Gauge Invariance in the Eikonal Method

G. H. Hoffstätter and H. Rose*

National Superconducting Cyclotron Laboratory at Michigan State University, East Lansing, MI 48824, USA

 \star Institut für angewandte Physik der Technischen Hochschule Darmstadt, D-6100 Darmstadt, Germany

The eikonal method of charged particle optics requires a multipole expansion of the magnetic vector potential. A procedure is outlined which allows a direct computation of the vector potential from the multipole expansion of the magnetic scalar potential. It is shown how the vector potential and the eikonal adopt a simple form by choosing a suitable gauge.

1 Introduction

In electron microscopy and accelerator physics the motion of particles near a reference curve is of interest. To describe the properties of such a particle optical device, the coordinates \vec{z}_f in the end plane of the device have to be expressed as a function of the initial coordinates \vec{z}_i :

$$\vec{z}_f = \mathcal{M}(\vec{z}_i) \ . \tag{1}$$

The components of \vec{z} are the space coordinates \vec{r} and the vector components of the canonical momentum \vec{p} . It is useful to expand this function or map \mathcal{M} in a Taylor series about a central curve. This can be done by evaluating the equation of motion in Taylor expansions [1] or more effectively by using the eikonal method which yields simpler formulas and automatically satisfies the symplectic condition [2].

It is advantageous to describe the electric and the magnetic field by scalar potentials and to expand the potentials in plane multipoles about the reference curve [3] because the multipole coefficients are experimentally accessible. The magnetic vector potential \vec{A} is needed for calculating the eikonal

$$S = \int_{\text{path}} \vec{p} d\vec{s} = \int_{\text{path}} (m\vec{v} + q\vec{A}) d\vec{s}$$
 (2)

where $d\vec{s}$ is an element of the path taken by a particle with kinematic momentum $m\vec{v}$ and charge q. In the traditional way the computation of the vector potential is one of the most cumbersome parts of deriving expansion coefficients of \mathcal{M} by the eikonal method.

Recently it has been pointed out [2] that the procedure to compute the vector potential from the scalar potential can be simplified considerably by choosing a suitable gauge function. A mistake mentioned in [4] will be corrected and the method will be explained in detail.

2 Curvilinear coordinates and complex notation

The coordinates near the central curve of reference will be written in complex notation. A space point near this reference curve is described by a vector with three components. Let z be the path length of this curve. Then all space points which lie on a plane perpendicular to the reference curve have the same z-component. In this plane we introduce a rectangular cartesian x,y coordinate system. The x-axis is located in the horizontal plane as depicted in Fig.1a. For mathematical simplicity it is advantageous to describe the off-axial position by the complex coordinates

$$w = x + iy \quad , \qquad \bar{w} = x - iy \ . \tag{3}$$

The metric coefficients of the curvilinear coordinate system shown in Fig.1b are

Place for Fig.1

$$g_1 = \left| \frac{d\vec{r}}{dx} \right| = 1$$
 , $g_2 = \left| \frac{d\vec{r}}{dy} \right| = 1$, $g_3 = \left| \frac{d\vec{r}}{dz} \right| = \left| \frac{\rho^2 - \vec{r}\vec{\rho}}{\rho^2} \right|$ (4)

where ρ is the local radius of curvature of the reference curve. The last relation is simplified by using the complex curvature

$$\Gamma = \frac{\rho_x + i\rho_y}{\rho^2} \quad , \qquad g_3 = h = 1 - \Re\{\bar{w}\Gamma\} \quad . \tag{5}$$

The partial derivatives ∂_x , ∂_y with respect to the coordinates x and y are related to the partial derivatives with respect to the complex coordinates w and \bar{w} via the formulas

$$\partial_{x} = 2\Re\{\partial_{w}\} \quad , \qquad \partial_{y} = -2\Im\{\partial_{w}\} ,$$

$$\partial_{w} = \frac{1}{2}(\partial_{x} - i\partial_{y}) \quad , \qquad \partial_{\bar{w}} = \frac{1}{2}(\partial_{x} + i\partial_{y})$$
(6)

where $\Re\{\ldots\}$ and $\Im\{\ldots\}$ denote the real and imaginary part, respectively.

3 The magnetic scalar potential

In the case of static fields the magnetic field $\vec{B}(\vec{r})$, at a point \vec{r} without electrical current, can be derived from a magnetic scalar potential $\psi(\vec{r})$:

$$\vec{B}(\vec{r}) = -\nabla \psi(\vec{r}) \tag{7}$$

where $\psi(\vec{r})$ satisfies the Laplace equation

$$\nabla^2 \psi(\vec{r}) = 0. \tag{8}$$

By employing the complex notation introduced in section 2 the Laplace equation in the curvilinear coordinate system adopts the form

$$\nabla^2 \psi = \frac{1}{h} \{ 2\partial_w (h\partial_{\bar{w}} \psi) + 2\partial_{\bar{w}} (h\partial_w \psi) + \partial_z (\frac{1}{h} \partial_z \psi) \} = 0 . \tag{9}$$

The solution can be expanded in a power series about an arbitrary curve. The expansion coefficients [5, 3, 6] have an intuitive meaning. A field of symmetry C_{ζ} about the reference curve which does not vary with the path length z has the potential $\psi = \Re\{\Psi_{\zeta}\bar{w}^{\zeta}\}$ because this harmonic polynomial satisfies the Laplace equation and the required symmetry. The multipole coefficient Ψ_{ζ} of symmetry C_{ζ} is generally complex. Its phase describes the orientation of the multipole with respect to the x,y coordinate system. Therefore rotational symmetric fields are described by the real multipole coefficient Ψ_{0} . If the field varies with path length z, a power series expansion

$$\psi(\vec{r}) = \Re\{\sum_{\zeta}^{\infty} \sum_{\lambda}^{\infty} a_{\zeta\lambda}(z) (w\bar{w})^{\lambda} \bar{w}^{\zeta}\}$$
(10)

exists where the multipole coefficients

$$a_{\ell 0}(z) = \Psi_{\ell}(z) \tag{11}$$

are functions of the z-coordinate. In the case of a straight reference curve the Laplace equation yields

$$4\lambda(\lambda+\zeta)a_{\zeta\lambda}+\partial_z^2a_{\zeta\lambda-1}=0, \qquad (12)$$

$$a_{\zeta\lambda} = (-1)^{\lambda} \frac{\zeta!}{\lambda!(\lambda+\zeta)!} (\frac{1}{4})^{\lambda} \partial_z^{[2\lambda]} \Psi_{\zeta} . \tag{13}$$

For an arbitrary curvature Γ a recursion formula can also be derived [3]. Therefore the multipole coefficients $\Psi_{\zeta}(z)$ uniquely characterize the expansion (10) provided they are analytic functions of z.

4 The magnetic vector potential

The relation between a specific vector potential $\vec{A}^*(\vec{r})$ and the scalar potential $\psi(\vec{r})$ follows from the identity

$$\vec{B}(\vec{r}) = \nabla \times (\vec{A}^*(\vec{r}) + \nabla \Lambda(\vec{r})) = -\nabla \psi(\vec{r}) \tag{14}$$

where $\Lambda(\vec{r})$ denotes an arbitrary real scalar gauge function. Using the complex notation, the z-component of the magnetic field $\vec{B}(\vec{r})$ has the form

$$B_z = -\frac{1}{h}\partial_z \psi = -2\Im\{\partial_{\bar{w}}(\bar{A}^* + 2\partial_w \Lambda)\} = 2\Re\{i\partial_{\bar{w}}(\bar{A}^* + 2\partial_w \Lambda)\}$$
(15)

with $A^* = A_x^* + iA_y^*$. For an arbitrary real scalar function $\chi(\vec{r})$ the gauge function will be chosen such that

$$-\frac{1}{h}\partial_z \chi = 2\Im\{i\partial_{\bar{w}}(\bar{A}^* + 2\partial_w \Lambda)\}$$
 (16)

which implies that the gauge function satisfies

$$4\partial_w \partial_{\bar{w}} \Lambda = -\frac{1}{h} \partial_z \chi - 2\Re \{\partial_{\bar{w}} \bar{A}^*\} . \tag{17}$$

With this choice of gauge we obtain from equation (14)

$$-\frac{1}{h}\partial_z(\psi + i\chi) = 2i\partial_{\bar{w}}\bar{A} , \qquad (18)$$

$$2ih\partial_w\psi = -\partial_z\bar{A} + 2\partial_w(hA_z) . (19)$$

Here $\vec{A} = \vec{A}^* + \nabla \Lambda$ denotes the vector potential in the new gauge. We choose $\chi(\vec{r})$ as an arbitrary solution of the Laplace equation

$$2\partial_w\{h\partial_{\bar{w}}(\psi+i\chi)\} + 2\partial_{\bar{w}}\{h\partial_w(\psi+i\chi)\} + \partial_z\{\frac{1}{h}\partial_z(\psi+i\chi)\} = 0.$$
 (20)

The linear combination $\Pi = \psi + i\chi$ has been defined as complex scalar potential [2]. Here we want to stress the crucial point $\Im\{\nabla^2\Pi\} = 0$. Only because of the specific choice (17) of the gauge function we were able to deduce the simple equation (18) which can be integrated directly:

$$\bar{A} = \frac{i}{2} \int_{0}^{\bar{w}} \frac{1}{h} \partial_z (\psi + i\chi) d\bar{w} + f(z, w)$$
 (21)

where f is an arbitrary function which does not depend on \bar{w} . Inserting \bar{A} into equation (19) and employing the Laplace equation (20), we obtain

$$\partial_{w}(hA_{z}) = ih\partial_{w}\psi + \frac{i}{4}\int_{0}^{\bar{w}} \left[-2\partial_{w}\{h\partial_{\bar{w}}(\psi + i\chi)\} - 2\partial_{\bar{w}}\{h\partial_{w}(\psi + i\chi)\}\right]d\bar{w}$$
$$+ \frac{1}{2}\partial_{z}f(z, w) . \tag{22}$$

This relation can be directly integrated over w. The boundaries of the integration must be taken into account very carefully by considering relations such as $\int_0^{\bar{w}} \partial_{\bar{w}} \{h\partial_w(\psi+i\chi)\}d\bar{w} = h\partial_w(\psi+i\chi) - [h\partial_w(\psi+i\chi)]_{\bar{w}=0}$. Moreover, the order of integration with respect to w and \bar{w} must be exchanged. As a result we find

$$hA_{z} = i \int_{0}^{w} h \partial_{w} \psi dw - \frac{i}{2} \int_{0}^{w} \{h \partial_{w} (\psi + i\chi) - [h \partial_{w} (\psi + i\chi)]_{\bar{w}=0}\} dw$$
$$- \frac{i}{2} \int_{0}^{\bar{w}} h \partial_{\bar{w}} (\psi + i\chi) d\bar{w} + \frac{1}{2} \int_{0}^{w} \partial_{z} f(z, w) dw + g(z, \bar{w}) . \tag{23}$$

Integrating by parts and inserting the definition (5) of h yields

$$hA_{z} = ih\psi - \frac{i}{2} \{h(\psi + i\chi) - [h(\psi + i\chi)]_{\bar{w}=0}\} - \frac{i}{2} \int_{0}^{\bar{w}} \partial_{\bar{w}} \{h(\psi + i\chi)\} d\bar{w}$$

$$+ \frac{i}{2} \bar{\Gamma} \int_{0}^{\bar{w}} \psi dw - \frac{i}{4} \bar{\Gamma} \int_{0}^{\bar{w}} \{(\psi + i\chi) - [\psi + i\chi]_{\bar{w}=0}\} dw$$

$$- \frac{i}{4} \Gamma \int_{0}^{\bar{w}} (\psi + i\chi) d\bar{w} + \frac{1}{2} \int_{0}^{\bar{w}} \partial_{z} f(z, w) dw + k(z, \bar{w})$$
(24)

where $g(z, \bar{w})$ and $k(z, \bar{w})$ are arbitrary analytical functions of z and \bar{w} . By rearranging the terms on the right-hand side we obtain

$$hA_{z} = h\chi + \frac{1}{2} \frac{1}{2i} \{ \Gamma \int_{0}^{\bar{w}} (\psi + i\chi) d\bar{w} - \bar{\Gamma} \int_{0}^{w} (\psi - i\chi) dw \}$$

$$+ i[h(\psi + i\chi)]_{\bar{w}=0} + \frac{i}{4} \bar{\Gamma} \int_{0}^{w} [\psi + i\chi]_{\bar{w}=0} dw$$

$$+ \frac{1}{2} \int_{0}^{w} \partial_z f(z, w) dw + k(z, \bar{w}) . \tag{25}$$

The arbitrary functions f and k must be chosen in such a way that the right-hand side of (25) is a real function. The part

$$i[h(\psi + i\chi)]_{\bar{w}=0} + \frac{i}{4}\bar{\Gamma} \int_{0}^{w} [\psi + i\chi]_{\bar{w}=0} dw$$
 (26)

is only a function of z and w. Therefore $k(z, \bar{w})$ can be chosen to be the complex conjugate of this function. It is not possible to simplify the expressions with another choose than f = 0. With this we obtain

$$\bar{A} = \frac{i}{2} \int_{0}^{\bar{w}} \frac{1}{h} \partial_z (\psi + i\chi) d\bar{w} , \qquad (27)$$

$$hA_z = h\chi + \frac{1}{2}\Im\{\Gamma\int_0^{\bar{w}} (\psi + i\chi)d\bar{w}\}$$

$$- 2\Im\{[h(\psi + i\chi)]_{\bar{w}=0}\} - \frac{1}{2}\Im\{\bar{\Gamma}\int_{0}^{w} [\psi + i\chi]_{\bar{w}=0} dw\}.$$
 (28)

With the knowledge of the magnetic vector potential and equation (2) we can compute the eikonal by integrating along a path $\vec{s}(z)$ that starts at $\vec{s}(z_0)$:

$$S = \int_{\text{path}} (m\vec{v} + q\vec{A})d\vec{s} = m_0 c \int_{z_0}^{z} \mu(z)dz$$
 (29)

with the rest mass m_0 . The right-hand side defines the variational function:

$$\mu(z) = \frac{1}{m_0 c} (mv + q\vec{A}\vec{t}) \frac{ds}{dz}$$
(30)

with the differential path length $ds = |d\vec{s}|$ and the tangent $\vec{t} = d\vec{s}/ds$. In complex notation the path is described by $w(z), \bar{w}(z)$ such that the variational function is written

$$\mu = \frac{mv}{m_0 c} \sqrt{h^2 + w'\bar{w}'} + \frac{q}{m_0 c} (\Re\{w'\bar{A}\} + hA_z)$$
 (31)

with w' = dw/dz. Because of the equations (27) and (28) this is equivalent to

$$\mu = \frac{mv}{m_0 c} \sqrt{h^2 + w'\bar{w}'}$$

$$+ \frac{q}{m_0 c} [h\chi - \frac{1}{2} \Im\{w' \int_0^{\bar{w}} \frac{1}{h} \partial_z (\psi + i\chi) d\bar{w}\}$$

$$+ \frac{1}{2} \Im\{\Gamma \int_0^{\bar{w}} (\psi + i\chi) d\bar{w}\} - 2\Im\{[h(\psi + i\chi)]_{\bar{w}=0}\}$$

$$- \frac{1}{2} \Im\{\bar{\Gamma} \int_0^w [(\psi + i\chi)]_{\bar{w}=0} dw\}].$$
(32)

The advantage of the formulas (27), (28) and (32) arises from the fact that no integration over the path length z is required. The necessary integrations with respect to w and \bar{w} are straightforward integrations of Taylor series which can be performed to arbitrary order by formula manipulators or DA programs.

Since the only constraint on the function $\chi(\vec{r})$ is that it has to fulfill the Laplace equation this function can be expanded in a series of plane multipoles whose coefficients $\chi_{\zeta}(z)$ can be chosen arbitrarily. With definition (10) and (11) we get

$$[\psi + i\chi]_{\bar{w}=0} = \frac{1}{2} \sum_{\zeta=1}^{\infty} (\bar{\Psi}_{\zeta} + i\bar{\chi}_{\zeta}) w^{\zeta} + \Psi_{0}$$
 (33)

where it was considered that Ψ_0 is real. The following choice simplifies the expansion for \vec{A} :

$$\chi_{\zeta} = -i\Psi_{\zeta} \text{ for } \zeta \neq 0, \ \chi_{0} = 0 \quad \Rightarrow \quad [\psi + i\chi]_{\bar{w}=0} = \Psi_{0}$$
(34)

which yields:

$$\bar{A} = \frac{i}{2} \int_{0}^{\bar{w}} \frac{1}{h} \partial_{z} (\psi + i\chi) d\bar{w} , \qquad (35)$$

$$hA_{z} = h\chi + \frac{1}{2} \Im \{ \Gamma \int_{0}^{\bar{w}} [(\psi + i\chi) - \Psi_{0}] d\bar{w} \} .$$

For the chosen gauge (34) the expansion of the complex scalar potential in plane multipoles has the form

$$\Pi = \psi + i\chi = \Psi_{0}$$

$$+ \Psi_{1}\bar{w}$$

$$+ \Psi_{2}\bar{w}^{2} + \frac{1}{4}(\Psi_{1}\bar{\Gamma} - \Psi_{0}'')w\bar{w}$$

$$+ \Psi_{3}\bar{w}^{3} + \frac{1}{8}(2\Psi_{2}\bar{\Gamma} - \Psi_{1}'')w\bar{w}^{2}$$

$$+ \frac{3}{16}\Psi_{1}\Re\{\Gamma w\bar{w}^{2}\}\bar{\Gamma} - \frac{1}{16}\Re\{(5\Psi_{0}''\Gamma + 2\Psi_{0}'\Gamma')w\bar{w}^{2}\}$$

$$+ \dots .$$
(36)

This expansion corrects equation (54) of [2]. Since the incorrect expression for the complex scalar potential has been used in that publication, equation (60) and (61) of [2] are also erroneous and must be replaced by the correct formulas for the components of the magnetic vector potential:

$$\bar{A} = \frac{i}{2} [\Psi'_{0}\bar{w}
+ \frac{1}{2} \{ (\Psi'_{1} + \frac{1}{2}\Psi'_{0}\Gamma)\bar{w}^{2} + \Psi'_{0}\bar{\Gamma}w\bar{w} \}
+ \frac{1}{12} (4\Psi'_{2} + 2\Psi'_{1}\Gamma + \Psi'_{0}\Gamma^{2})\bar{w}^{3} + \frac{1}{4}\Psi'_{0}\bar{\Gamma}^{2}w^{2}\bar{w}
+ \frac{1}{8} (\Psi_{1}\bar{\Gamma}' + 3\Psi'_{1}\bar{\Gamma} + 2\Psi'_{0}\Gamma\bar{\Gamma} - \Psi'''_{0})w\bar{w}^{2}]
+ \dots ,$$

$$hA_{z} = \Im\{\Psi_{1}\bar{w}\}$$

$$+ \Im\{ (\Psi_{2} - \frac{1}{4}\Psi_{1}\Gamma)\bar{w}^{2} - \frac{1}{4}\Psi_{1}\bar{\Gamma}w\bar{w} \}$$

$$+ \Im\{ (\Psi_{3} - \frac{1}{3}\Psi_{2}\Gamma)\bar{w}^{3}$$

$$+ \frac{1}{32} (-8\Psi_{2}\bar{\Gamma} + \bar{\Psi}_{1}\Gamma^{2} + \Psi_{1}\Gamma\bar{\Gamma} - 4\Psi''_{1} - 2\Psi''_{0}\Gamma)w\bar{w}^{2} \}$$

$$+ \dots ,$$

The gauge $\chi = 0$ yields the simplest variational function:

$$\mu = \frac{mv}{m_0 c} \sqrt{h^2 + w'\bar{w}'} - \frac{q}{m_0 c} \left[\frac{1}{2} \Im\{w' \int_0^{\bar{w}} \frac{1}{h} \partial_z \psi d\bar{w}\} \right]$$
 (39)

$$- \frac{1}{2}\Im\{\Gamma\int_{0}^{\bar{w}}\psi d\bar{w}\} + \frac{1}{2}\Im\{\bar{\Gamma}\int_{0}^{w}[\psi]_{\bar{w}=0}dw\} + 2\Im\{[h\psi]_{\bar{w}=0}\}].$$

With this formula μ can be computed to order n+1 if the multipole expansion of scalar potentials is known to order n. The reason for this fact is that the $(n+1)^{th}$ order expansion of $[h\psi]_{\bar{w}=0}$ is trivially

$$[h\psi]_{\bar{w}=0} = (1 - \frac{1}{2}\bar{\Gamma}w)(\frac{1}{2}\sum_{\zeta=1}^{\infty}\bar{\Psi}_{\zeta}w^{\zeta} + \Psi_{0}) . \tag{40}$$

Of course, the variational function of the eikonal method depends on the choice of the function $\chi(\vec{r})$ because the Lagrangian is not gauge invariant. Nevertheless, it was proved in [7] that the transfer function or map from the initial to the final plane, calculated by the eikonal method, does not depend on the gauge.

Acknowledgment

The authors thank R. Degenhardt for critical reading of the manuscript.

References

- [1] O. Scherzer, Z. Phys. 101 (1936) 593.
- [2] H. Rose, Nucl. Instr. and Meth. A258 (1987) 347.
- [3] E. Plies and H. Rose, Optik 34 (1971) 171.
- [4] Y. Li, Nucl. Instr. and Meth. A307 (1991) 151.
- [5] H. Rose, Optik 27 (1968) 466.
- [6] E. Plies and D. Typke, Z. Naturforsch. 33a (1978) 1361.
- [7] G. H. Hoffstätter, Diploma thesis, TH Darmstadt, 1991.

Figure caption

Figure 1: a) The curvilinear coordinate system, b) derivation of the metric coefficient $g_3 = |d\vec{r}/dz|$ at a point where the reference curve has a curvature of $1/\rho$.