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When polarized particles are accelerated in a synchrotron, the spin precession can be periodically driven by
Fourier components of the electromagnetic fields through which the particles travel. This leads to resonant
perturbations when the spin-precession frequency is close to a linear combination of the orbital frequencies.
When such resonance conditions are crossed, partial depolarization or spin flip can occur. The amount of
polarization that survives after resonance crossing is a function of the resonance strength and the crossing
speed. This function is commonly called the Froissart-Stora formula. It is very useful for predicting the amount
of polarization after an acceleration cycle of a synchrotron or for computing the required speed of the accel-
eration cycle to maintain a required amount of polarization. However, the resonance strength could, in general,
only be computed for first-order resonances and for synchrotron sidebands. When Siberian Snakes adjust the
spin tune to b%, as is required for high-energy accelerators, first-order resonances do not appear and higher-
order resonances become dominant. Here we will introduce the strength of a higher-order spin-orbit resonance,
and also present an efficient method of computing it. Several tracking examples will show that the so computed
resonance strength can indeed be used in the Froissart-Stora formula. HERA-p is used for these examples
which demonstrate that our results are very relevant for existing accelerators.
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I. INTRODUCTION back v, precessions. These vectors are therefore periodic in

: . i the azimuth and
In this paper we want to introduce the strength of higher-

order spin orbit resonances which we want to use in the d._ - - -

Froissart-Stora formula to compute how much polarization is ae™ (€0 = vofig) X m, 2)
lost when a resonance is crossed. For first-order resonances

the definition and computation of the resonance strength is d- - R

relatively simple[1,2], for higher-order resonances it is much agl =(Qq = vohp) X I. (3

more elaborate. We will need to use the invariant spin field,
also called then—_aX|s[3], _the amplitude dependent spin tune, éo(é’) is a solution of Eq(1), then for any other solution
and the periodic coordinate system over phase space that i , . ) =
determines the spin tun@]. These concepts are therefore > the following product is an invariant of motiof: Sy(6). If
quickly reviewed in this introduction. the precession vecta)y is no longer 2r periodic but is

While a polarized particle moves along the azimuthperturbed slowly, i.e.ﬁ():ﬁo(e,r) with 7=¢6, then the so-

6=2ml/L of the storage rings closed orbit with path length | ;0 S(6) with the same initial conditions aS, will be
and total length_, its semiclassical spin precesses according N o
to the Thomas—Bargmann-Michel-Teleg@#BMT) equation ~ Slowly perturbed fron&(6), but for any other solutio§* the

[5.6] productSs-S5(6) will still be invariant.

A particular invariant iss;=S(6) -nip(#). For Q(6,7) we
can find a coordinate system for fixed which contains
no(8, 7). However, whenr slowly changesiiy(6, €6) is not a
solution of Eq.(1), so thats; will no longer be invariant. It

The spin direction that is periodic after one turn is referred tg°@n: however, be shown that it is an adiabatic invafiarg,

as ny(6). If the spin has any other direction, it precesses"he" it hardly changes Wf:enlparr?mete(;s of the system, like
aroundn,. The numbers of precessions that occur during ondhe storage energy, are slowly changed.

turn is referred to as the closed orbit spin tugeTo describe Thls. concept of an invariant spin d|rec_t|0n, 2 spin tune, a
the precession, a right handed system of orthogonal unit ve eriodic system of unit vectors and an adiabatic invariant can

P . e extended to particles that do not move on the closed orbit
tors(m, I, np) is introduced for any azimuth. The two Vectors s+ gscillate around this orbit and whose motion is thus

1() and m(6) precess around, according to the T-BMT described by phase space trajector#&g). The T-BMT
equation so that they would have rotategdtimes after one equation for spin motion then depends on the phase space
turn. However, a precession is added that continuously windgajectory

d- - -
—S= X S,
des Qo(0) X S 1)
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d- - _ - This is a very important property since a beam in such a
d—gS:Q(z(e),e) X S. (4 polarization state will have the average polarizatieg,
) R =(n) after acceleration, which can be large even if this aver-
If the vector field f(Z,6) with |f|=1 describes the spin age polarization is small at intermediate energies.
distribution in a particle beam, it is called a spin field and The paper is organized as follows: The single resonance

satisfies the T-BMT equation model (SRM) is introduced and motivated. It is explained
when it is a good approximation of spin motion and why the
if(i(a),e) = d(z’(e),a) % f. (5 Fourier coefficit_ants _of spin perturbations along a traje_ctory
de can only describe first order resonances correctly. Higher-

order resonance strength can thus not be derived in this way.
Then the invariant spin field, the coordinate system
[U;,0y, 1], and the amplitude dependent spin tunare de-
Az 0+ 2m) =1(Z,0). (6) rived for this model. Using these quantities, the equations of
) ) R ) motion for the SRM are cast in a from in which the spin tune
Particles that travel along the trajectaryf) have spins j mp at the resonance condition is explicitly contained and is
that precess arount(z(6) , #). Describing this precession and shown to agree with the resonance strength used in the
even the number of precessions in one turn startiyfgl is  Froissart-Stora formula. Subsequently the full equation of
not trivial, since the particle has a new phase space poirdpin motion(without single resonance approximatjos cast
Z(6y+2m) after one turn. An orthogonal set of unit vectors into a similar form usindj, G, i] and ». The similarity of
(Uy,Up,N) has to be defined for each phase space point anghis form to the corresponding equation for the SRM shows
for each azimuth to determine spin precession angles. that it should be possible to use the spin tune jump at higher-
If the unit vectorsu; and U, would satisfy the T-BMT  order resonances as resonance strength in the Froissart-Stora
equation along each phase space trajectory startidggasid  formula. This assertion is then tested successfully in three
ending atz; after one turn, these vectors would precessdifferent scenarios.
aroundn and after one turmi(Z, 6,+27) would have some
angle 27v(Z,) with respect to the initial unit vecto&(z;, 6,)
at the same phase space point. Il. SINGLE RESONANCE MODEL (SRM)
The rotation angle #v is not well defined, since the di- A. Fourier expansion of spin perturbations
rection of thet; before and after the turn is only required to o L. .
be perpendicular tdi, but has a free angular orientation in 1 h€ guantities), v, uy, U, andJs will be computed for an -
the orthogonal plane. This free orientation for each phasémalytlcally solvable model and the adiabatic invariance will

space point caunder certain general conditiofig,10,11) be illustrated by letting a parameter of this model change.
be chosen to make the number of rotatiorisdependent of Since this model leads to the Froissart-Stora formula, a com-

. . =~ parison of its equations with the equations of general spin
the qrbltal Phase varl_able@. !t then (?nly depends on the dynamics leads to the introduction of higher-order resonance
amplitudes] of the orbital motion and is therefore called the strengths that can be used in the Froissart-Stora formula.
amplitude dependent spin tumé&J). Note that here and in the The spin precession vector for particles which oscillate
rest of the paper we assume that the orbital motion is intearound the closed orbit can be decomposed into the closed-

grable so that action and angle variableand ® are mean-  orbit contributionﬁo and a pariw due to the particles’ oscil-
ingful. lations, Q(Z, 6)=Qq(6) + &(Z, 6). Using the vectorgm, |, )

To obtain a periodic set of unit vectors, the describedas coordinate system for the closed orbit, we write
precession of the unit vectors is again augmented by continu-

ously winding backr spin precessions during one turn,

A special spin field that is periodic from turn to turn is called
the invariant spin fieldq,

S= Slrﬁ + Szl + Ssﬁo, W= wlrﬁ + 0)2' + (1)3ﬁ0. (8)

d._ _ 2 2 -
agui(z(ﬁ)ﬁ):[ﬂ(Z. 0) = v(IN(Z,6)] X G;. (7)  with the complex notatiors=s, +is, and w=w;+iw,, the
equation of spin motion is
Since spins precess aroundi, the product Jg

=S(6)-1(Z(6),0) is an invariant of motion, i.e., it does not O X S= nﬁisl+ riSer ﬁoiss+ (Q - vgfig) X S (9)
change withd. Again, this is true for any two solution of Eq. dé dé do
(4). When() and therefora depend on a parametesso that . . . . o
f(Z(6), 6, 7(6)) is no longer a solution of Eq(4), it can be and the equation of motion f@is obtained by multiplication
shown that it is still an adiabatic invariafi,8,13, i.e., it  With m+il, and taking into account thag=1-[3?,
hardly changes when system parameters like the storage en- g
ergy change sufficiently slowly. This has strong implications. Y a_i 1 _ae
When a beam is polarized parallel to the invariant spin field 46> (v + w38~ iwV1 - [8. (10)
n(Z,E;) at some initial energyE; and the storage energy is
increased slowly, the beam will be polarized parallel toln a coordinate system that rotates f3y0, this equation be-
n(z,E;) at the final energ¥;. comes
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R S« L TN was not clear whether a Froissart-Stora formula with some
SH=€ 75, d_050='w350"e YoVl -[&%  (12) resonance strengtl, could be applied to crossing such
higher-order resonances. But even if it can be applied, it is

Spin precession on the closed ortit=0) leads to a constant clear that the resonance strength cannot be obtained from a
pin p - Fourier coefficient ofw in Eq. (10). Moreover, in high en-

% d_qe to the righ_t equation. The right equatio_n describe%rgy accelerators, theth order Fourier coefficients ab are
additional precessions due to phase space motion. . not even the dominant contribution to the strength oftta

If the motion in phase space can be tragstormed t0 actions yer resonance. Usually the former cont@ip, whereas the
angle variables, the spin precession veaitr, ®, ) for par-  feed-up contributions from combining lower order har-
ticles which oscillate around the closed orbit is@@eriodic  monics contain(Gy)™, which can be an exceedingly large
function of ® and 6. The Fourier spectrum ofs(J,®,  number.
+Q0, 6) has frequencies=j+]-Q where thej, are integers Only for first-order resonances, whexg ,|j,/=1, there is

46 d bes the t ¢ hrot d betat _Ino feed-up contribution and the Fourier components can gen-
andQ describes the tunes of synchrotron and betatron OSCIérally be used in the Froissart-Stora formula and there are

lations which can be a function df i.e., Q(J). The integer different straightforward ways of computing in that case
contributionsj, are due to the 2 periodicity of w in ¢ and  [1,2].
give rise to so-called imperfection resonances. The contribu-

tionsf-Q of integer multiples of the orbit tunes are due to the B. Solutions for the SRM

27 periodicity of @ in the orbital phasab, and give rise to . . :
so-called intrinsic resonancés]. When one of the Fourier The analytlcally. solvable model advertised above is usu-
frequencies is nearly in resonance with one component of ally called the single resonance modéSRM). It has
&% is nearly constant. Then it can be a good approxima{2o=#oflo and anw which only has one Fourier contribution,
tion to drop all other Fourier components since their influ-g=e, (i cosb+1 sin®), with ®=j,0+]-d+d, Note that
ence on spin motion can average to zero so that they are e modulus of its higher-order Fourier coefficient is denoted
effect less dominant. This is referred to as the single resoas ¢, since there are no lower order coefficients that could
nance approximation. Note that this approximation can onlycontribute to the resonance strength by a feed-up process.
be good when the domains of influence of individual reso-Any dependence on the orbital actions can be expressed by
nances are well separated. This model corresponds to the 3

rotating field approximation often used to discuss spin reso-"“ This & is perpendicular tdi, and tilts spins away from.

nance in solid state physi¢43]. Note also that for a con- . - e
ventional flat ring, the first-order resonances due to verticapnc€ (d/d6)®=Q, the frequency isk=jo+j-Q and the

motion dominate and therefore the Fourier components witifauation of motion(10) becomes
frequenciesc=jo+Q, are often of most interest. d A
The amplitude of a single Fourier contribution is some- —3=ipS—ie P01 -3 (12
times called the resonance strength. This is misleading since dg
generally it cannot be used in the Froissart-Stora formul
The fact that the Fourier component is not the resonan
strength manifests itself clearly in models wherés linear
in Z and has only first-order Fourier components, i.e., those

2¥Vhen the coordinates in tt[eﬁ,ﬂ No] System are arranged in
column vectorg19,2Q, one obtains

- - : « COSD
with =2_,/j,/=1. Such aw can lead to depolarization or spin d d- - e € )
flip at first-order resonances but also at higher-order reso- d_gq)‘ K, @S‘Q@) XS Q=|esind ). (13
nanceg14-17 which are created by some feed-up process vy

from the first order resonances. The strength of these reso- . ) R i i .

nances that might be used in the Froissart-Stora formula cafitial coordinatesz are taken into final coordinates after
clearly not be determined by the higher-order Fourier coefone turn according to the relatiof;=®;+27Q whence
ficients, i.e., those wheg>_ [j,| > 1, since those are zero. In ®;=®;+2m«. Now the orthogonal matrix(€, ¢) is intro-
fact all examples of higher-order resonances that will beduced to describe a rotation around a unit ved@dsy an

shown in this paper were computed for such a linear modehngle . Transforming the spin components®nto a rotat-

of HERA-p with Siberian Snakef8]. ing f ing the relatiofo=T(F. —P)-S btains th
A higher-order resonance can thus be created either by g?ng;?gﬁ :i]lﬂgtior? :ﬁ Eslr;ior?Rmc;ti(ch]?; )-S one obtains the
E

higher-order Fourier component or by feed-up of lower orde
components, or by a combination of both. Such a feed-up €
can occur due to the inherent noncommutativity of three di- d- - > - [ F _

mensional rotations or equivalently due to the nonlinearity of EgSR' QrX S Qr=|0 | d=rw-«. (14
the mapping from the unit sphere to the complex plane 6

which gives rise to the square root term in the equation of S - )
motion (10) Obta|n|ng a resonance Stren@b that can be If a Spln f|e|d IS Or|ented pal’a||e| tﬂR n th|S Iram_?, it dOES
used to describe depolarization therefore has to include atiot change from turn to turn. Thereforg=Qg/|Qgl is an
these feed-up effects. Before the following investigations itinvariant spin field. In the original frame, thisaxis is
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€, cosd P“'lez
A(®) =sgnd)~| e.sin® |, A=Vf+e, (15 06 |
A 5 04}
0.2 |

where the “sign factor” sqi®) has been chosen so that on the
closed orbit (¢,=0) the n-axis A(P) coincides with
fp=(0,0,1T. Note that fore, # 0 thefi-axis is discontinuous  (e,)1

in 6 at 6=0. As requiredn is both a solution of the T-BMT 08 /
equation (13), (d/d@)i=sgn(8)(ke,/A)(-sind,cosd,0)T 0I5

- 0.4
= xn and, as with any function of phase space, a o2 /

2m-periodic function of the angle variablds and of 6. o5 od 06 08
. . . B i K . R Vo
This analytically solvable model can also be used to illus-
trate the construction of the amplitude-dependent spin tune FIG. 1. (Color onling Py, and the amplitude-dependent spin
»(J), which by definition does not depend on the orbitaltune (e, for the SRM in the vicinity ofvo=«, for «=0.5 ande,
phase. Once an-axis has been obtained, one can transforni0-1-

the components oB into a coordinate systerfﬁl,ﬁz,ﬁ].

0.2 04 « 06 0.8 2

With the simple choice v=Ssgno)A + k. (19
—sind The corresponding uniformly rotating basis vectéysind(,
= Mo X A become
Uy(P) = ———= =sgnd)| cosd |, (16) R R R R
Flo X i 0 U, =U; cos® -T,sin®, U, =T, cos® +T, sind.
(20
. 1 ocos® On the closed orbit, the coordinate system now reduces to
Ty(P)=—| Ssind |, (17 N
A - €, ﬁ—> ﬁo, ljl—>Sgr‘(5)rﬁ, G2—>Sgr(5)|, V— 1.
- - (22
T, is equal toli, XA and the basis vectors are clearlyr 2 , o
Lo .q. L2 . L yr. This model leads to the average polarization on the torus
periodic in® and in # as required. Sinc& and the basis with (3)
= = . . €,.\J),
vectorsu; andu, comprise an orthogonal coordinate system
for all 6, and sincen precesses around), one has . |8] € \?
== =z . . Piim = [(A(2))| = o, 2 1- , (22
(d/d6#)t,=(Q-7Nn) X T, with the rotation raté& which can be V& + € V- K
computed by the relation
8= vy~ K, (23

- d- - =\ ~

Ve (Eguz_ Qax uz) " where it is clear that the distance of the amplitude-dependent

spin tune v from the resonance, which is equivalent to

sgrn o)A, determines the drop iRj,. In Fig. 1 (top) Pj, is

] ) = plotted versusy,. It drops to O atyy=« since according to

=sgn(d)| —«ksin® +pgsin® | -Ty, Eq. (15) the cone of vectorfi(®)|® [0, 2]} opens up for

small values of|§|. This strong reduction oP;, occurs

when v approachess, i.e., close to spin-orbit resonances.
- According to Eqg.(19) v is never exactly equal ta, but it
=SgrdA. (18 jumps by Z, across the resonance condition x, which is

In general, the so found rotation could dependdoand  shown in Fig. 1(bottom). This jump of the spin tune could in

an additional rotation ciﬁl andﬁz aroundr can now be used Principle be transformed away since the sign of the spin tune

~ A . depends on the sign of the rotation directibrHere the sign
to makevr independent of the angle variabk®sand to define - ) L
the amplitude-dependent spin tune. Here, howewas, al- of il in Eq. (15) has been fixed by choosing-n>0, and the

] o ) tune jump is therefore essential.

ready independent ¢b and it is therefore an amplitude de-  Now we want to investigate the crossing of resonances for
pendent spin tune, ane.=|a(2)| characterizes the orbital e SRM. and describe spin motion when the parametr
amplitude. The freedom of rotatingy and 0, arou'ndﬁ for  the SRM is being slowly changed, i.€d/d6)d=. In par-
each phase space point can be used to obtainvehich  icylar this allows the study of an acceleration whegge
reduces tovy on the closed orbite,=0). We letT,; andU, crosses the frequency. It is useful to describe the spin
rotate aroundi by —®, to give the amplitude-dependent spin motion in the coordinate systefd,,U,,n]. In order to take
tune account of the change of the basis vectors with the parameter

- k cosd + vy cosP

- €,
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8, we use that for a vector withi;|=1, d,U; is perpendicular general system in Eq31) to show how higher-order reso-
to U; so that it can be written as a rotation. Exceptdat0  nance strength can be introduced and how they can be com-

wheren is discontinuous inS we have puted.
dsN=7nXn, ds0=7nXUG. (24
The rotation vector is then given by Ill. FROISSART-STORA FORMULA
7= 20y X daly + Uy X dlp + A X dgh). (25) For the analytically solvable SRM the change of the adia-

. . . ) ) batic invariantlg= S-f can be computed explicitly. When the
Sincer,=Gy in aflat ring, the acceleration process in the yesign-orbit spin tune changes during the acceleration pro-

SRM is usually described by a slowly changing=«+4  ¢ess resonances will be encountered, whejemps from
with 6=a6 while assuming thak ande, do not change with 4 ¢ {5 = ¢,_while the spin is under the strong influence of

energy. This leads to the following expressions for the varia;, approximately resonant Fourier contribution af It is

tion of the basis vectors and foy. then found that for some speeds of the spin tune change,
€ parametrized bya, a reduction of polarization can occur
sy = sgr(é)A—"zﬁ cos®, (26)  which is due to a generally irreversible reductionJgfather
than a temporary decrease Bf,,, and which does not re-
cover after the energy has increased and the resonance is
agﬁzzsgr(é)e—;ﬁ sin®, (27)  crossed. _ . o .

A To describe the reduction of polarization during resonance
crossing, Eq(32) can be used but the usual approach is to
insert a changing closed orbit spin tupginto the equation
of motion (13). The method of solution depends on the form
of the functionuy(6) [1,7,21,22. If the closed-orbit spin tune

e 1 - € - changes likevy=k+a#, the equation of spin motion can be
7= Sgr(b‘)A—ZE(— T, — Uy cosd + Uy sind) = — sgr{&)A—"szz. solved in terms of confluent hypergeometric functions. The
equations for arbitrary initial conditions are quite compli-
(290 cated but when al— - a vertical spinsy(—)=1 is chosen
as the initial condition then the vertical component at
#— +o is given by the well known and regularly used
Froissart-Stora formul§21],

N €=
dsh=~— sgr(b‘)Pul, (28)

Again 6=0 has been excluded.
In a general system where some paramétexr changed,

the equations of motion for the components $fU;s;

+U,S,+nJg are described as Sy(o0) = 28720 _ 1 (33)
q s a(n3S; — 7dg) — v(i 0)s, In the case of a strong perturbatiep or when the accelera-
4 — > tion is very slow, spins follow the change @i(®). The
= _ . 30
de jz a(mds= 758 + (3. 9)s; (30 A-axis in Eq. (150 has a discontinuity from A_
S a(7251 = MmS) =—¢,(cos®,sin®,0)" just below resonance tai,=-n_

just above resonance. Spins do not follow this instantaneous

change of sign, but they then follown-adiabatically after

the resonance has been crossed. Therefgre) is close to

-1 for a slow change ofy. When the perturbation is weak or

crossed very quickly, then spin motion is hardly affected and

S3() is close to 1 in Eq(33). In intermediate case$s| is

reduced. In the first case the polarization is preserved but the

spins are reversed. In the second case the polarization is

d €. preserved without reversal. In the third case the polarization

d—§: i[sgr(oA + «]s+ Sgr(ﬁ)aA—';e'("Wpo)Js. (32)  is no longer vertical but precesses around the vertical so that
0 the time averaged polarization is reduced.

Note again that the spin tune $@A +« in this equation

jumps by Z, at vy=«. The exclusion 06=0 is not problem-

atic sincen andt, change sign. The spin motion is therefore

In complex notation withS=s;+is,, n=7,+i7n,, and |Jg
=v1-|37, this gives

d N
af: i[v(J,0) — ansls+ianls. (31

For the SRM, Egs. (299 and (200 lead to
7=-sgn(d)i(e /A2 =0, and

IV. FROISSART-STORA FORMULA FOR HIGHER-ORDER

described by Eq(32) for all <0 and arrives ab=0 with RESONANCES

Js- ands.. At 6=0 the coordinates are changedJig=-Js As mentioned above, the Froissart-Stora formula in Eq.
and $=€2®3_. Then the motion continues according to Eq.(33) is regularly used to describe the reduction of polariza-
(32) for 6>0. tion due to vertical betatron motion during resonance cross-

We will now describe how this equation for the SRM ing in accelerators where the closed-orbit spin tunge
leads to the Froissart-Stora formula. After that, we will usechanges with energy. These descriptions were normally re-
the similarity of the SRM in Eq(32) and the equation for a stricted to flat rings andy=Gy.
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. nantly. Presumably, two resonant effects are in constructive
interference at these energies. Nonetheless, polarization can
08 ] be reduced when these resonance positions are crossed dur-
p\ \ v(J,) ing acceleration since a sudden increasBgf=(n) is due to
06 L Ny A » . » {  asudden change @i(Z) which might be too sudden for the
04 I \’ adiabatic invariance als=S-A(2) to be maintained. In addi-
\[\j tion one can see in Fig. 2 that the spin turid,) has discon-
0.2 Piim ] tinuities at some of the resonances.
When spin motion in a ring is approximated by a single
0 oo s e s 8155 (G0 resonance withe=j,+Q, and then Siberian Snakes are in-

cluded in the ring, it has often been noted that only odd-order

FIG. 2. (Color onling Py, (dark blug and »(J,) (light green ~ f€sonances witl=jo+],Qy appear, i.e.y is odd. However,
for particles with a 4.2 vertical amplitude of 7& mmmrad in it can be shown by nonlinear normal form theory that this is
HERA-p with andQ,=0.289. Three resonance lines crosand at ~ @ feature of any ring with midplane symmetric spin-orbit
each crossing;;,, exhibits a large variation and there are jumps in motion and IS not pe(;ullar to rings with Siberian Snake.

v (bottom: »=5Qy~1; middle: »=2-5Q; and topr=2Q). For rings without midplane symmetry, resonances of even
order can appear also. HERA-p has nonflat regions, and rings

Since Siberian Snakg@3-27 are unavoidable for high- with closed-orbit distortions in general do not have midplane
energy polarized beam acceleration, the design-orbit spifymmetric motion. Then, resonances with eygrean also
tune is3 in most cases which will be considered here and ifaPPear and be destructive. In fact, the resonances with
does not change during acceleration. Since the orbital tunds=2 are among the most destructive spin-orbit resonances in
are never chosen to bd, first-order resonances with HERA-p after Siberian Snakes are included. For the IUCF
»=jo=Qy are avoided and higher-order resonances can pe&ooler ring with a partial snake running, second-order reso-
come dominant. But since the strength of such resonancdi@nces have been observed experimen(aigy. o
cannot be obtained as a Fourier coefficientug(6), §), a When a parameter is being varied, the spin motion is
method for obtaining the strength of the higher-order resodescribed in the coordinate systém, tp, ] by Eq.(31). In

nances is required in order to use the Froissart-Stora formuiif€ following we will demonstrate that this equation has
when Siberian Snakes are in use. some characteristics of the equation of spin moti8®) of

HERA-p will require at least four Siberian Snakes the SRM. If the spin tune hasadi§continuity fronv_to v,
[7,28-3Q. The snake angleg; of these four snakes can be 8l Some energy, then we define the center frequency
chosen quite arbitrarily, except for the restrictidp=¢,  «*=2(v-*v.). To take the jump of into account, we intro-
~ @3+ @~ ¢1=m/2. To illustrate crossing higher-order reso- duceA*=|v=«*|, which does not have a discontinuity and
nances a snake scheme for HERA-p was chosen that has folff express the spin tune as sgrv—«*)A* + k*.

Siberian Snakes with snake anglesm#, 0, /4, and 0 in Since7 is related to the basis vectors by Eg5), it is a
the south, east, north, and west straight section, respectivelgar-periodic function of® and 6. The jump ofv acrossk*

In Fig. 2 the amplitude-dependent spin tuiggeern and  can be produced by a Fourier componentydf there is a set
Piim (blue) are plotted versus the reference momentum for g integers so thaj-Q+j,=«*. This is the case in all in-

vertical amplitude of 7& mmmrad. Many higher-order giances of spin tune jumps presented here. Accordingly, one
resonances can be observed. The curvesPigr and »(J)  can analyze what happens when the Fourier component
were computed with the nonperturbative algorittopom 11 7, * €« %0 of 5 dominates the motion & For that analy-

[31] using the spin-orbit dynamics prograsrRINT [20,32. sis, all other Fourier components gfare ignored. Whew is

The n—axis and alsd?;,, are in general different at different small, spins which are initially almost parallel to theaxis
azimuthé,. For this figure and for all following plots d?;,,,  remain close ta so thatS is small andx 73S can therefore be
the n-axis was observed at the interaction point of the ZEUSignored. This leads to

experiment in the South of HERA.

While the design-orbit spin tune remains ét the iézi[sgdv—x*)/\* + k* 15+ lan.e< 1 (g2,
amplitude-dependent spin tunéJ,) changes with energy  d¢ "
and is in resonance with(g, at the second ling¢red) and (34)

with 5Q,—1 at the bottom line at several energies. In both

cases a clear change Bf,, can be observed. The reduction Due to its similarity with Eq(32), this equation will produce

of Pj,,, at some resonances is similar to the behavior for théhe observed spin tune jump bye2=|v,—v_| if 7,
single resonance approximation shown in EB2) where =€«/A?=€./(v—«*)?in the vicinity of the energy where
Pim is reduced at those resonances. The drofPgf at  the jump occurs. Otherwise E¢34) would not reproduce
811.2 GeVt is due to the 2-8, resonance, which lies a this jump. One is then left with a relation which has exactly
little below the ), line. At all other energies where this the structure of the equation of motig82) for the SRM.
resonance is crossed, no influenceRyy, can be observed Therefore the Froissart-Stora formula can be applied to esti-
since the corresponding fifth-order resonance strength is verypate how much polarization is lost when a polarized beam is
small. At some second-order resonandgs, increases reso- accelerated through the energy region where the spin tune
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jumps by Z,. In the following we will check whether, for the jump is located at the frequeneyitself, and the rate of
some higher-order resonances in HERA-p, all assumptionshange ofr with changing energy is used to determine the
leading to the approximatio(84) are satisfied to the extent parametera for Eq. (33). In the SRM this parameter is
that the Froissart-Stora formula describes the reduction dofvo—«)/ 6 wherey, is the frequency of spin rotations when
polarization well. Checking whether the Froissart-Stora for-the resonance strength vanishes. Here the corresponding fre-
mula can be used to determine depolarization when a higheguency, which would be observed if no perturbatipmvere
order resonance is crossed was largely inspired by a confresent, is not directly computed. But it can be approxi-
ment of A. Lehrach during a talk by M. Vog84]. mately inferred from the slopé&,v at some distance from the
The basis vectorgi, U;, and U, and the amplitude- Fésonance. . <RM
dependent spin tune can in general only be computed by ~ According to Eq. (22, () is given by Py

Y 5 .
computationally intensive methods. The perturbing function= V1 -[&/(v=x)? in the SRM. To check whether the ob-
7 is then obtained from served drop ofP, indeed shows the characteristics of the

SRM, the width of the resonance dip RE~" was obtained
from the amplitude-dependent spin tune alone and then com-
=75l +ily) = 7+ (= A X Uy, +iA X Gy) pared to the width of the dip in the actug|,, of the system.
L oL This analysis was done for HERA-p’s resonance at approxi-
(7XN) - (-Up+idy) =i(Uy +iUp) - (9), (35  mately 812.4 GeVd and the results are shown in Fig. 3. The
top left plot shows the dependence Bf, and v on the

. . o - reference  momentum for a vertical amplitude of
but the required differentiation is prone to numerical inaccu—q.. mm mrad which. with HERA-p's current one sigma

racies. However, when is computed by perturbative normal gmittance of 4 mm mrad, corresponds to the amplitude of a
form theory using differential algebr@A) [39], the differ- 4 2, vertical emittance. The momentum range is as in Fig. 2.
entiation with respect ta can be performed automatically. The Jow P;,,, shows that many perturbing effects interfere in
After 7 is computed, the Fourier integral over the completethjs region. In units ofr mm mrad, the vertical amplitude of
ring would finally be required in order to compug. the particles in the top left graph is 70, in the middle graphs

If Eq. (31) can be approximated well by a SRM, there is, it js 40 and 60, and in the bottom graphs 80 and 100. The
however, a different and much less cumbersome method fQ{grizontal scale displays the distantp in GeV/c from the
determining the relevant resonance strength and the resonafibmentum at the resonance.

frequency. Observation of the amplitude-dependent spin tune | the four bottom graphs?;,,, and PSRMare plotted for
v(J) allows the determination of all parameters which aredifferent orbital amplitudes, and the different resonance
required to evaluate the Froissart-Stora formula for higherstrengths are obtained from the jumpsi@,). Only informa-

order resonances: The spin tune jumps ley, 2he center of tion about» was used to comput®R™ To allow better
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comparison, a linear change Bf<M with momentum was from the resonance at=2Q,, indicating that other strong
added as a background curve and the height of the dip waserturbations distort the invariant spin field and can interfere
scaled to fit the actuaP,,. The width, however, was not with the resonance harmonic.
changed. The distance between spin tune and resonance hasThus we conclude that the resonance width computed in
been magnified by 10;* = k+10(x—v) in these graphs. The terms of the tune jumpé&. agrees surprisingly well with the
tune jump is symmetric around the resonance lie2Q,, actual drop inPy;,.
showing that a second-order resonance is excited. Since the higher-order resonances analyzed here show the

As shown in Fig. 3(top righ?) the tune jump scales ap- established and characteristic relation between tune jump and
proximately linearly with the orbital action variablg. This  reduction ofPy,, the applicability of the Froissart-Stora for-
is consistent with the crossing of a second-order resonancejula will now be tested.
since a frequency ofQ, can be produced by monomials of  In Fig. 4 (top) Pji, and » are shown for HERA-pPy;, is
VJye" %7 with order larger or equal to 2. This linear scaling reduced at two resonances with=2Q,. The vertical tune
is not exact for two reason@; The jump does not reduce to had been chosen &3,=0.2725 so that these resonances are
0 atJ,=0 but already at some finite amplitude at whield,) crossed already for the small O«’5vertical amplitude of
does not cross the resonance liie. When the amplitude is 2.257 mm mrad. At this small amplitud®,, is reasonably
changed, the momentum at which the resonance occuterge.
changes, and the resonance strength is in general different at The spins of a set of particles were set parallel to the
different energies. Deviations from a linear dependencénvariant spin fieldi(Z) so that all hadls=1 at the momen-
should therefore be expecte®;,, is already very low away tum of 801 GeV£. Thenaxis had been computed by strobo-
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scopic averaging20]. Due to the rather larg®;,,, at that completely reversed on the 0.75 sigma invariant torus. This
energy the initial polarization was approximately 97%. Start-would lead to a net reduction of beam polarization, since the
ing with this spin configuration, the beam was accelerated tepins in the center of the beam are not reversed.
804 GeVk at various rates. The averadgdg)y over the This result on the applicability of Eq33) for the reso-
tracked particles is plotted versus acceleration rate in Fig. #ance strength and obtained from the amplitude dependent
(bottom) together with the prediction of the Froissart-StoraSPin tune is so important for detailed analysis of the accel-
formula. The averagéJyy describes the degree of beam €ration process that it will be checked in another case. In the
polarization which could be recovered due to the adiabatic?ext exa_mple, the same_lattlce is used, the ne was ac_ijusted
invariance ofJg when moving into an energy regime where 0 a realistic value 0Q,=0.289 and a 4‘2 vertical amp_l|-
i(2) is close to parallel to the vertical. tude of 7Gr mm mrad was chosen. At this large ampllt.udez
. the second and fifth-order resonances already shown in Fig.

The resonance strengéi, has been determined fromthe 5 510 ghserved. Particles were then accelerated from
tune jump. The parameter is proportional to the energy 8122 to 812.6 Gew with different acceleration rates.
increase per turme and is determined from the tune slope Note that the initial condition has a vertical polarization of
Av/AE in Fig. 4 (top right by the relationa=(1/2m)  only 60%. Nevertheless, this state of polarization corre-
X (Av/AE)dg. sponds to a completely polarized beam, and 100% polariza-

The polarization obtained by accelerating particlestion can potentially be recovered by changing the energy
through the second-order resonance agrees remarkably weltliabatically into a region whergé(2) is tightly bundled.
with the Froissart-Stora formula. For the slow acceleration ofThese studies emphasize again the importance of choosing
about 50 keV per turn in HERA-p, the polarization would bei(Z) as the initial spin direction. For example, if the spins
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FIG. 6. (Color onling Left: the current orbit tune&Q,=0.294,Q,=0.298 or (Q,=0.298,Q,=0.294 (red) and the new orbit tunes for
polarized proton operatiof@Q,=0.291,Q,=0.289 or (Q,=0.2675,Q,=0.27]) (dark blug in the x-y resonance diagram. All resonances up
to order 11 are shown. Difference resonances are indicated in green. Right: The current verticqaéthiresl the new vertical tungslark
blue) in the spin-orbit resonance diagram. The odd spin-orbit resondhlzek) and the even spin-orbit resonangkght greer) are shown
up to order 10 in the vicinity of closed-orbit spin tumg=1/2. For HERA-p, the resonances of second oIt light green and of fifth
order(fat black are most destructive.

were initially polarized vertically, they would rotate around acceleration, the beam polarization is usually reduced. It is
A(Z) and that would lead to a fluctuating polarization, eventherefore important to find suitable orbital tunes so that low-
without a resonance and it would not be possible to establisbrder spin-orbit resonances are far away from the operating
a Froissart-Stora formula for higher-order resonances. point. In particular, when Siberian Snakes are used to main-
As shown in Fig. 5Py is as low as 0.11 in the center of tain a closed orbit spin tune df, it is important that these
the displayed region. Obviously other strong effects beyondnakes are optimized so that higher-order resonances do not
the second-order resonance are present and overlap with a4 to large deviations of the amplitude dependent spin tune
The bottom figure showsJg)y after the acceleration. The fqm this value. Such optimal choices of snakes are dis-
fact that(Jgy is again described very well by the Froissart- oyssed in Ref[30]. The dominant effects are due to radial
Stora formula(33) is an impressive confirmation of the con- fields on vertical betatron trajectories. Thus Fig(rijht)
jecture. _ _ .. shows the resonance linesj,+jQ, up to order 10 in the
The two data points at largest acceleration speed in Fig. %'Qy plane. If the spin tune on the closed orbit is fixed to

(bottom) are lower than predicted by the Froissart-Stora for-v :% by Siberian Snakes the orbital tune can be chosen to

mula. A possible explanation is the following: at very large _° . :
8 . . void resonance lines. However, the dynamic aperture of
acceleration speeds the resonance region is crossed SO y P

quickly that the spin motion is hardly disturbed. But when proton motion should not be reduced and the tunes have to

the axisn_ before the resonance region is not parallel to thebe far away from low order orbital resonances. Figutief)

axis fi, after the resonance region, then the spins which iniSNOWs theQ,-Qy tune diagram with resonance lines up to

tially had Js=1 will approximately havels=nA_-n, after the order 11. The operating point has to stay away from these
resonance region is crossed, which is smaller than thEésonance lines.

Froissart-Stora prediction, which approaches 1 for large ac- The established tunes of HERA-p operatiQq=0.294,
celeration Speeds' Qy=0298 Oer=0.298,Qy=0.294 (red pOInts would be

Here the parameter was the slowly changing momen- unfortunate choices due to their closeness to the resonance
tum. This generalized way of using the Froissart-Stora for+=jp+5Q,. For HERA-p with Siberian Snakes, several
mula can, however, also be used when other system pararaimulations have shown that the resonances of second order
eters change. An example can be found in R86], where and of fifth order are most destructive. This is supported by
the particle’'s phase space amplitude is changed artificiallfFig. 2. Therefore two new tundblue point$ are suggested
slowly in order to compute the invariant spin field at variouswhich have an optimal distance from low-order spin-orbit
orbital amplitudes. In Ref[10] an example is displayed resonances. It has been tested experimentally that HERA-p
where the Froissart-Stora formula is successfully applied to @8ould operate at these tunes.
resonance which is encountered because of a slow variation

of Qy.
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