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When polarized particles are accelerated in a synchrotron, the spin precession can be periodically driven by
Fourier components of the electromagnetic fields through which the particles travel. This leads to resonant
perturbations when the spin-precession frequency is close to a linear combination of the orbital frequencies.
When such resonance conditions are crossed, partial depolarization or spin flip can occur. The amount of
polarization that survives after resonance crossing is a function of the resonance strength and the crossing
speed. This function is commonly called the Froissart-Stora formula. It is very useful for predicting the amount
of polarization after an acceleration cycle of a synchrotron or for computing the required speed of the accel-
eration cycle to maintain a required amount of polarization. However, the resonance strength could, in general,
only be computed for first-order resonances and for synchrotron sidebands. When Siberian Snakes adjust the
spin tune to be1

2, as is required for high-energy accelerators, first-order resonances do not appear and higher-
order resonances become dominant. Here we will introduce the strength of a higher-order spin-orbit resonance,
and also present an efficient method of computing it. Several tracking examples will show that the so computed
resonance strength can indeed be used in the Froissart-Stora formula. HERA-p is used for these examples
which demonstrate that our results are very relevant for existing accelerators.
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I. INTRODUCTION

In this paper we want to introduce the strength of higher-
order spin orbit resonances which we want to use in the
Froissart-Stora formula to compute how much polarization is
lost when a resonance is crossed. For first-order resonances
the definition and computation of the resonance strength is
relatively simple[1,2], for higher-order resonances it is much
more elaborate. We will need to use the invariant spin field,
also called thenW–axis[3], the amplitude dependent spin tune,
and the periodic coordinate system over phase space that
determines the spin tune[4]. These concepts are therefore
quickly reviewed in this introduction.

While a polarized particle moves along the azimuth
u=2pl /L of the storage ring’s closed orbit with path lengthl
and total lengthL, its semiclassical spin precesses according
to the Thomas–Bargmann-Michel-Telegdi(T-BMT) equation
[5,6]

d

du
SW = VW 0sud 3 SW . s1d

The spin direction that is periodic after one turn is referred to
as nW0sud. If the spin has any other direction, it precesses
aroundnW0. The numbers of precessions that occur during one
turn is referred to as the closed orbit spin tunen0. To describe
the precession, a right handed system of orthogonal unit vec-

tors smW , lW,nW0d is introduced for any azimuth. The two vectors

lWsud and mW sud precess aroundnW0 according to the T-BMT
equation so that they would have rotatedn0 times after one
turn. However, a precession is added that continuously winds

backn0 precessions. These vectors are therefore periodic in
the azimuth and

d

du
mW = sVW 0 − n0nW0d 3 mW , s2d

d

du
lW = sVW 0 − n0nW0d 3 lW. s3d

If SW0sud is a solution of Eq.(1), then for any other solution

SW the following product is an invariant of motion:SW ·SW0sud. If

the precession vectorVW 0 is no longer 2p periodic but is

perturbed slowly, i.e.,VW 0
e =VW 0su ,td with t=eu, then the so-

lution SW0
esud with the same initial conditions asSW0 will be

slowly perturbed fromSW0sud, but for any other solutionSWe the

productSWe ·SW0
esud will still be invariant.

A particular invariant iss3=SWsud ·nW0sud. For VW su ,td we
can find a coordinate system for fixedt which contains
nW0su ,td. However, whent slowly changes,nW0su ,eud is not a
solution of Eq.(1), so thats3 will no longer be invariant. It
can, however, be shown that it is an adiabatic invariant[7–9],
i.e., it hardly changes when parameters of the system, like
the storage energy, are slowly changed.

This concept of an invariant spin direction, a spin tune, a
periodic system of unit vectors and an adiabatic invariant can
be extended to particles that do not move on the closed orbit
but oscillate around this orbit and whose motion is thus
described by phase space trajectorieszWsud. The T-BMT
equation for spin motion then depends on the phase space
trajectory
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d

du
SW = VW „zWsud,u… 3 SW . s4d

If the vector field fWszW ,ud with ufWu=1 describes the spin
distribution in a particle beam, it is called a spin field and
satisfies the T-BMT equation

d

du
fW„zWsud,u… = VW „zWsud,u… 3 fW . s5d

A special spin field that is periodic from turn to turn is called
the invariant spin fieldnW,

nWszW,u + 2pd = nWszW,ud. s6d

Particles that travel along the trajectoryzWsud have spins
that precess aroundnW(zWsud ,u). Describing this precession and
even the number of precessions in one turn starting atzWsu0d is
not trivial, since the particle has a new phase space point
zWsu0+2pd after one turn. An orthogonal set of unit vectors
suW1,uW2,nWd has to be defined for each phase space point and
for each azimuth to determine spin precession angles.

If the unit vectorsuW1 and uW2 would satisfy the T-BMT
equation along each phase space trajectory starting atzWi and
ending at zW f after one turn, these vectors would precess
aroundnW and after one turnuW iszW f ,u0+2pd would have some
angle 2pñszW0d with respect to the initial unit vectorsuW iszW f ,u0d
at the same phase space point.

The rotation angle 2pñ is not well defined, since the di-
rection of theuW i before and after the turn is only required to
be perpendicular tonW, but has a free angular orientation in
the orthogonal plane. This free orientation for each phase
space point can(under certain general conditions[7,10,11])
be chosen to make the number of rotationsn independent of

the orbital phase variablesFW . It then only depends on the

amplitudesJW of the orbital motion and is therefore called the

amplitude dependent spin tunensJWd. Note that here and in the
rest of the paper we assume that the orbital motion is inte-

grable so that action and angle variablesJW andFW are mean-
ingful.

To obtain a periodic set of unit vectors, the described
precession of the unit vectors is again augmented by continu-
ously winding backn spin precessions during one turn,

d

du
uW i„zWsud,u… = fVW szW,ud − nsJWdnWszW,udg 3 uW i . s7d

Since spins precess aroundnW, the product JS

=SWsud ·nW(zWsud ,u) is an invariant of motion, i.e., it does not
change withu. Again, this is true for any two solution of Eq.

(4). WhenVW and thereforenW depend on a parametert so that
nW(zWsud ,u ,tsud) is no longer a solution of Eq.(4), it can be
shown that it is still an adiabatic invariant[7,8,12], i.e., it
hardly changes when system parameters like the storage en-
ergy change sufficiently slowly. This has strong implications.
When a beam is polarized parallel to the invariant spin field
nWszW ,Eid at some initial energyEi and the storage energy is
increased slowly, the beam will be polarized parallel to
nWszW ,Efd at the final energyEf.

This is a very important property since a beam in such a
polarization state will have the average polarizationPlim
=knWl after acceleration, which can be large even if this aver-
age polarization is small at intermediate energies.

The paper is organized as follows: The single resonance
model (SRM) is introduced and motivated. It is explained
when it is a good approximation of spin motion and why the
Fourier coefficients of spin perturbations along a trajectory
can only describe first order resonances correctly. Higher-
order resonance strength can thus not be derived in this way.
Then the invariant spin field, the coordinate system
fuW1,uW2,nWg, and the amplitude dependent spin tunen are de-
rived for this model. Using these quantities, the equations of
motion for the SRM are cast in a from in which the spin tune
jump at the resonance condition is explicitly contained and is
shown to agree with the resonance strength used in the
Froissart-Stora formula. Subsequently the full equation of
spin motion(without single resonance approximation) is cast
into a similar form usingfuW1,uW2,nWg andn. The similarity of
this form to the corresponding equation for the SRM shows
that it should be possible to use the spin tune jump at higher-
order resonances as resonance strength in the Froissart-Stora
formula. This assertion is then tested successfully in three
different scenarios.

II. SINGLE RESONANCE MODEL (SRM)

A. Fourier expansion of spin perturbations

The quantitiesnW, n, uW1, uW2, andJS will be computed for an
analytically solvable model and the adiabatic invariance will
be illustrated by letting a parameter of this model change.
Since this model leads to the Froissart-Stora formula, a com-
parison of its equations with the equations of general spin
dynamics leads to the introduction of higher-order resonance
strengths that can be used in the Froissart-Stora formula.

The spin precession vector for particles which oscillate
around the closed orbit can be decomposed into the closed-

orbit contributionVW 0 and a partvW due to the particles’ oscil-

lations,VW szW ,ud=VW 0sud+vW szW ,ud. Using the vectorssmW , lW,nW0d
as coordinate system for the closed orbit, we write

SW = s1mW + s2lW + s3nW0, vW = v1mW + v2lW + v3nW0. s8d

With the complex notationŝ=s1+ is2 and v=v1+ iv2, the
equation of spin motion is

VW 3 SW = mW
d

du
s1 + lW

d

du
s2 + nW0

d

du
s3 + sVW 0 − n0nW0d 3 SW s9d

and the equation of motion forŝ is obtained by multiplication

with mW + ilW, and taking into account thats3=Î1−uŝu2,

d

du
ŝ= isn0 + v3dŝ− ivÎ1 − uŝu2. s10d

In a coordinate system that rotates byn0u, this equation be-
comes
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ŝ0 = e−in0uŝ,
d

du
ŝ0 = iv3ŝ0 − ie−in0uvÎ1 − uŝ0u2. s11d

Spin precession on the closed orbitsv=0d leads to a constant
ŝ0 due to the right equation. The right equation describes
additional precessions due to phase space motion.

If the motion in phase space can be transformed to action-

angle variables, the spin precession vectorvW sJW ,FW ,ud for par-
ticles which oscillate around the closed orbit is a 2p-periodic

function of FW and u. The Fourier spectrum ofvsJW ,F0

+QW u ,ud has frequenciesk= j0+ jW·QW where thejk are integers

andQW describes the tunes of synchrotron and betatron oscil-

lations which can be a function ofJW, i.e., QW sJWd. The integer
contributionsj0 are due to the 2p periodicity of vW in u and
give rise to so-called imperfection resonances. The contribu-

tions jW·QW of integer multiples of the orbit tunes are due to the
2p periodicity of vW in the orbital phaseFk and give rise to
so-called intrinsic resonances[1]. When one of the Fourier
frequencies is nearly in resonance withn0, one component of
e−in0uv is nearly constant. Then it can be a good approxima-
tion to drop all other Fourier components since their influ-
ence on spin motion can average to zero so that they are in
effect less dominant. This is referred to as the single reso-
nance approximation. Note that this approximation can only
be good when the domains of influence of individual reso-
nances are well separated. This model corresponds to the
rotating field approximation often used to discuss spin reso-
nance in solid state physics[13]. Note also that for a con-
ventional flat ring, the first-order resonances due to vertical
motion dominate and therefore the Fourier components with
frequenciesk= j0±Qy are often of most interest.

The amplitude of a single Fourier contribution is some-
times called the resonance strength. This is misleading since
generally it cannot be used in the Froissart-Stora formula.
The fact that the Fourier component is not the resonance
strength manifests itself clearly in models wherevW is linear
in zW and has only first-order Fourier components, i.e., those
with ok=1

3 u jku=1. Such avW can lead to depolarization or spin
flip at first-order resonances but also at higher-order reso-
nances[14–17] which are created by some feed-up process
from the first order resonances. The strength of these reso-
nances that might be used in the Froissart-Stora formula can
clearly not be determined by the higher-order Fourier coef-
ficients, i.e., those whereok=1

3 u jku.1, since those are zero. In
fact all examples of higher-order resonances that will be
shown in this paper were computed for such a linear model
of HERA-p with Siberian Snakes[18].

A higher-order resonance can thus be created either by a
higher-order Fourier component or by feed-up of lower order
components, or by a combination of both. Such a feed-up
can occur due to the inherent noncommutativity of three di-
mensional rotations or equivalently due to the nonlinearity of
the mapping from the unit sphere to the complex plane
which gives rise to the square root term in the equation of
motion (10). Obtaining a resonance strengthek that can be
used to describe depolarization therefore has to include all
these feed-up effects. Before the following investigations it

was not clear whether a Froissart-Stora formula with some
resonance strengthek could be applied to crossing such
higher-order resonances. But even if it can be applied, it is
clear that the resonance strength cannot be obtained from a
Fourier coefficient ofvW in Eq. (10). Moreover, in high en-
ergy accelerators, thenth order Fourier coefficients ofvW are
not even the dominant contribution to the strength of anth
order resonance. Usually the former containGg, whereas the
feed-up contributions from combiningm lower order har-
monics containsGgdm, which can be an exceedingly large
number.

Only for first-order resonances, whereok=1
3 u jku=1, there is

no feed-up contribution and the Fourier components can gen-
erally be used in the Froissart-Stora formula and there are
different straightforward ways of computingek in that case
[1,2].

B. Solutions for the SRM

The analytically solvable model advertised above is usu-
ally called the single resonance model(SRM). It has

VW 0=n0nW0 and anvW which only has one Fourier contribution,

vW =eksmW cosF+ lW sinFd, with F= j0u+ jW·FW +F0. Note that
the modulus of its higher-order Fourier coefficient is denoted
as ek since there are no lower order coefficients that could
contribute to the resonance strength by a feed-up process.
Any dependence on the orbital actions can be expressed by

eksJWd.
This vW is perpendicular tonW0 and tilts spins away fromnW0.

Since sd/dudFW =QW , the frequency isk= j0+ jW·QW and the
equation of motion(10) becomes

d

du
ŝ= in0ŝ− iekeisku+F0dÎ1 − uŝu2. s12d

When the coordinates in thefmW , lW,nW0g system are arranged in
column vectors[19,20], one obtains

d

du
F = k,

d

du
SW = VW sFd 3 SW, VW = 1ek cosF

ek sinF

n0
2 . s13d

Initial coordinateszWi are taken into final coordinateszW f after

one turn according to the relationFW f =FW i +2pQW whence
F f =Fi +2pk. Now the orthogonal matrixTI seW ,wd is intro-
duced to describe a rotation around a unit vectoreW by an

anglew. Transforming the spin components ofSW into a rotat-

ing frame using the relationSWR=TI snW0,−Fd ·SW, one obtains the
simplified equation of spin motion

d

du
SWR = VW R 3 SWR, VW R = 1ek

0

d
2, d = n0 − k. s14d

If a spin field is oriented parallel toVW R in this frame, it does

not change from turn to turn. ThereforenWR=VW R/ uVW Ru is an
invariant spin field. In the original frame, thisnW-axis is
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nWsFd = sgnsdd
1

L1ek cosF

ek sinF

d
2, L = Îd2 + ek

2, s15d

where the “sign factor” sgnsdd has been chosen so that on the
closed orbit sek=0d the nW-axis nWsFd coincides with
nW0=s0,0,1dT. Note that forekÞ0 thenW-axis is discontinuous
in d at d=0. As required,nW is both a solution of the T-BMT
equation (13), sd/dudnW =sgnsddskek /Lds−sinF ,cosF ,0dT

=VW 3nW and, as with any function of phase space, a

2p-periodic function of the angle variablesFW and ofu.
This analytically solvable model can also be used to illus-

trate the construction of the amplitude-dependent spin tune

nsJWd, which by definition does not depend on the orbital
phase. Once annW-axis has been obtained, one can transform

the components ofSW into a coordinate systemfũW1,ũW2,nWg.
With the simple choice

ũW2sFd =
nW0 3 nW

unW0 3 nW u
= sgnsdd1− sinF

cosF

0
2 , s16d

ũW1sFd =
1

L1d cosF

d sinF

− ek
2 , s17d

ũW1 is equal toũW23nW and the basis vectors are clearly 2p

periodic in FW and in u as required. SincenW and the basis

vectorsũW1 and ũW2 comprise an orthogonal coordinate system

for all u, and since nW precesses aroundVW , one has

sd/dudũW2=sVW − ñnWd3 ũW2 with the rotation rateñ which can be
computed by the relation

ñ = S d

du
ũW2 − VW 3 ũW2D ·uW̃1,

=sgnsdd1− k cosF + n0 cosF

− k sinF + n0 sinF

− ek
2 · ũW1,

=sgnsddL. s18d

In general, the so found rotation could depend onF and

an additional rotation ofũW1 andũW2 aroundnW can now be used

to makeñ independent of the angle variablesFW and to define
the amplitude-dependent spin tune. Here, however,ñ is al-

ready independent ofFW and it is therefore an amplitude de-
pendent spin tune, andek= uvW szWdu characterizes the orbital
amplitude. The freedom of rotatinguW1 and uW2 aroundnW for
each phase space point can be used to obtain an which

reduces ton0 on the closed orbitsek=0d. We let ũW1 and ũW2

rotate aroundnW by −F, to give the amplitude-dependent spin
tune

n = sgnsddL + k. s19d

The corresponding uniformly rotating basis vectorsuW1 anduW2
become

uW1 = ũW1 cosF − ũW2 sinF, uW2 = ũW2 cosF + ũW1 sinF.

s20d

On the closed orbit, the coordinate system now reduces to

nW → nW0, uW1 → sgnsddmW , uW2 → sgnsddlW, n → n0.

s21d

This model leads to the average polarization on the torus

with eksJWd,

Plim = uknWszWdlu =
ud u

Îd2 + ek
2

=Î1 −S ek

n − k
D2

, s22d

d = n0 − k, s23d

where it is clear that the distance of the amplitude-dependent
spin tune n from the resonance, which is equivalent to
sgnsddL, determines the drop inPlim. In Fig. 1 (top) Plim is
plotted versusn0. It drops to 0 atn0=k since according to
Eq. (15) the cone of vectorshnWsFd uFP f0,2pgj opens up for
small values ofud u. This strong reduction ofPlim occurs
when n approachesk, i.e., close to spin-orbit resonances.
According to Eq.(19) n is never exactly equal tok, but it
jumps by 2ek across the resonance conditionn=k, which is
shown in Fig. 1(bottom). This jump of the spin tune could in
principle be transformed away since the sign of the spin tune
depends on the sign of the rotation directionnW. Here the sign
of nW in Eq. (15) has been fixed by choosingnW0·nW .0, and the
tune jump is therefore essential.

Now we want to investigate the crossing of resonances for
the SRM, and describe spin motion when the parameterd of
the SRM is being slowly changed, i.e.,sd/dudd=a. In par-
ticular this allows the study of an acceleration wheren0
crosses the frequencyk. It is useful to describe the spin
motion in the coordinate systemfuW1,uW2,nWg. In order to take
account of the change of the basis vectors with the parameter

FIG. 1. (Color online) Plim and the amplitude-dependent spin
tunensekd for the SRM in the vicinity ofn0=k, for k=0.5 andek

=0.1.
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d, we use that for a vector withuuW iu=1, ]d uW i is perpendicular
to uW i so that it can be written as a rotation. Except atd=0
wherenW is discontinuous ind we have

]d nW = hW 3 nW, ]d uW i = hW 3 uW i . s24d

The rotation vectorhW is then given by

hW = 1
2suW1 3 ]d uW1 + uW2 3 ]d uW2 + nW 3 ]d nWd. s25d

Sincen0=Gg in a flat ring, the acceleration process in the
SRM is usually described by a slowly changingn0=k+d
with d=au while assuming thatk andek do not change with
energy. This leads to the following expressions for the varia-
tion of the basis vectors and forhW :

]d uW1 = sgnsdd
ek

L2nW cosF, s26d

]d uW2 = sgnsdd
ek

L2nW sinF, s27d

]d nW = − sgnsdd
ek

L2ũW1, s28d

hW = sgnsdd
ek

L2

1

2
s− ũW2 − uW2 cosF + uW1 sinFd = − sgnsdd

ek

L2ũW2.

s29d

Again d=0 has been excluded.
In a general system where some parameterd is changed,

the equations of motion for the components ofSW =uW1s1
+uW2s2+nWJS are described as

d

du1s1

s2

JS
2 = 1ash3s2 − h2JSd − nsJW,dds2

ash1JS− h3s1d + nsJW,dds1

ash2s1 − h1s2d
2 . s30d

In complex notation withŝ=s1+ is2, h=h1+ ih2, and uJSu
=Î1−uŝu2, this gives

d

du
ŝ= ifnsJW,dd − ah3gŝ+ iahJS. s31d

For the SRM, Eqs. (29) and (20) lead to
h=−sgnsddisek /L2deisku+F0d, h3=0, and

d

du
ŝ= ifsgnsddL + kgŝ+ sgnsdda

ek

L2eisku+F0dJS. s32d

Note again that the spin tune sgnsddL+k in this equation
jumps by 2ek at n0=k. The exclusion ofd=0 is not problem-

atic sincenW andũW2 change sign. The spin motion is therefore
described by Eq.(32) for all d,0 and arrives atd=0 with
JS− and ŝ−. At d=0 the coordinates are changed toJS=−JS−

and ŝ=ei2Fs̄̂−. Then the motion continues according to Eq.
(32) for d.0.

We will now describe how this equation for the SRM
leads to the Froissart-Stora formula. After that, we will use
the similarity of the SRM in Eq.(32) and the equation for a

general system in Eq.(31) to show how higher-order reso-
nance strength can be introduced and how they can be com-
puted.

III. FROISSART-STORA FORMULA

For the analytically solvable SRM the change of the adia-

batic invariantJS=SW ·nW can be computed explicitly. When the
design-orbit spin tune changes during the acceleration pro-
cess, resonances will be encountered, wheren jumps from
k±ek to k7ek while the spin is under the strong influence of
an approximately resonant Fourier contribution ofv. It is
then found that for some speeds of the spin tune change,
parametrized bya, a reduction of polarization can occur
which is due to a generally irreversible reduction ofJS rather
than a temporary decrease ofPlim, and which does not re-
cover after the energy has increased and the resonance is
crossed.

To describe the reduction of polarization during resonance
crossing, Eq.(32) can be used but the usual approach is to
insert a changing closed orbit spin tunen0 into the equation
of motion (13). The method of solution depends on the form
of the functionn0sud [1,7,21,22]. If the closed-orbit spin tune
changes liken0=k+au, the equation of spin motion can be
solved in terms of confluent hypergeometric functions. The
equations for arbitrary initial conditions are quite compli-
cated but when atu→−` a vertical spins3s−`d=1 is chosen
as the initial condition then the vertical component at
u→ +` is given by the well known and regularly used
Froissart-Stora formula[21],

s3s`d = 2e−psek
2/2ad − 1. s33d

In the case of a strong perturbationek, or when the accelera-
tion is very slow, spins follow the change ofnWsFd. The
nW-axis in Eq. (15) has a discontinuity from nW−
=−ekscosF ,sinF ,0dT just below resonance tonW+=−nW−

just above resonance. Spins do not follow this instantaneous
change of sign, but they then follow −nW adiabatically after
the resonance has been crossed. Therefores3s`d is close to
−1 for a slow change ofn0. When the perturbation is weak or
crossed very quickly, then spin motion is hardly affected and
s3s`d is close to 1 in Eq.(33). In intermediate cases,us3u is
reduced. In the first case the polarization is preserved but the
spins are reversed. In the second case the polarization is
preserved without reversal. In the third case the polarization
is no longer vertical but precesses around the vertical so that
the time averaged polarization is reduced.

IV. FROISSART-STORA FORMULA FOR HIGHER-ORDER
RESONANCES

As mentioned above, the Froissart-Stora formula in Eq.
(33) is regularly used to describe the reduction of polariza-
tion due to vertical betatron motion during resonance cross-
ing in accelerators where the closed-orbit spin tunen0
changes with energy. These descriptions were normally re-
stricted to flat rings andn0=Gg.
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Since Siberian Snakes[23–27] are unavoidable for high-
energy polarized beam acceleration, the design-orbit spin
tune is 1

2 in most cases which will be considered here and it
does not change during acceleration. Since the orbital tunes
are never chosen to be12, first-order resonances with
n= j0±Qk are avoided and higher-order resonances can be-
come dominant. But since the strength of such resonances
cannot be obtained as a Fourier coefficient ofv(zWsud ,u), a
method for obtaining the strength of the higher-order reso-
nances is required in order to use the Froissart-Stora formula
when Siberian Snakes are in use.

HERA-p will require at least four Siberian Snakes
[7,28–30]. The snake anglesw j of these four snakes can be
chosen quite arbitrarily, except for the restrictionDw=w4
−w3+w2−w1=p /2. To illustrate crossing higher-order reso-
nances a snake scheme for HERA-p was chosen that has four
Siberian Snakes with snake angles ofp /4, 0, p /4, and 0 in
the south, east, north, and west straight section, respectively.

In Fig. 2 the amplitude-dependent spin tune(green) and
Plim (blue) are plotted versus the reference momentum for a
vertical amplitude of 70p mm mrad. Many higher-order

resonances can be observed. The curves forPlim and nsJWd
were computed with the nonperturbative algorithmSODOM II

[31] using the spin-orbit dynamics programSPRINT [20,32].
The nW–axis and alsoPlim are in general different at different
azimuthu0. For this figure and for all following plots ofPlim,
thenW-axis was observed at the interaction point of the ZEUS
experiment in the South of HERA.

While the design-orbit spin tune remains at1
2, the

amplitude-dependent spin tunensJyd changes with energy
and is in resonance with 2Qy at the second line(red) and
with 5Qy−1 at the bottom line at several energies. In both
cases a clear change ofPlim can be observed. The reduction
of Plim at some resonances is similar to the behavior for the
single resonance approximation shown in Eq.(22) where
Plim is reduced at those resonances. The drop ofPlim at
811.2 GeV/c is due to the 2−5Qy resonance, which lies a
little below the 2Qy line. At all other energies where this
resonance is crossed, no influence onPlim can be observed
since the corresponding fifth-order resonance strength is very
small. At some second-order resonances,Plim increases reso-

nantly. Presumably, two resonant effects are in constructive
interference at these energies. Nonetheless, polarization can
be reduced when these resonance positions are crossed dur-
ing acceleration since a sudden increase ofPlim =knWl is due to
a sudden change ofnWszWd which might be too sudden for the

adiabatic invariance ofJS=SW ·nWszWd to be maintained. In addi-
tion one can see in Fig. 2 that the spin tunensJyd has discon-
tinuities at some of the resonances.

When spin motion in a ring is approximated by a single
resonance withk= j0±Qy and then Siberian Snakes are in-
cluded in the ring, it has often been noted that only odd-order
resonances withk= j0+ j yQy appear, i.e.,j y is odd. However,
it can be shown by nonlinear normal form theory that this is
a feature of any ring with midplane symmetric spin-orbit
motion and is not peculiar to rings with Siberian Snakes[10].
For rings without midplane symmetry, resonances of even
order can appear also. HERA-p has nonflat regions, and rings
with closed-orbit distortions in general do not have midplane
symmetric motion. Then, resonances with evenj y can also
appear and be destructive. In fact, the resonances with
j y=2 are among the most destructive spin-orbit resonances in
HERA-p after Siberian Snakes are included. For the IUCF
cooler ring with a partial snake running, second-order reso-
nances have been observed experimentally[33].

When a parametert is being varied, the spin motion is
described in the coordinate systemfuW1,uW2,nWg by Eq. (31). In
the following we will demonstrate that this equation has
some characteristics of the equation of spin motion(32) of
the SRM. If the spin tunen has a discontinuity fromn− to n+
at some energy, then we define the center frequency
k* = 1

2sn−+n+d. To take the jump ofn into account, we intro-
duceL* = un−k* u, which does not have a discontinuity and
we express the spin tune asn=sgnsn−k* dL* + k*.

SincehW is related to the basis vectors by Eq.(25), it is a

2p-periodic function ofFW and u. The jump ofn acrossk*
can be produced by a Fourier component ofh if there is a set

of integers so thatjW·QW + j0=k*. This is the case in all in-
stances of spin tune jumps presented here. Accordingly, one
can analyze what happens when the Fourier component
hk* eisk*u+F0d of h dominates the motion ofŝ. For that analy-
sis, all other Fourier components ofh are ignored. Whena is
small, spins which are initially almost parallel to thenW-axis
remain close tonW so thatŝ is small andah3ŝ can therefore be
ignored. This leads to

d

du
ŝ= ifsgnsn − k * dL * + k * gŝ+ Iahk*e

ik*u+F0Î1 − uŝu2.

s34d

Due to its similarity with Eq.(32), this equation will produce
the observed spin tune jump by 2ek* = un+−n−u if hk*
=ek* /L*2 =ek* / sn−k* d2 in the vicinity of the energy where
the jump occurs. Otherwise Eq.(34) would not reproduce
this jump. One is then left with a relation which has exactly
the structure of the equation of motion(32) for the SRM.
Therefore the Froissart-Stora formula can be applied to esti-
mate how much polarization is lost when a polarized beam is
accelerated through the energy region where the spin tune

FIG. 2. (Color online) Plim (dark blue) and nsJyd (light green)
for particles with a 4.2s vertical amplitude of 70p mm mrad in
HERA-p with andQy=0.289. Three resonance lines crossn and at
each crossingPlim exhibits a large variation and there are jumps in
n (bottom:n=5Qy−1; middle:n=2−5Qy; and topn=2Qy).
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jumps by 2ek. In the following we will check whether, for
some higher-order resonances in HERA-p, all assumptions
leading to the approximation(34) are satisfied to the extent
that the Froissart-Stora formula describes the reduction of
polarization well. Checking whether the Froissart-Stora for-
mula can be used to determine depolarization when a higher-
order resonance is crossed was largely inspired by a com-
ment of A. Lehrach during a talk by M. Vogt[34].

The basis vectorsnW, uW1, and uW2, and the amplitude-
dependent spin tunen can in general only be computed by
computationally intensive methods. The perturbing function
h is then obtained from

h = hW · suW1 + iuW2d = hW · s− nW 3 uW2 + inW 3 uW1d

= shW 3 nWd · s− uW2 + iuW1d = isuW1 + iuW2d · s]tnWd, s35d

but the required differentiation is prone to numerical inaccu-
racies. However, whennW is computed by perturbative normal
form theory using differential algebra(DA) [35], the differ-
entiation with respect tot can be performed automatically.
After h is computed, the Fourier integral over the complete
ring would finally be required in order to computeek.

If Eq. (31) can be approximated well by a SRM, there is,
however, a different and much less cumbersome method for
determining the relevant resonance strength and the resonant
frequency. Observation of the amplitude-dependent spin tune

nsJWd allows the determination of all parameters which are
required to evaluate the Froissart-Stora formula for higher-
order resonances: The spin tune jumps by 2ek, the center of

the jump is located at the frequencyk itself, and the rate of
change ofn with changing energy is used to determine the
parametera for Eq. (33). In the SRM this parameter is
sn0−kd /u wheren0 is the frequency of spin rotations when
the resonance strength vanishes. Here the corresponding fre-
quency, which would be observed if no perturbationh were
present, is not directly computed. But it can be approxi-
mately inferred from the slope]tn at some distance from the
resonance.

According to Eq. (22), knWl is given by Plim
SRM

=Î1−fek / sn−kdg2 in the SRM. To check whether the ob-
served drop ofPlim indeed shows the characteristics of the
SRM, the width of the resonance dip inPlim

SRM was obtained
from the amplitude-dependent spin tune alone and then com-
pared to the width of the dip in the actualPlim of the system.
This analysis was done for HERA-p’s resonance at approxi-
mately 812.4 GeV/c and the results are shown in Fig. 3. The
top left plot shows the dependence ofPlim and n on the
reference momentum for a vertical amplitude of
70p mm mrad which, with HERA-p’s current one sigma
emittance of 4p mm mrad, corresponds to the amplitude of a
4.2s vertical emittance. The momentum range is as in Fig. 2.
The low Plim shows that many perturbing effects interfere in
this region. In units ofp mm mrad, the vertical amplitude of
the particles in the top left graph is 70, in the middle graphs
it is 40 and 60, and in the bottom graphs 80 and 100. The
horizontal scale displays the distanceDp in GeV/c from the
momentum at the resonance.

In the four bottom graphs,Plim and Plim
SRM are plotted for

different orbital amplitudes, and the different resonance
strengths are obtained from the jump innsJyd. Only informa-
tion about n was used to computePlim

SRM. To allow better

FIG. 3. (Color online) Top left:
Plim and n in the vicinity of
the resonance at approximately
812.4 GeV/c for HERA-p. The
distance betweenn and resonance
has been magnified by 10,n* = k
+10sk−nd. Top right: Proportion-
ality between tune jump 2ek and
the amplitude 2Jy of a vertical
emittance. Middle and bottom:
Correlation between the width of
the actual drop ofPlim and the
predictions of the single resonance
approximation using only the
amplitude-dependent spin tune.
Vertical amplitudes of particles in
HERA-p in units of p mm mrad
from top left to bottom right: 70,
40, 60, 80, and 100.Dp: distance
from the momentum at resonance
in GeV/c.
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comparison, a linear change ofPlim
SRM with momentum was

added as a background curve and the height of the dip was
scaled to fit the actualPlim. The width, however, was not
changed. The distance between spin tune and resonance has
been magnified by 10,n* = k+10sk−nd in these graphs. The
tune jump is symmetric around the resonance linen=2Qy,
showing that a second-order resonance is excited.

As shown in Fig. 3(top right) the tune jump scales ap-
proximately linearly with the orbital action variableJy. This
is consistent with the crossing of a second-order resonance,
since a frequency of 2Qy can be produced by monomials of
ÎJye

±iQyu with order larger or equal to 2. This linear scaling
is not exact for two reasons:(i) The jump does not reduce to
0 atJy=0 but already at some finite amplitude at whichnsJyd
does not cross the resonance line.(ii ) When the amplitude is
changed, the momentum at which the resonance occurs
changes, and the resonance strength is in general different at
different energies. Deviations from a linear dependence
should therefore be expected.Plim is already very low away

from the resonance atn=2Qy, indicating that other strong
perturbations distort the invariant spin field and can interfere
with the resonance harmonic.

Thus we conclude that the resonance width computed in
terms of the tune jump 2ek agrees surprisingly well with the
actual drop inPlim.

Since the higher-order resonances analyzed here show the
established and characteristic relation between tune jump and
reduction ofPlim, the applicability of the Froissart-Stora for-
mula will now be tested.

In Fig. 4 (top) Plim andn are shown for HERA-p.Plim is
reduced at two resonances withn=2Qy. The vertical tune
had been chosen asQy=0.2725 so that these resonances are
crossed already for the small 0.75s vertical amplitude of
2.25p mm mrad. At this small amplitudePlim is reasonably
large.

The spins of a set of particles were set parallel to the
invariant spin fieldnWszWd so that all hadJS=1 at the momen-
tum of 801 GeV/c. ThenWaxis had been computed by strobo-

FIG. 4. (Color online) Top:
Plim and n for a second-order
resonance of HERA-p withQy

=0.2725 and a 0.75s vertical am-
plitude of 2.25p mm mrad. Bot-
tom: kJSlN after acceleration from
801 to 804 GeV/c with different
acceleration rates(blue points)
and the prediction of the Froissart-
Stora formula (red curve) using
parameterse2Qy

and a obtained
from n.
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scopic averaging[20]. Due to the rather largePlim at that
energy the initial polarization was approximately 97%. Start-
ing with this spin configuration, the beam was accelerated to
804 GeV/c at various rates. The averagekJSlN over the
tracked particles is plotted versus acceleration rate in Fig. 4
(bottom) together with the prediction of the Froissart-Stora
formula. The averagekJSlN describes the degree of beam
polarization which could be recovered due to the adiabatic
invariance ofJS when moving into an energy regime where
nWszWd is close to parallel to the vertical.

The resonance strengthe2Qy
has been determined from the

tune jump. The parametera is proportional to the energy
increase per turndE and is determined from the tune slope
Dn /DE in Fig. 4 (top right) by the relation a=s1/2pd
3sDn /DEddE.

The polarization obtained by accelerating particles
through the second-order resonance agrees remarkably well
with the Froissart-Stora formula. For the slow acceleration of
about 50 keV per turn in HERA-p, the polarization would be

completely reversed on the 0.75 sigma invariant torus. This
would lead to a net reduction of beam polarization, since the
spins in the center of the beam are not reversed.

This result on the applicability of Eq.(33) for the reso-
nance strength anda obtained from the amplitude dependent
spin tune is so important for detailed analysis of the accel-
eration process that it will be checked in another case. In the
next example, the same lattice is used, the tune was adjusted
to a realistic value ofQy=0.289 and a 4.2s vertical ampli-
tude of 70p mm mrad was chosen. At this large amplitude,
the second and fifth-order resonances already shown in Fig.
2 are observed. Particles were then accelerated from
812.2 to 812.6 GeV/c with different acceleration rates.
Note that the initial condition has a vertical polarization of
only 60%. Nevertheless, this state of polarization corre-
sponds to a completely polarized beam, and 100% polariza-
tion can potentially be recovered by changing the energy
adiabatically into a region wherenWszWd is tightly bundled.
These studies emphasize again the importance of choosing
nWszWd as the initial spin direction. For example, if the spins

FIG. 5. (Color online) Top:
Plim and n for a second-order
resonance of HERA-p with realis-
tic tune of Qy=0.289 and a large
4.2s vertical amplitude of
70p mm mrad. Bottom:kJSlN af-
ter acceleration from 812.2 to
812.6 GeV/c with different accel-
eration rates(blue points) and the
prediction of the Froissart-Stora
formula (red curve) using param-
eterse2Qy

anda obtained fromn.
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were initially polarized vertically, they would rotate around
nWszWd and that would lead to a fluctuating polarization, even
without a resonance and it would not be possible to establish
a Froissart-Stora formula for higher-order resonances.

As shown in Fig. 5,Plim is as low as 0.11 in the center of
the displayed region. Obviously other strong effects beyond
the second-order resonance are present and overlap with it.
The bottom figure showskJSlN after the acceleration. The
fact thatkJSlN is again described very well by the Froissart-
Stora formula(33) is an impressive confirmation of the con-
jecture.

The two data points at largest acceleration speed in Fig. 4
(bottom) are lower than predicted by the Froissart-Stora for-
mula. A possible explanation is the following: at very large
acceleration speeds the resonance region is crossed so
quickly that the spin motion is hardly disturbed. But when
the axisnW− before the resonance region is not parallel to the
axis nW+ after the resonance region, then the spins which ini-
tially had JS=1 will approximately haveJS=nW−·nW+ after the
resonance region is crossed, which is smaller than the
Froissart-Stora prediction, which approaches 1 for large ac-
celeration speeds.

Here the parametert was the slowly changing momen-
tum. This generalized way of using the Froissart-Stora for-
mula can, however, also be used when other system param-
eters change. An example can be found in Ref.[36], where
the particle’s phase space amplitude is changed artificially
slowly in order to compute the invariant spin field at various
orbital amplitudes. In Ref.[10] an example is displayed
where the Froissart-Stora formula is successfully applied to a
resonance which is encountered because of a slow variation
of Qy.

V. CHOICE OF ORBITAL TUNES

When the amplitude-dependent spin tunensJWd of particles

with the amplitudeJW crosses a resonance, for example during

acceleration, the beam polarization is usually reduced. It is
therefore important to find suitable orbital tunes so that low-
order spin-orbit resonances are far away from the operating
point. In particular, when Siberian Snakes are used to main-
tain a closed orbit spin tune of12, it is important that these
snakes are optimized so that higher-order resonances do not
lead to large deviations of the amplitude dependent spin tune
from this value. Such optimal choices of snakes are dis-
cussed in Ref.[30]. The dominant effects are due to radial
fields on vertical betatron trajectories. Thus Fig. 6(right)
shows the resonance linesn= j0+ jQy up to order 10 in the
n-Qy plane. If the spin tune on the closed orbit is fixed to
n0= 1

2 by Siberian Snakes the orbital tune can be chosen to
avoid resonance lines. However, the dynamic aperture of
proton motion should not be reduced and the tunes have to
be far away from low order orbital resonances. Figure 6(left)
shows theQx-Qy tune diagram with resonance lines up to
order 11. The operating point has to stay away from these
resonance lines.

The established tunes of HERA-p operationQx=0.294,
Qy=0.298 or Qx=0.298, Qy=0.294 (red points) would be
unfortunate choices due to their closeness to the resonance
n= j0±5Qy. For HERA-p with Siberian Snakes, several
simulations have shown that the resonances of second order
and of fifth order are most destructive. This is supported by
Fig. 2. Therefore two new tunes(blue points) are suggested
which have an optimal distance from low-order spin-orbit
resonances. It has been tested experimentally that HERA-p
could operate at these tunes.
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FIG. 6. (Color online) Left: the current orbit tunes(Qx=0.294,Qy=0.298) or (Qx=0.298,Qy=0.294) (red) and the new orbit tunes for
polarized proton operation(Qx=0.291,Qy=0.289) or (Qx=0.2675,Qy=0.271) (dark blue) in the x-y resonance diagram. All resonances up
to order 11 are shown. Difference resonances are indicated in green. Right: The current vertical tunes(red) and the new vertical tunes(dark
blue) in the spin-orbit resonance diagram. The odd spin-orbit resonances(black) and the even spin-orbit resonances(light green) are shown
up to order 10 in the vicinity of closed-orbit spin tunen0= 1/2. For HERA-p, the resonances of second order(fat light green) and of fifth
order (fat black) are most destructive.
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