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The fringe fields of particle optical elements have a strong effect on optical
properties. So far their transfer maps can only be calculated accurately using
numerical integrators, which is very time consuming. We developed a new
symplectic approximation method and implemented it in COSY INFINITY

[1].

Often the effect of fringe fields is approximated by fringe field integrals to
save computation time. This was done in second order for TRANSPORT [2]
and in third order for GIOS [3]. There is an attempt being made to expand
to fifth order [4] for some particle optical elements. The approximation by
fringe field integrals, however, has some serious disadvantages:

e It is non-symplectic and therefore not especially suited for circular
machines, where symplectic tracking can be advantageous.

o It represents the fringe effect well only if the region of the fringe field
is not much bigger than the dimension of the beam diameter.

e [t is restricted to low orders.

In order to speed up the fringe field calculation in the arbitrary order code
COSY INFINITY we searched for a method that does not have those draw-
backs, works fast, and to all orders.

In the following we will use TRANSPORT notation for the map [5],
which means the variables of motion are the cartesian coordinates and slopes
z,z',y,1', the path length difference /, and the relative momentum deviation
from a reference momentum 4,. Those six components build the vector Z.
The transfer map describes the variables of motion Zy behind an optical
element as a function of the variables Z; in front of it.

Zp = M"(5) (1)

The index P indicates that the map M depends on certain parameters, like
the momentum p, mass m, and charge z of the reference particle and the
aperture A of the optical element.



From now on we will be concerned with magnetostatic elements, al-
though parts of the procedure are applicable to electrostatic elements, too.
The equation for the Lorentz force yields that the bending radius of the path
of a particle with momentum p at field B is

P
R=—7F— 2
gBsin ¢ 2)
where ¢ denotes the angle between momentum and field direction. All maps
are identical that describe particles with equivalent bending radii along their
path. If the map for a specific beam is known as a function of the field B
at the pole tip, the transfer map for all other beams can be computed:

Mp*’m*7z*’B* _ Mp,m,z(B”B:B*IZ% (3)

The map on the right hand side is known as a function of the field B,
whereas the left hand side describes a map that is calculated at a certain
field B*. This is just another way of saying that the map depends only on
the ratio of field B to magnetic rigidity p/z, as long as saturation is not
important. At this point it is important to use TRANSPORT notation with
d, as a variable, rather than the relative energy deviation ég, because the
relative momentum deviation is equivalent to a relative deviation from the
bending radius at momentum p as well as at any momentum p*. Therefore
the dependence of Zy on 4, is the same at p and at p*. With dg as a variable
this would not be the case. Furthermore it is helpful that the TRANSPORT
notation uses path length as a variable, rather than time of flight, because
the time of flight is different for different reference momenta, whereas the
path length stays the same.

Now let us consider two similar magnetostatic elements that differ by
a scaling factor «, only. If the bending radii also differ by a factor of «,
the maps are similar. Equation (2) shows that this is the case whenever
the a-times bigger element has a 1/« times stronger field. After scaling the
coordinates z, y, [, we obtain

B/a,A
MP/Ae aMBA
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Figure 1: Particle coordinates in two elements scale with a factor a, if the
elements scale with a factor o, and the fields scale with a factor 1/« .

The second dimension (y, y) is not mentioned, for it has the same properties
as (z,2).

As a conclusion, we state that the knowledge of the transfer map as a
function of the field strength at the pole tip, for particles with a specific
magnetic rigidity, and for an element with a specific aperture, is sufficient
to know all transfer maps of similar elements, for all energies, masses, and
charges. In fact the map does not even have to be known as a function of
the field, because the dependence on the field can be obtained by equation
(3) from the dependence of the map on the momentum, which is already
contained in the map, as momentum is one of the six variables.

In general it is useful and customary to work with the canonical coordi-
nates (z, g—g, Y, g—g, %(to —1),0g) [6], therefore a transformation routine had
to be implemented that transforms canonical notation into TRANSPORT
notation and back.

2 . Em,zrp—1
MP* = TgmyM =" T g (5)
This transformation T depends on the reference energy and mass.

COSY INFINITY can readily compute the map of a fringe field of certain

aperture Z\ZE’m’Z’A, with dg being the sixth variable. Now we would be



finished. The map MP™=4 of a certain fringe field for a certain beam
had to be stored once as a function of B in order to compute maps of
similar fields and all kind of beams. COSY INFINITY, however, can only
approximate a function by its Taylor series, therefore the scaled map will
only be approximated. The accuracy depends on the chosen order of the
Taylor expansion and on the relative difference of the bending radii in the
scaled and the saved element. We can live with that for we only strive
for an approximation. The approximated map will only be approximately
symplectic. Symplecticity, however, is an intrinsic symmetry of canonical
motion that arises from the special structure of Hamilton’s equations. It
should not be violated, especially when long term behaviour is of interest.

This drawback can be eliminated by storing the reference map MEm.zA
in a symplectic representation [7]. Either in form of a generating function

Zif =570z, F(B) (6)

where S is a matrix with only 1 or —1 on the diagonal, or in form of a Lie
factorization

Z; = L(B)ePB)z (7)

where : P : denotes a Poisson bracket waiting to happen. In higher orders the
first representation is slow because a map inversion is required. The second
one has the disadvantage that the matrix [.(B) can only be approximated
and is not exactly symplectic. It is most efficient to represent the non-linear
part by eF* and the linear part by the generating function that is most
accurate for the given matrix L.

Now all pieces are assembled to display figure (2) which describes the
whole symplectic scaling procedure. To do the required manipulation of
parameter dependent maps certain procedures like the Lie transformation,
the generating functions, and the TRANSPORT notation had to be added
to COSY INFINITY.

Figure (3) shows the dependence of the expansion coefficient (z,zza) as
a function of the field B at the pole tip of a quadrupole. Because functions
like this can be closely approximated by polynomials, this procedure is quite
accurate. The following speed and accuracy comparisons will be made to
the standard COSY Runge Kutta of eighth order which for the sake of speed
is usually set to an accuracy of 107~ for order n. This integrator is thought
to be most efficient for the differential equations of particle dynamics [8].
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Figure 2: Shows how a map for arbitrary beam parameters E*, m*, z*, fields
B*, and aperture A* can be computed from the map of a similar element
using symplectic scaling.
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Figure 3: left: (z,zza) for a quadrupole as a function of the field at the
pole tip. right: Logarithmic error of the approximation of (z,zza) with
different expansion orders for the reference representation. The reference
representation was computed at B = 27

Even at the border of the range in figure (3), the presented method is more
accurate than the COSY standard integrator. Inside the region the accuracy
increases drastically. The results in figure (3) were obtained by evaluating
the symplectic reference representation to third, fourth, and fifth order. The
accuracy can be further improved by increasing this order which of course
increases the computation time that has to be invested for creating the
reference map in advance. This investment can be very much rewarding,
especially when beamlines or spectrometers are being fitted so that maps
of similar fringe fields are needed over and over again with only slightly
different parameters.

In typical cases the presented method is faster by a factor of 45 for first
order and 80 for third order matrix elements, for higher orders the speed
advantage increases rapidly.
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