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The eikonal method of charged particle optics requires a multipole expansion of the
magnetic vector potential. A procedure is outlined which allows a direct computation of
the vector potential from the multipole expansion of the magnetic scalar potential. It is
shown how the vector potential and the eikonal adopt a simple form by choosing a suitable

gauge.

1 Introduction

In electron microscopy and accelerator physics the motion of particles near
a reference curve is of interest. To describe the properties of such a particle
optical device, the coordinates Z; in the end plane of the device have to be
expressed as a function of the initial coordinates Z;:

Zp = M(Z) . (1)

The components of Z are the space coordinates 7 and the vector components
of the canonical momentum p. It is useful to expand this function or map
M in a Taylor series about a central curve. This can be done by evaluating
the equation of motion in Taylor expansions [1] or more effectively by using
the eikonal method which yields simpler formulas and automatically satisfies
the symplectic condition [2].

It is advantageous to describe the electric and the magnetic field by
scalar potentials and to expand the potentials in plane multipoles about
the reference curve [3] because the multipole coefficients are experimentally
accessible. The magnetic vector potential A is needed for calculating the
eikonal
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where d3is an element of the path taken by a particle with kinematic mo-
mentum m# and charge ¢. In the traditional way the computation of the
vector potential is one of the most cumbersome parts of deriving expansion
coeflicients of M by the eikonal method.

Recently it has been pointed out [2] that the procedure to compute the
vector potential from the scalar potential can be simplified considerably
by choosing a suitable gauge function. A mistake mentioned in [4] will be
corrected and the method will be explained in detail.

2 Curvilinear coordinates and complex notation

The coordinates near the central curve of reference will be written in com-
plex notation. A space point near this reference curve is described by a
vector with three components. Let z be the path length of this curve. Then
all space points which lie on a plane perpendicular to the reference curve
have the same z-component. In this plane we introduce a rectangular carte-
sian x,y coordinate system. The z-axis is located in the horizontal plane
as depicted in Fig.la. For mathematical simplicity it is advantageous to
describe the off-axial position by the complex coordinates

w=uzx+1y |, w=1x—1y . (3)
The metric coefficients of the curvilinear coordinate system shown in Fig.1b
are
dr dr dr p?—7p
n=lgl=1 . e=1Fl=1 . w-IF=0 @

where p is the local radius of curvature of the reference curve. The last
relation is simplified by using the complex curvature

Pz F1p .
The partial derivatives 0, d, with respect to the coordinates z and y are
related to the partial derivatives with respect to the complex coordinates w
and w via the formulas

0, = M0} . 9, = —23{0.},
du= 50— id)) . o= (0t id,) (6)

where R{...} and 3{...} denote the real and imaginary part, respectively.
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3 The magnetic scalar potential

In the case of static fields the magnetic field g(f‘), at a point 7 without
electrical current, can be derived from a magnetic scalar potential ¢ (7):

B(f) = V() (7)
where 9 (7) satisfies the Laplace equation
VA7) =0, 0

By employing the complex notation introduced in section 2 the Laplace
equation in the curvilinear coordinate system adopts the form

1 1

The solution can be expanded in a power series about an arbitrary curve.
The expansion coefficients [5, 3, 6] have an intuitive meaning. A field of
symmetry C¢ about the reference curve which does not vary with the path
length z has the potential ¢ = %{\IICQDC} because this harmonic polynomial
satisfies the Laplace equation and the required symmetry. The multipole
coefficient W, of symmetry C¢ is generally complex. Its phase describes
the orientation of the multipole with respect to the z,y coordinate system.
Therefore rotational symmetric fields are described by the real multipole
coeflicient Wy. If the field varies with path length z, a power series expansion

B = RIS aea(2) (wi) ) (10
¢ A

exists where the multipole coefficients

aco(2) = We(2) (11)

are functions of the z-coordinate. In the case of a straight reference curve
the Laplace equation yields

AINA+Qaexn + FZagr-1 =0, (12)
NS Lo a2
acy = (—1)\m(1)\3§\]‘1’< : (13)

For an arbitrary curvature I' a recursion formula can also be derived [3].
Therefore the multipole coefficients W¢(z) uniquely characterize the expan-
sion (10) provided they are analytic functions of z.



4 The magnetic vector potential

The relation between a specific vector potential A)*(F) and the scalar poten-
tial ¢ () follows from the identity

B(R) = V x (A(7) + VA(P) = V(7 (14)

where A(7) denotes an arbitrary real scalar gauge function. Using the com-
plex notation, the z-component of the magnetic field B(7) has the form

B. = —% = —23{0 (A" +20,A)} = 2R{ida(A* +20,0))  (15)

with A* = A} +14A}. For an arbitrary real scalar function x(7) the gauge
function will be chosen such that

—%azx = 23{i05(A* + 20,A)} (16)

which implies that the gauge function satisfies

40y DA = _% X — 2R{0s A7) . (17)

With this choice of gauge we obtain from equation (14)

0P hix) = 2i0aA (18)
2ih0y,t0 = —0,A+20,(hA,) . (19)

Here A = A*+VA denotes the vector potential in the new gauge. We choose
Xx(7) as an arbitrary solution of the Laplace equation

200 {ha (1 + i)} + 200 {hd (6 + i)} + az{%azw Fi)l=0. (20)

The linear combination II = % + tx has been defined as complex scalar
potential [2]. Here we want to stress the crucial point S{VZ2I[} = 0. Only
because of the specific choice (17) of the gauge function we were able to
deduce the simple equation (18) which can be integrated directly:

A= i 0.(¢ + ix)dw + f(z,w) (21)
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where f is an arbitrary function which does not depend on w. Inserting A
into equation (19) and employing the Laplace equation (20), we obtain

Ow(hA:) = ihdyt+ - [[=200{h0s(¢ +iX)} — 200{hdu (¢ + ix) Hdw

»-Jkl
O\E\

+ 5006w (22)

This relation can be directly integrated over w. The boundaries of the
integration must be taken into account very carefully by considering relations
such as [ 9 {h0y (¥+ix)}dw = hdy, (Y+ix) — [h0y (Y +iX)]u=0. Moreover,
the order of integration with respect to w and w must be exchanged. As a
result we find

w

hA, = é/h@w¢dw— %/{h@wwﬂx) — 7 (9 + )]0}

0
/ o (Y + ix)dw + = /8 f(z,w)dw+ g(z,w) . (23)
0

Integrating by parts and inserting the definition (5) of A yields

hA. = ik — SR+ i) ~ [ + 0l

] |

/ h(y + ix)ydw
0
+ o [pdw 4T / {(6+ix) = [+ ixlamo}duw

r

D\g‘ o

(¢ +ix)dw+ - /5’ f(z,w)dw + k(z, ) (24)

-

where g(z,w) and k(z,w) are arbitrary analytical functions of z and w. By
rearranging the terms on the right-hand side we obtain

11
hA, = hy+ ——{T
X+ 554

O\E\

(v +ix)do —T [ (- ix)dv}
0

w

+ iR +ix)]w=0 + i.f /[1/) + ix]a=odw
0



N | —

/ (z,w)dw + k(z, @) . (25)

The arbitrary functions f and k& must be chosen in such a way that the
right-hand side of (25) is a real function. The part

ilh(¥ +ix)] w_O‘I‘ /v—l—zxw odw (26)
0

is only a function of z and w. Therefore k(z, w) can be chosen to be the com-
plex conjugate of this function. It is not possible to simplify the expressions
with another choose than f = 0. With this we obtain

A= [ lowrivde, (27)

N | =
O\E\

1
hA, = hx+§%{r (¥ +ix)dw}

O\E\

— 2{[h( + o=} — 5T [0+ iNlumodu} . (28)

With the knowledge of the magnetic vector potential and equation (2) we
can compute the eikonal by integrating along a path §(z) that starts at §(zg):

S = (mT + qA)d5 = moc/,u(z)dz (29)
path
20

with the rest mass mg. The right-hand side defines the variational function:

1 -~ ds
= — At)—
w(z) moc(mv +q jdz (30)

with the differential path length ds = |d3] and the tangent i = d5/ds. In
complex notation the path is described by w(z),w(z) such that the varia-
tional function is written

\/ h? 4+ w'w! —|— R{w'A} + hA,) (31)

moc



with w’ = dw/dz. Because of the equations (27) and (28) this is equivalent

to
I h? + w'w'
mgc
1., ,[1
+ L —§§{w/E3 (v + ix)dw}
0
£ ST [ (64 ix)dw) 23R+ ix)]umo)

(¢ + ix)]w=0dw}] - (32)

The advantage of the formulas (27), (28) and (32) arises from the fact that no
integration over the path length z is required. The necessary integrations
with respect to w and w are straightforward integrations of Taylor series
which can be performed to arbitrary order by formula manipulators or DA
programs.

Since the only constraint on the function y(7) is that it has to fulfill
the Laplace equation this function can be expanded in a series of plane
multipoles whose coefficients x¢(z) can be chosen arbitrarily. With definition
(10) and (11) we get

(We + ixe)ws + Wy (33)

N | =
NE

W + iX]E):O =

¢=1

where it was considered that Wy is real. The following choice simplifies the
expansion for A:

X¢ = —i\IIC for ¢ 75 0, xo=0 = [’l,/) + iX]qD:O =Yy (34)

which yields:

b
Il
DN | ==

/% (¢ + ix)d (35)
0
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hA, = hx+§%{/ +iy) = oldw) .
0
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For the chosen gauge (34) the expansion of the complex scalar potential in
plane multipoles has the form

M=vy+ixy = ¥, (36)
+ Yw
+ Ww? + %(\Illf — U ww
1 _
+ Uyw® + §(2\112F — Uy ww?
3 - 1
+ U R{Twa?}l - Em{(5\1;gr + 20T ww?}

16
+ ...
This expansion corrects equation (54) of [2]. Since the incorrect expression
for the complex scalar potential has been used in that publication, equation

(60) and (61) of [2] are also erroneous and must be replaced by the correct
formulas for the components of the magnetic vector potential:

A = %[%w (37)
1 1 _
+ 5{(\11’1 + 5\1}6F)w2 + UiTww)
1 1,
+ E(wg 42U T + U w® + ZKIIBFQwQﬂJ
1 _ _ _
+ g(xplr’ + 3WIT + 2UIT — W) ww?]
+ ...,
hA, = S{Uw)} (38)
1 1 -
+ S{(Vy - Z\IllF)EQ - 7 UiTww}
1
+ S{(V3 - §\I/2F)u?3
1 B T 2 T n n —2
—|—3—2(—8\112F + T2 + U IT — 49" — 2UT)ww?}
_|_

The gauge y = 0 yields the simplest variational function:

muv — qg .1 ,
= /2 PR S fale¥
1] moc + w'w mOC[Q\s{w

0. dw} (39)

O\E‘
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ST [ o} + 33T [[Wlamodu} +23{[hlmo}]

With this formula g can be computed to order n+ 1 if the multipole expan-
sion of scalar potentials is known to order n. The reason for this fact is that
the (n + 1)** order expansion of [h1)] =0 is trivially

Bl = (1= 2Ew) (5 S Weut + ). (40)

Of course, the variational function of the eikonal method depends on the
choice of the function x(7) because the Lagrangian is not gauge invariant.
Nevertheless, it was proved in [7] that the transfer function or map from the
initial to the final plane, calculated by the eikonal method, does not depend
on the gauge.
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Figure caption

Figure 1: a) The curvilinear coordinate system, b) derivation of the metric
coefficient g3 = |d7/dz| at a point where the reference curve has a curvature

of 1/p.
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