

where

vi
2 = ni,x

2 − 2ni,xdvi ,

dvi = li,xsA id11/s2ni,xd sA8d

for i =1 or 2. If dvi !ni,x and in Eq.sA7d

sv1
2 − v2

2d2 @ 16n1,xn2,xdv1dv2, sA9d

then the coherent frequencies of the two beam are

n+ = v1 = n1,x − dv1,

n− = v2 = n2,x − dv2, sA10d

wheren+ andn− are the horizontal coherent tunes of beam 1
and beam 2, respectively. Note that in the unsymmetrical
case of beam-beam interactions, the two eigenfrequencies do
not correspond to the so called 0sor sd and p modes of
symmetrical beam-beam interactions. The condition in Eq.
sA9d can be further simplified as

un1,x − n2,xu @ Îdv1dv2. sA11d

Therefore, if the difference of the lattice tunes is much larger
than the geometric average of the coherent beam-beam tune
shifts of the two beams, the coherent beam-beam tune shifts
can simply be calculated with Eq.sA10d. Note that in the
HERA experiment, this condition was fulfilled. For the case
of strong-weak beam-beam interactions such asj1,x@j2,x,
one can expandn± in terms ofl2,x/l1,x. Keeping only the
dominant term in the coherent beam-beam tune shifts yields

n+ = n1,x − dv1,

n− = n2,x −
n1,x

2 − n2,x
2

n1,x
2 − n2,x

2 − 2n1,xdv1

dv2, sA12d

where n+ and n− are the coherent frequencies of the weak
sbeam 1d and strongsbeam 2d beam, respectively. In the first
equation of Eq.sA12d, since the zeroth-order termsdv1d of
l2,x/l1,x exists and dominates the coherent beam-beam tune
shift of beam 1, the first- or higher-order terms were ne-
glected. In the second equation of Eq.sA12d, on the other
hand, the zeroth-order term is zero and the first-order term
was thus kept. Note that if the lattice tunes of the two beams
are very different, Eq.sA12d is equivalent to Eq.sA10d. If
the denominator in Eq.sA12d, n1,x

2 −n2,x
2 −2n1,xdv1, is small,

an analysis of the higher-order terms shows that the expan-
sion in terms ofl2,x/l1,x is no longer accurate and the co-
herent tunes have to be calculated by using Eq.sA7d. The
two coherent frequencies in the vertical plane can be easily
obtained by exchangingx and y and changingsA id11 with
sA id22 in Eqs.sA7d–sA12d. As shown in our studyssee Sec.
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IV d, this approach of the rigid-beam model is quite good in
the case of unsymmetrical beam-beam interactions with a
small beam-beam parameter.

1. Gaussian beams

In the case thatr0i are Gaussian distributions, matrixA i in
Eq. sA6d can be calculated analytically with Eq.sA4d as

sA id11 =
bi,x

1/2

SxsSx + Syd
, sA13d

whereSx=Îs1,x
2 +s2,x

2 and Sy=Îs1,y
2 +s2,y

2 . The matrix ele-
ment ofsA id22 can be simply obtained by exchangingx andy
in Eq. sA13d. Substituting Eqs.sA2d andsA13d into Eq.sA8d
yields

dvi = ji,x
ss j ,x + s j ,yds j ,x

sSx + SydSx
, sA14d

where i =1 or 2, j =1 or 2, but j Þ i. When i =1, Eq. sA14d
gives the coherent beam-beam tune shifts of the weak beam
fbeam 1 in Eq.sA12dg obtained previously by Hoffstaetter
for the strong-weak case of beam-beam interactionsf14g. If
sn1,x,n1,yd=sn2,x,n2,yd and ss1,x,s1,yd=ss2,x,s2,yd, Eq. sA7d
is reduced to the formula obtained by Hirataf5g. If
sj1,x,j1,yd=sj2,x,j2,yd andss1,x,s1,yd=ss2,x,s2,yd, Eq. sA7d is
reduced to the formula obtained by Hofmannf8g.

2. Non-Gaussian beams

For non-Gaussian beams, especially the distributions ob-
tained from beam-beam simulations such as that in Figs. 5
and 6, matricesA i in Eq. sA6d cannot be obtained analyti-
cally but can be calculated numerically by using Eq.sA4d.
The coherent frequencies can then be calculated with Eq.
sA7d or directly from Eq.sA5d if the horizontal and vertical
motions are coupled.

APPENDIX B: COHERENT BEAM-BEAM TUNE SHIFT
FROM THE LINEARIZED VLASOV EQUATION

The use of the linearized Vlasov equation has been very
successful for the coherent beam-beam tune shift in the case
that two beams have the same or very close lattice tunesf4g.
In order to find the coherent beam-beam tune shift, one needs
to identify the coherent frequencies from the eigenfrequen-
cies of the linearized Vlasov equation. The linearized Vlasov
equation, in principle, has infinite numbers of eigenfrequen-
cies associated with infinite numbers of oscillation modes.
For real beams, the number of the eigenfrequencies of the
beam oscillation in transverse space is twice the number of
particles in a bunch. When two beams have the same lattice
tunes, the coherent frequencies can be easily identified since
the eigenfrequencies that correspond to the coherent frequen-
cies are separated from the rest of the eigenfrequencies that
form a continuous bandsmany close eigenfrequency linesd
f4g, although it is not very clear mathematically why this
separation occurs. The situation becomes more complicated
when two beams have very different lattice tunes. In this
case, all the eigenfrequencies are in one or two continuous

bands and the coherent frequencies cannot be identified by
only solving the eigenfrequencies. In order to find the coher-
ent frequencies in the HERA beam experiment, we will in-
stead solve the initial-value problem of the linearized Vlasov
equation for the coherent beam oscillation.

Consider only the horizontal motionsvery flat beamd in a
linear lattice with one IP. In terms of the action-angle vari-
able, the Hamiltonian for the betatron motion of beami si
=1 or 2d can be written as

HisI,f,ud = Hi,0sId + UisI,f,udF2po
n

dsu − 2pndG ,

sB1d

whereHi,0=ni,xI is the Hamiltonian associated with the be-
tatron motion in the linear lattice andUi is the potential
energy for the beam-beam interaction that can be written, for
one-dimensional beams, as

UisI,f,ud = Uiff jg = − 2
ji,xs j ,x

2

bi,x
E

0

2p E
0

`

f jsI8,f8,ud

3 lnsÎ2bi,xI sinf − Î2b j ,xI8 sinf8ddI8df8,

sB2d

where i =1 or 2 and j =1 or 2, but i Þ j . The action-angle
variables are related to the normalized variables byx
=Î2Isinf and p=Î2Icosf. f isI ,f ,ud is the particle distri-
bution of beami in phase space and satisfies the Vlasov
equation. For convenience, we also define a functionalUiff jg
in Eq. sB2d for the potential integral. In Eq.sB2d, lnsx−x8d is
the Green function for the potential of beam-beam interac-
tion in one-dimensional space. If only the coherent beam-
beam tune shifts are involved, one can get rid of the periodic
d function in the Hamiltonian in Eq.sB1d by averaging the
beam-beam force over one turn. The Vlasov equation forf i
can then be written as

]f i

]u
+ ni,x

]f i

]f
= hUi, f ij, sB3d

whereh j is the Poisson bracket. Assume that the beams have
reached equilibrium distributionsf i,0 that satisfy

ni,x
]f i,0

]f
= hUi,0, f i,0j, sB4d

whereUi,0sI ,fd=Uiff j ,0g. Consider that beami experiences a
small perturbation from its equilibrium distribution
cisI ,f ,ud= f isI ,f ,ud− f i,0sI ,fd. The linearized equation for
cisI ,f ,ud can be obtained by subtracting Eq.sB4d from Eq.
sB3d and neglecting the termhUifc jg ,cij which is higher
order inci as

]ci

]u
+ ni,x

]ci

]f
= hUi,0,cij + hVi, f i,0j, sB5d

whereVisI ,f ,ud=Uifc jg.
To solve Eq.sB5d, one can convert it into a system of

infinite numbers of coupled ordinary differential equations of
modes by using the Fourier transformation
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cisI,f,ud =E
−`

`

dn o
m=−`

`

ci,msI,ndeismf−nud, sB6d

where n is the oscillation frequency of the beams andm
denotes modes. Them=1 mode corresponds to the coherent
dipole oscillation. To further simplify the problem, one may
use the single-mode approximation in which only the mode
with m=1 is kept in the linearized Vlasov equationf4g. It
turns out that the use of the single-mode approximation is
not only a convenience but also a necessity. Without the
single-mode approximation, no effective method is available
for the general solution of Eq.sB5d, except for simplified
models as in Ref.f21g. Substituting Eq.sB6d into Eq. sB5d,
multiplying e−if, and integratingf over 2p on the both sides
of Eq. sB5d, and only keeping them=1 mode, yields

nc̄isI,nd = ni,xc̄isI,nd + QisIdc̄isI,nd +E
0

`

GisI,I8dc̄ jsI8,nddI8,

sB7d

wherec̄isI ,nd=ci,1sI ,nd,

QisId =
1

2p
E

0

2p ]Ui,0

]I
df, sB8d

and

GisI,I8d =
ji,xs j ,x

2

pÎ2bi,xI
E

0

2p E
0

2p e−if sinf8
Îbi,xI sinf − Îb j ,xI8 sinf8

3 S2I cosf
]f i,0

]I
− sinf

]f i,0

]f
Ddf8df. sB9d

If the equilibrium distributions are independent off such as
for Gaussian beams, the imaginary term ofGisI ,I8d is zero.
Otherwise, this imaginary term contributes a damping to the

linearized Vlasov equation whenc̄i is stable or an excitation

when c̄i is unstable. If the equilibrium distributionsf i,0 are
Gaussian, with a similar algebraic treatment in Ref.f4g, the
integrals in Eqs.sB8d andsB9d can be calculated analytically
as

QisId = −
ji,xs j ,x

2

bi,xI
s1 − e−bi,xI/s j ,x

2
d, sB10d

GisI,I8d = ji,xr ije
−szi+zj8d/2Fminszi,r ijzj8d

maxszi,r ijzj8d
G1/2

, sB11d

where i =1 or 2, j =1 or 2, but i Þ j . zi =bi,xI /si,x
2 , zj8

=b j ,xI8 /s j ,x
2 , andr ij =s j ,x

2 /si,x
2 .

1. Eigenfrequencies and eigenvectors of the linearized Vlasov
equation

To further proceed with Eq.sB7d, one may discretize the
action spacesId into a mesh and solve the equation on the
grids f3,4g. Let I = lDI, where DI is the grid size; l
=0,1,2, . . .lp; and lpDI is the size of the mesh. Since the
distributions decay to zero quickly asI increases, a mesh that

covers severalsi,x is good enough for a calculation of the
coherent frequency. In order to have an accurate frequency
for the lattice tune in the eigenfrequencies of Eq.sB7d, how-
ever, the mesh has to be large enough so that the beam-beam
interaction atI = lpDI is negligible. In this study, we therefore
used lpDI =160ei,x and DI =0.05ei,x, whereei,x is the nor-

malized emittance of beami. Let c̄islDI ,nd=c̄ilsnd. Equation
sB7d can then be converted into a system of linear algebraic
equations on the mesh,

nc̄il = ni,xc̄il + QislDIdc̄il + DIo
k=0

lp

GislDI,kDIdc̄ jk,

sB12d

which leads to an eigenvalue problem

MVW = nVW , sB13d

where

VW = sc̄10,c̄11, . . . ,c̄1lp
,c̄20,c̄21, . . . ,c̄2lp

dT.

M is a 2slp+1d32slp+1d matrix

M = SM 1 O1

O2 M 2
D , sB14d

where M 1, M 2, O1, and O2 are slp+1d3 slp+1d matrices.
Because of the single-mode approximation,M 1 andM 2 are
diagonal matrices with the diagonal elements

sM idkk = ni,x − Qifsk − 1dDIg sB15d

and the elements ofOi are

sOidkl = Gi„sk − 1dDI,sl − 1dDI…, sB16d

wherek=1, . . . ,slp+1d, l =1, . . . ,slp+1d and i =1 or 2. If the
equilibrium distributions are Gaussian, all these matrix ele-
ments in Eqs.sB15d andsB16d can be calculated analytically
by using Eqs.sB10d and sB11d. In the case of the HERA
experiment, the equilibrium distribution of thep beam is still
very close to a Gaussian but thee+ beam is no longer a
Gaussian beamssee Figs. 5 and 6d. Let beam 1 and 2 be the
e+ andp beam, respectively.M 1 andO2 can then be obtained
analytically. The matrix elements ofM 2 andO1, on the other
hand, have to be calculated numerically by using Eqs.sB8d
and sB9d with the quasiequilibrium distribution of thee+

beam obtained from the beam simulation.
With the eigenvalue equation in Eq.sB13d, the eigenfre-

quencies and a set of orthogonal eigenvectors for the linear-
ized Vlasov equation can be found numerically. If the two
beams have the same lattice tune, the eigenfrequencies of Eq.
sB13d are identical to that obtained in Ref.f4g. Figure 8sad is
an example of eigenfrequencies of Eq.sB13d for the case of
n1,x=n2,x andj1,x=j2,x. It shows that in the symmetrical case
of beam-beam interactions, the coherent frequencyfthe first
frequency line from the left of Fig. 8sadg is separated from
the rest of the eigenfrequencies that form a continuous band.
The width of the band equals the incoherent beam-beam tune
shift. The coherent frequency can therefore be easily identi-
fied in this case. Note that the coherent beam-beam tune shift
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calculated from this coherent frequency is the same as that in
Ref. f4g. The situation is more complicated when the two
beams have very different lattice tunes. Figure 8sbd plots the
eigenfrequencies for the case of the HERA experiment. In
this case, the eigenfrequencies are divided into two groups,
one for each beam. For thee+ beam, the eigenfrequencies
form a continuous band that starts at the lattice tune of thee+

beam and has a width of the incoherent beam-beam tune
shift of the e+ beam. Because there were two IPs in the
HERA experiment, the incoherent beam-beam tune shift in
Fig. 8sbd is 2je,x=0.082 for thee+ beam. The characteristics
of the eigenfrequencies for thep beam, in principle, is simi-
lar to that of thee+ beam. Since the beam-beam parameter of
the proton beam is very smallsj2,x=jp,x,10−4d, all the
eigenfrequencies for thep beam degenerate into a single line
fthe first line from the left of Fig. 8sbdg that corresponds to
the lattice tune of thep beam. In the case of very unsym-
metrical beam-beam interactions, therefore, the coherent fre-
quencies cannot be simply identified from the eigenfrequen-
cies of the linearized Vlasov equation.

It should be noted that because of a very small beam-
beam parameter of thep beam, during the HERA experiment
no coherent beam-beam tune shift was observed on the pro-
ton beam. The matrix elements ofO2 are very small as com-
pared with the diagonal elements ofM 1 and M 2. O2 can
therefore be approximated as a zero matrix and the eigenfre-
quencies for thee+ beam can be easily obtained from

M 1VW 1=nVW 1, whereVW 1=sc̄10,c̄11, . . . ,c̄1lp
dT is the subvector

space associated with thee+ beam. SinceM 1 is diagonalized,
solving the eigenfrequencies and a set of orthogonal eigen-
vectors ofM 1 is trivial. The eigenfrequencies and eigenvec-
tors obtained fromM 1 were found to be the same as that of
Eq. sB13d in the subvector space associated with thee+ beam
in this case.

FIG. 9. uCku2 as a function ofnk for the cases of Fig. 8. The
arrows indicate the coherent frequencies.

FIG. 10. Calculated coherent beam-beam tune shift by using the
linearized Vlasov equation as a function of initial kickx0 on the
distribution of thee+ beam fsee Eq.sB15dg for the case of the
HERA experiment atbe,y=1.0 m.

FIG. 8. Eigenfrequencies of Eq.sB13d for the case ofsad n1,x

=n2,x, j1,x=j2,x and sbd the HERA beam experiment. Insad, the
dashed line marks the lattice tune that corresponds to the 0 mode.
The single isolated line on the left is the coherent frequency that
corresponds to a ratio of the coherent beam-beam tune shift and the
total beam-beam parameter of 1.35. Insbd, the dashed lines mark
the lattice tunes of thee+ beamsthe left lined andp beamsthe right
lined, respectively. The single isolated line on the right is the degen-
erated eigenfrequencies for thep beam and the band on the left is
for the e+ beam. The vertical axis has no physical meaning.
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2. Initial-value problem for coherent frequencies

Let sn1, . . . ,nlp+1,nlp+2, . . . ,n2lp+2d and

sVW s1d , . . . ,VW slp+1d ,VW slp+2d , . . . ,VW s2lp+2dd be the eigenfrequencies
and eigenvectors of the discretized and linearized Vlasov

equation whereMVW snd=nnVW
snd. In the HERA experiment, the

lattice tunes of the two beams are very different and, there-

fore, the two eigenfrequency bands of Eq.sB13d are well
separatedfsee Fig. 8sbdg. In this case,hnnj are the eigenfre-
quencies for thee+ beam whenn=1, . . . ,lp+1 and the eigen-
frequencies for thep beam whenn= lp+2, . . . ,2lp+2. In the
discretized action space, the perturbation of the beam distri-
bution c1sI ,f ,ud and c2sI ,f ,ud can be represented as a
vector,

cW sud = „c1s0,f,ud,c1sDI,f,ud, . . . ,c1slpDI,f,ud,c2s0,f,ud, . . . ,c2slpDI,f,ud…T.

With the single-mode approximation, the general solution of
c1sI ,f ,ud andc2sI ,f ,ud can then be obtained from a super-
position of the eigenvectors of the linearized Vlasov equa-
tion,

cW sud = o
k=1

2lp+2

CkVW
skdeisf−nkud, sB17d

wherehCkj are constants and can be determined with an ini-
tial condition, c1sI ,f ,0d and c2sI ,f ,0d. Since uCku2 is the
oscillation amplitude of the beam distributions with the fre-
quency ofnk, the diagram ofuCku2 versusnk corresponds to
the frequency spectrum of the coherent oscillation. The two
peaks in theuCku2−nk diagram, therefore, provide the coher-
ent tunes whenc1sI ,f ,0d→0 andc2sI ,f ,0d→0.

Consider a small kick that kicks beam 1 away from its
equilibrium distributionf1,0sI ,fd, where f1,0sI ,fd is known
numerically from the beam-beam simulation. The initial per-
turbation of the beam distribution is

c1sI,f,0d = f1,0sx + x0,pxd − f1,0sx,pxd = o
m

gmsIdeimf

sB18d

and c2sI ,f ,0d=0, where x0 is the initial kick. With the

single-mode approximation,c1sI ,f ,0d.g1sIdeif and cW s0d
=gWeif, wheregW =(g1s0d ,g1sDId , . . . ,g1slpDId ,0 , . . . ,0)T. Note
that the second half of the vector is all zero because beam 2
is not kicked. On the other hand, from Eq.sB17d,

cW s0d = S o
k=1

2lp+2

CkVW kDeif = sVCW deif, sB19d

whereV is a s2lp+2d3 s2lp+2d matrix of which theith col-

umn isVW i andCW =sC1,C2, . . . ,C2lp+2dT. The coefficientshCkj
can then be calculated fromCW =V−1gW. It should be noted that
the initial kick on the beam distributions in Eq.sB18d can be
in any direction in phase space since the coherent frequency
is the frequency of an infinitesimal oscillation. For near-
integrable systems considered in this study, the phase-space
region in the vicinity of the origin is integrable and only
consists of invariant circlesstorid. It is therefore isotropic.
The coherent frequencies calculated were indeed found to be
independent of the direction of the initial kick.

Figure 8 plots the calculateduCku2−nk diagrams for the
symmetrical case of beam-beam interactions wheren1,x

=n2,x andj1,x=j2,x fFig. 9sadg and for the HERA experiment
fFig. 9sbdg. In Fig. 9sad, the peak with an arrow is the calcu-
lated coherent frequency that is the same as that in Fig. 8sad.
In Fig. 9sbd, the main peak indicates the calculated coherent
frequency of thee+ beam in the HERA experiment. The
small peak in the lower right corner is the coherent frequency
of thep beam. Figure 10 plots the calculated coherent beam-
beam tune shift of thee+ beam as a function of initial kickx0
for the case of the HERA experiment. It shows that the cal-
culated coherent beam-beam tune shift increases with the
decrease ofx0 and converges asx0 approaches zero. This
amplitude dependence of the coherent frequency is consis-
tent with the beam simulation. Since the coherent frequency
is the frequency of an infinitesimal oscillation, the conver-
gence of the calculated coherent frequency atx0→0 provides
the wanted coherent frequency. As shown in our studyssee
Sec. IVd, the linearized Vlasov equation with the single-
mode approximation is a valid approach for the coherent
beam oscillation with symmetrical beam-beam interactions
but not with unsymmetrical beam-beam interactions.
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