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Survival times of
particles in storage rings

(:. H. Hoffstatter and M. Berz

Storage rings are designed to hold particles for a long time. In the SSC
this time is in the order of one day, which relates to 3 - 10® turns around the
machine. To ensure that the machine design is capable of holding the required
emittance for that number of turns, it is important to develop a method to find
out how long a particle with a given initial condition will remain inside the ring.
This could be done by tracking the paths of particles through 10® turns, which
in an accurate way is far too time consuming with todays computing power, and
the stability of motion can only be checked for a limited number of particles.
There are, however, some programs available that follow this approach using kick
approximations for the optical elements to speed up the computation [1]. Other
approaches look at the one turn transfer map that relates initial phase space
coordinates Z; to final coordinates after one turn z; = ]\?(Z) This one turn map
contains all information about particle motion after many turns since many turns
are described by successive action of the one turn map.

The transter map can be approximated in different ways. Recently an ap-
propriate choice of spline functions and fourier series has been applied [2]. More
Commonly, the Taylor expansion of the function is used. This Taylor map can be
obtained automatically to an arbitrary order when DA codes are used [3]. Time
considerations often restrict calculations to about order 12. Usually the Taylor
map approach is justified since in accelerators motion near the closed orbit is
weakly nonlinear. Once the one turn map is obtained, particles can be tracked
through the map to find out how long they stay inside the accelerator. Applying
high order maps the required number of turns can still be very time consuming
and, like in the case of element by element tracking, the stability can only be
checked for a very limited number of particles.

We want to propose a method which analyses the one turn map directly
without tracking through it several times. Furthermore this method will not only
test single particles but will give information about all particles in a given region
of phase space. We assume that there is a closed orbit in the ring. Particles with
phase space coordinates near the closed orbit will not be lost, particles which are
too far away from the closed orbit will be lost during their motion around the
ring. We therefore divide the phase space P into the allowed region O and the
forbidden region P\O.

The question we want to answer is: How many turns does a particle which



starts in a given region of phase space N circle the ring without leaving the
accelerator. We therefore look for the number

Niax = max{nUﬁ”(N) C 0} (1)

where Zﬁ”(./\/) = {Z\?”(E)ﬁ' e N}, and Zﬁ”(z) means applying the map n times.
The different regions are shown in figure 1 a). With the following method we will
find a strict lower bound N for N ax.
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Figure 1: a) The initial region N and the allowed region O of phase space P with
N C O CP.b) The gap Af that has to be bridged.

If we find a real valued test function f(2’) which does not have common values
in A and in P\O, then successive action for the map must bridge a gap Af as
shown in figure 1 b). Particles start to bridge this gap by entering the phase
space region §; = M(N)\N The gap is bridged when a particle has reached the
region Sy = ]ﬁ((’))\(’). If S; or Sy are empty, particles in N will never leave O. If
they are not empty, the gap goes from f; to f; with f; = max{f(2)|Z € S} and
fr = min{f(2)|Z € S;}. The function d(z) = f(]ﬁ(é’)) — f(2) describes how much
the gap is closed by the action of the map. If we assume f; > f;, the maximum
step from f; towards f; is

§ = max{d(Z)|Z7 € (O\N)} . (2)
A particle that starts in A therefore survives at least N turns with

N=(2h) 3)

We are thus left with four problems:

1. finding a suitable test function f(2) such that N becomes favorable.



2. finding f;, the maximum of f(Z) on S,.
3. finding fy, the minimum of f(2) on &;.

4. finding 6, the maximum of the change of f(Z) under the action of the one
turn map in the appropriate region.

Describing the initial region and the allowed region is essential to finding
S; and Sy and therefore to finding a function that changes substantially between
those two regions. The allowed region of an accelerator is typically given by the
acceptance in the x—p, phase space, the y—p, phase space, and the time-energy
phase space while it is assumed that the liner map does not couple these phase
spaces. The linear motion follows invariant ellipses in every plane. A canonical
transformation can be applied, which transforms those ellipses to circles. The
new coordinates are the linear normal form coordinates. Since the product of two
circles is topologically a torus, the particle moves on the so called invariant torus,
and the radii of those circles are the linear invariants of motion.

Giving those linear invariants of motion to describe the allowed region is
equivalent to specifying the acceptances ¢; of the machine. The pictures a) and b)
in figure 2 describe the ellipses which specify the boundary of the allowed region.
The allowed region can also be expressed in figure 2 ¢) by drawing the allowed

radii. The linear invariants are described by ]2(1)(5) and the conditions for the
allowed region is ]2(1)(5) < r; = /¢ for all subspaces i. For p, = 0 and p, = 0 the
radii are proportional to z and y. Since beamlines are circular, it is appropriate

to change the allowed region in figure c) by requiring:
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To keep the notation simple we describe the initial region N in a similar way with
radii ar; where a < 1. The boundaries are most easily described when a norm
is introduced which measures the distance from the closed orbit according to the
invariant torus on which the particle moves in linear approximation
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The different regions are given by:

N ={ze’ 2 ]2} ,0={Z11 = ||Z]]} . (6)
To make the desired estimate as good as possible, we should find a function f(2),
which tends to increase when ||Z]| increases and should at the same time be close

to an invariant to make 6 as small as possible.
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Figure 2: The motion on invariant ellipses in phase space: a) x—p;, b) y—p,. ¢)
The allowed and the forbidden region and the definition of ||Z]|.

Such a function is easily obtained when the transformation to circles is not
only performed for the linear map but for the complete nonlinear Taylor map
up to the evaluation order n. The radii of those circles are invariant up to the
evaluation order and are described by ]Z»(n)(,?). Those normal form radii are easily
obtained in the DA framework [4]. The desired function is therefore given by
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The remaining three problems are concerned with the finding of maxima.
The regions S; = M(N)\N and S; = M(O)\O can not be represented as clearly
as the regions N' = {Z|a? > ||Z]|} and O = {Z]1 > ||Z||}. This does not lead to a
problem when auxiliary functions ¢(2’) and h(2) are used,

L[ f(M(2) i M(Z) ¢ N

ﬂ@_{—K it M(2) e N (®)
L[ —f(M(2) it M(2) €O
M@_{K if M(2)e 0 )

with a sufficiently big parameter K. The required quantities are then given by
the following equations:

fi
Iy
5§ =

Those maxima can be

max{ f(?)|7 € S;} = max{g(?)|7 € N'}
min{ f(2)|Z € §¢} = max{h(2)|7 € O}

max{d(?)|z7 € (O\N)} . (10)

found in a mathematically rigorous way using interval

arithmetic [5]. Doing this would, together with equation 3, give a mathematically
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Figure 3: The functions a) F(z) and b) D(z) in the region O. c) Variation of
f(2) relative to ||Z]].
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Figure 4: d(Z) on the boundary between allowed and forbidden region

maximum 6 of this function has to be found. In this example the function varies
between —0.5-107¢ and 0.5-107°.

The



rigorous estimate for the survival time of particles propagated by the given one
turn Taylor map.

The functions f(Z) and d(2) have some properties which allow to make sen-
sible simplifications. Those properties will be demonstrated for the proposed
PSR II. The evaluation order is 6 and the acceptances are ¢, = lmm mrad.
As shown in figure 3 a), the function F(z) = max{f(2)|z = ||Z]|} is typically
growing monotonously with x so that the maximum of f(Z) on S; occurs at
|Z]] = o* and the minimum of f(Z) on Sy occurs at ||Z]] = 1. The function
D(z) = max{d(Z)|z = ||Z]|} is also typically growing monotonously as shown in
figure 3 b), so that the maximum é occurs at the border of the allowed region
(1I2]] = 1). Furthermore figure 3 b) shows that the variation of f(Z) relative to
|Z]| is much smaller than Af = f; — f; which therefore is close to 1 — a?. We

obtain the estimate

1 — a?

_ - (11)
max{d(Z)[1 = [|Z][}
which involves finding only one maximum on a subspace with constant ||Z]|. Figure

4 shows the function d(Z)) on the border of the allowed region (||z]| = 1). This
function does not have sharp maxima so that sampling with 20 steps in each

N =

direction does give a good approximation of the maximum value. Table 1 gives
N for different systems and for different evaluation orders for a® = 1/2. For the
pendulums the propagation after one second was taken as one turn map so that N
describes the time in which the instruments certainly stays in the allowed region.
Due to energy conservation, the pendulum and the coupled pendulums are stable
for all times. The quality of our estimate is shown by the big numbers N which
we obtain for those cases.

Order Pendulum Coupled Pendulums PSR II
(r =lmm mrad) | (r; = re =lmm mrad) | (r; = ro =lmm mrad)

3 1.37 - 10 1.04 - 10° 3.22 - 104

4 1.37 -10'° 1.02 - 10° 3.60 - 104

5 1.20 - 1015 5.42 - 10 6.37 - 10°

6 1.20 - 1015 4.20 - 102 6.94 - 10°

Table 1: Minimum number of turns N to move from IZ»(U =r;/2 to ]Z»(l) =r;.

The evaluation of the functions f(2) and d(Z), using interval arithmetic to
find the maximum values and therefore establishing a mathematically strict lower
bound for the turn number N,,,,, is currently under investigation.
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