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ABSTRACT

The fringe fields of particle optical elements have a strong effect on op-
tical properties. In particular higher order aberrations are often dominated by
fringe-field effects. So far their transfer maps can only be calculated accurately
using numerical integrators, which is rather time consuming. Any alternative or
approximate calculation scheme should be symplectic because of the importance
of the symplectic symmetry for long term behaviour. We introduce a method to
approximate fringe-field maps of magnetic elements in a symplectic fashion which
works extremely quickly and accurately. It is based on differential algebra (DA)
techniques and was implemented in COSY INFINITY. The approximation ex-
ploits the advantages of Lie transformations, generating functions, scaling of the
map with field strength and aperture, and the dependence of transfer maps on the
ratio of magnetic rigidity to magnetic field strength. The results are compared
to numerical integration and to the approximation via fringe-field integrals. The
quality of the approximation will be illustrated on some examples including linear
design, high order effects, and long term tracking.

INTRODUCTION

The fringe-field map of a static particle optical element is defined as the
concatenation of an inverse drift from the effective field boundary to a point
outside the field, the map through the fringe field, and the inverse map of the
main field back to the effective field boundary"?3. This is illustrated in figure 1.

So far high order transfer maps of fringe fields can only be calculated ac-
curately using numerical integrators®, which is very time consuming. Figure 2
shows the ratio of the time used for the computation of the main—field map to
the time used for the fringefield maps of a typical quadrupole and dipole for
different expansion orders. (The quadrupole used in the examples of this paper
has: length 41.9cm, a pole-tip field of 2T, and an aperture of 2.54cm. The wedge
dipole has radius 2m, an angle of 30°, and an aperture of 2.54cm. The ion cho-
sen is 03" with an energy of 25MeV per nucleon. The fringe fields used are
those of the Enge model®%7.) The accurate consideration of fringe fields slows the
computation down by orders of magnitude.
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Figure 1: Definition of fringe—field maps.

The computation of main—field maps for multipoles is so speedy because no
numerical integration is needed®. The map M(2) that transforms the canonical
variables of motion Z' of a particle before the main field into those variables behind
the main-field region can be calculated directly using the Lie derivative L; =

f-V + 0, that governs the motion dZ/ds = f(Z) in the main field:

dg(?)
ds

= Lyg(d) , M) =cobiz 1)

where g is an differentiable function, s is the path length of the reference trajectory,
and [ is the length of this trajectory in the main-field region. The first and second
order is particularly fast since the equation of motion is evaluated analytically
up to second order for multipoles. For dipoles, the equation of motion is solved
analytically to all orders by geometrical reasoning, including edge angles and edge
curvatures. Furthermore, the main—field map is accurate to machine precision
(1071%), whereas COSY uses a Runge-Kutta of eighth order which for the sake
of speed is usually set to an accuracy of 10"~? for order n. This integrator is
thought to be most efficient for the differential equations of particle dynamics®.
The righthand picture in figure 2 shows the normalized average relative difference
for map coefficients computed with and without fringe fields for different orders
of the map. Note especially that this average < |“7|,l| > /1In(2) would approach 1

la]+
for totally randomly distributed numbers @ and b.

The simplest approximation is to ignore fringe fields, which is often referred
to as the sharp cut off fringe field (SCOFF) approximation. This approximation
is very inaccurate. Firstly, a field raising rapidly from zero to the main-field value
does not satisfy Laplace’s equation. In second order this problem was solved with
the impulse approximation'? which is used in the second-order particle optics code
TRANSPORT and related codes'!. Secondly, the detailed fringe—field shape has
a strong effect on optical properties’?. The results of computations with fringe
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Figure 2: The ratio of computation speed for the two fringe—field maps and the
main—field map using COSY INFINITY. Left: quadrupole, middle: dipole.
Right: Average relative difference of map coefficients for a dipole with and without
fringe field.

fields differ significantly from the results of the SCOFF approximation.

Often the effect of fringe fields is approximated by fringe—field integrals. This
was done in third order for GIOS'?! and attempts are being made to extend this
to fifth order for some particle optical elements'2. The approximation by fringe—
field integrals, however, has some serious disadvantages:

e It is nonsymplectic and therefore not especially suited for cases where sym-
plectic tracking can be advantageous, for example circular machines.

e It represents the fringe effect well only if the region of the fringe field is not
much bigger than the dimension of the beam diameter.

e It is limited to low orders and usually not very accurate.

In order to speed up the fringe—field calculation in the arbitrary order code COSY
INFINITY, we searched for a method that does not have those drawbacks, works
fast, and to all orders.

SYMPLECTIC SCALING

In the following we will use TRANSPORT notation for the map'* which
means the variables of motion are the cartesian coordinates and slopes z,z', y, ¢/,
the path length difference [, and the relative momentum deviation from a reference
momentum J,. Those six quantities form the vector Z. The transfer map describes
the transformation of an initial Z; into a final 2y by means of an optical element:

Zp=M"(3) . (2)



The index P indicates that the map M depends on certain parameters like the
momentum p, mass m, and charge z of the reference particle and the aperture A
of the optical element.

From now on we will restrict ourselves to magnetostatic elements, although
parts of the procedure are applicable to electrostatic elements, too. The bending
radius of the path of a particle with momentum p at field B is

p
R=—— 3
B, (3)
where B, denotes the field component perpendicular to the momentum of the
particle. All maps that describe particles with equivalent bending radii along
their path are identical. If the map for a specific beam is known as a function of

the field B at the pole tip, the transfer map for all other beams can be computed:
(4)

The map on the right hand side is known as a function of the field B, whereas
the left hand side describes a map that is calculated at a certain field B*. This
is just another way of saying that the map depends only on the ratio of field to
magnetic rigidity.
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Figure 3: The coordinates of the particle trajectories in two elements scale with
the factor « if the elements scale with the factor o and the fields scale with the
factor 1/a.

Let us now consider two similar magnetostatic elements that differ only by
a scaling factor . If the bending radii also differ by a factor of «, the maps are
similar. Equation (3) shows that this is the case whenever the increase in size by



a factor « is accompanied by a decrease in the field strength by the same factor.
After scaling the coordinates x, y, [, we obtain
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The second dimension (y,y’) is not mentioned because it has the same properties
as (x,2').

To conclude, we state that the knowledge of the transfer map as a function
of the field strength at the pole tip for particles with a specific magnetic rigidity
and for an element with a specific aperture is sufficient to know all transfer maps
of similar elements for all energies, masses, and charges. In fact the map does
not even have to be known as a function of the field because the dependence on
the field can be obtained by equation (4) from the dependence of the map on
the momentum. In general it is useful and customary to work with the canonical
coordinates® (z,p/po, Y, Py/Po, (to — t)Eo/po, 6r) where the subscript 0 indicates
quantities of the reference particle that defines the reference trajectory. For this
purpose one has to transform between TRANSPORT and COSY notation.

COSY INFINITY can readily compute the map of a fringe field of certain
aperture MEm™#4  with 65 being the sixth variable. The map MP™#4 of g
certain fringe field for a certain beam has to be stored once as a function of B
in order to compute maps of similar fields and all kind of beams. The functional
dependence on B can be approximated by a Taylor expansion, the coefficients of
which are computed by COSY INFINITY automatically. The accuracy of this
expansion depends on the chosen order and on the relative difference of the ratio
of bending radius to aperture in the scaled and the saved element. Unfortunately
the symplectic structure of the map would not be conserved in this process. Sym-
plecticity, however, is an intrinsic symmetry of canonical motion that arises from
the special structure of Hamilton’s equations. It should not be violated, especially
when long term behaviour is of interest!5:16:17,

This drawback can be eliminated by storing the reference map M®™%4 in a
symplectic representation, either in the form of a generating function'®, or in the

form of a Lie exponent
7 = L(B)eT®) 3 . (6)

In higher orders the representation via generating functions is slow because a map
inversion is required®. The Lie representation has the disadvantage that the matrix
L(B) can only be approximated and is not exactly symplectic. A combination of
both methods is most efficient: We represent the nonlinear part by P(B) and the



linear part by the generating function F'(B) that is most accurate for the given
matrix L(B).

EXAMPLES

In this section, we will illustrate the profitable use of the method with several
examples. In order to evaluate speed and accuracy of the proposed approxima-
tion, we study a certain aberration coefficient of a quadrupole. Figure 4 shows
the dependence of the expansion coefficient (z|rza) as a function of the field B
at the pole tip. Because functions like this can be closely approximated by poly-
nomials, symplectic scaling (SYSCA) is quite accurate. Even at the border of the
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Figure 4: left: (z|xza) for a quadrupole as a function of the field at the pole tip.
right: Error A of the approximation of (z|zza) with different expansion orders
for the reference representation at B=2T.

range in figure 4 the presented method is more accurate than the COSY standard
integrator. Close to the value with which the reference file was produced, the
accuracy increases drastically. The results in figure 4 were obtained by evaluating
the symplectic reference representation to third, fourth, and fifth order. The ac-
curacy can be further improved by increasing this order which of course increases
the computation time that has to be invested for creating the reference map in
advance. This investment can be very much rewarding, especially when beamlines
or spectrometers are being fitted or when system errors are analyzed so that maps
of similar fringe fields are needed over and over again with only slightly different
parameters. The SYSCA approximation is especially helpful in the design of a
realistic system after approximate parameters of the elements have been obtained
by neglecting fringe fields. These values can be used to create a reference file for
symplectic scaling. In this way, a very high accuracy almost equivalent to accurate
but time intensive numerical integration can be obtained. The time advantage of
this method is illustrated in figure 5.

Fringe fields do have noticeable effects already in first order. In the example
of the A1200% isotope separator at the NSCL, the effect of the fringe fields on
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Figure 5: Factor of time advantage of SYSCA to numerical integration with ac-
curacy of 10" as a function of the expansion order. Left: Quadrupole, Right:
Dipole.

© and C;y with SCOFF approximation 80.8840° —65.96m
© and Cj with dipole fringe fields only 81.1696° —65.96m
© and Cj with quad fringe fields only = 81.2694° —682.68m
© and Cjy with SYSCA approximation 81.2701° —687.10m
© and Cj with actual fringe fields 81.2702° —687.10m

Table 1: Tilt angle and opening aberration for various fringe—field models.

the calculated setting of the field strength is shown in figure 6. The fringe fields
were described by Enge functions, and the Enge coefficients had been fitted to
measured field data. Here the time advantage of the proposed approximation in
the fit is three minutes versus two hours. As a measure of accuracy, we study
the tilt angle © of the dispersive image plane and the opening aberration Cj for
various approximation methods. In the discussed device the coefficient (z|aa)
vanishes because of symmetry of the axial ray and anti symmetry of the dipole
fields; therefore (z|aaa) is the relevant opening aberration,

(w]ad)

0= (ala)(@[5) Co = (z|aaa) . (7)
Table 1 shows © and C, for various finge—field models. The values of © with
and without fringe fields differ by 0.5% for the first dispersive image plane in
the A1200; the third order aberration, however, is completely wrong if fringe
fields are disregarded. This comparison also shows that quadrupole fringe fields,
although often disregarded, can have effects which dominate over dipole fringe
fields. Nonlinear effects can be seen by sending a cone of particles through the
7t order A1200 map. The images with SCOFF and SYSCA approximation are
shown in figure 7. The maximum angle used is 15mrad.
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Figure 6: Relative deviation of predicted field settings with SCOFF and SYSCA
from the correct settings for five quadrupoles. The standard fringe field approx-
imation of TRANSPORT is given as a reference; the deviation is mainly due to
the neglect of quadrupole fringe fields.



Figure 7: Beam spots with SYSCA (left) and SCOFF (right) approximation. The
plot produced with the exact fringe fields can not be distinguished from the plot
produced with SYSCA.

The effort involved in generating a symplectic approximation is rewarded
when repetitive tracking is being performed. The example lattice of choice is the
proposed PSR II Ring. The 9" order 5000 turn tracking pictures are displayed
in figure 8. The tracking was performed with the described standard numerical
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Figure 8: 5000 turn tracking with fringe fields obtained by numerical integration
(left), SYSCA (middle), and a nonsymplectic fringe field approximation (right).
The initial position of the particle is (z,y) = (3cm, 3cm) with no initial inclination.

integration, SYSCA, and a nonsymplectic fringe-field approximation obtained by
low accuracy numerical integration. Nonsymplectic tracking rapidly destroys the
phase space. SYSCA yields more stable results than the numerical integration
since the limited accuracy of the numerical integrator slightly violates symplec-
ticity. The corresponding 9" order maps were produced with the SYSCA mode



in COSY INFINITY in 30 minutes, whereas the standard numerical integration
took 15 hours, and the nonsymplectic approximation took 44 minutes on a VAX
4000-90 computer.
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