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ABSTRACT

RIGOROUS BOUNDS ON SURVIVAL TIMES IN CIRCULAR ACCELERATORS
AND EFFICIENT COMPUTATION OF FRINGE-FIELD TRANSFER MAPS

By

Georg Heinz Hoffstatter

Analyzing stability of particle motion in storage rings contributes to the general
field of stability analysis in weakly nonlinear motion. A method which we call pseudo
invariant estimation (PIE) is used to compute lower bounds on the survival time in
circular accelerators. The pseudo invariants needed for this approach are computed
via nonlinear perturbative normal form theory and the required global maxima of
the highly complicated multivariate functions could only be rigorously bound with
an extension of interval arithmetic. The bounds on the survival times are large
enough to be relevant; the same is true for the lower bounds on dynamical apertures,
which can be computed. The PIE method can lead to novel design criteria with the
objective of maximizing the survival time. A major effort in the direction of rigorous
predictions only makes sense if accurate models of accelerators are available. Fringe
fields often have a significant influence on optical properties, but the computation of
fringe—field maps by DA based integration is slower by several orders of magnitude
than DA evaluation of the propagator for main—field maps. A novel computation of
fringe—field effects called symplectic scaling (SYSCA) is introduced. It exploits the
advantages of Lie transformations, generating functions, and scaling properties and
is extremely accurate. The computation of fringe—field maps is typically made nearly

two orders of magnitude faster.
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Foreword

Predictions of accelerator performance require an accurate model of particle optical
devices and accurate computation schemes to evaluate the motion of particles in
each element of the accelerator. Usually it is considered an accurate description of
an accelerator when the motion of a single particle can be computed with a small
error. However, having such an accurate model available only allows one to evaluate
the accelerator’s influence on a limited number of particles. Thus, any approach
computing single particle motion can only evaluate the action of the accelerator in a
subset of phase space of measure zero. Completely rigorous predictions of accelerator
performance can therefore only be achieved when the accelerator’s action can be
evaluated on the entire relevant phase space region. The presented work deals with
both problems, rigorous predictions and accurate computation of charged particle
motion in optical systems. The predictions concern the survival time of particles in

storage rings.

This dissertation is naturally divided into three interrelated parts. These are
a detailed chapter on normal form theory; the description, application, and rigorous
evaluation of what we call the pseudo invariants estimation (PIE) method for survival
time bounds; and finally a chapter on the DA based tool of symplectic scaling. Each
of these parts has a detailed introduction including references and comments about
the history and purpose of the approaches which will be developed. Please refer to

the pages (5), (50), and (126) for these specific introductions.

1



All parts of this work use transfer maps M of dynamical systems that map initial
phase space coordinates Z; into coordinates Zy which are considered final in some
sense. This transfer map can also depend on n, parameters 6;, 1 € {1,...,n,} of
the physical system involved, leaving z; = Z\?(Z_}, 5) In the applications which will
be presented, the dynamical system is a particle moving in an accelerator or storage
ring. Following the belief that the quality of a Ph.D. thesis increases with a decrease
of the presentation of well known material, the so—called DA method of manipulating
and computing all derivatives of a transfer map up to order n, will not be intro-
duced in detail but will only be described shortly. It is based on the possibility of
introducing “=,,” as an equivalence relation, equating functions which have the same
partial derivatives at the origin up to order n. Taking derivatives at the origin is not
a restriction, since the origin can be shifted to any reference point by transformation.
Traditionally, equivalence in this sense is expressed by considering functions as equal
up to order n, since the partial derivatives specify the Taylor expansion up to order
n. The theory of constructing a differential algebra on the set of equivalence classes

”

created by “=,” is introduced with rigor in [Ber92a]. When it is relevant to the
presented work, it will be used and restated that agreement up to order n can be
expressed by an equivalence relation. Often we will refer to Taylor maps, which rep-
resent an equivalence class. The terminology of Taylor maps rather than equivalence
classes is used, since many readers will be acquainted with manipulating Taylor maps
up to order n. It should, however, be realized that no approximation is made when
Taylor maps are used. To the contrary, all partial derivatives which are equated with
“_ »

=,” are exact. Therefore, computations within the differential algebra of derivative

classes leads to all partial derivatives up to order n without any approximation.

In normal form theory, which is treated in chapter (1), a map M will be trans-

— —
formed by means of a nonlinear transformation A into a normal form map N =,



AoMo A1, The Taylor expansion of N has as many vanishing Taylor coefficients as
possible. As usual, the symbol “o” describes the composition of maps. Although A
is a Taylor map and all arguments are performed with respect to “=,”, strict state-
ments about the partial derivatives, which are the Taylor coefficients, can be drawn.
Normal form theory will serve to obtain functions f which are invariants of the map
M up to order n + 1 and thus f o M =,41 f. For weakly nonlinear dynamics, these
functions are approximate invariants, or pseudo invariants, of the transfer map. This
is, for instance, the case for particles moving close to the central periodic orbit in a

storage ring, which is represented by the origin of phase space.

For the PIE method, a pseudo invariant f will be found which is suitably chosen
to let f(Z) describe the distance between a particle with coordinates 2" and the central
orbit. At this orbit, f(2) = 0. A = {Z]f(Z) < €} is a volume in phase space which
contains the origin. In an application of the map M on 7, the so described distance
from the origin changes by d¢(2) = (f o M)|g — f(2). Where evaluating a function
f at Z'is written as f|z, which is equivalent to f(Z). If the maximum é of ds on the
phase space volume A can be found, it can rigorously be said how far a particle can
move away from the closed orbit in one turn. It can also be stated rigorously that
particles in the phase space volume O with O = {Z|f(2) < e — Né} will not leave the
volume A for N applications of the map. Analyzing the prospects of this approach
and bounding the maximum of d; rigorously by an extension of interval arithmetic is
the main subject of the chapters (2), (3), and (4). First results of this method were

reported in [BH94b].

This approach is only rigorous for single particle motion, since the one turn map
is computed for a single particle. Particle loss due to residual gas scattering, beam-
strahlung in the collision region, space charge effects, and other collective effects are

not considered.



A substantial effort for making predictions of accelerator performance rigorous,
like the introduction of interval chains in section (4.2) or the development of differen-
tial algebra with remainder intervals (RDA) in [BH94al, is only useful if the transfer
maps of accelerators can be described accurately. In chapter (5) it will be shown that
often the influences of fringe fields are very relevant, especially for higher order deriva-
tives of the transfer map. The well established DA method of obtaining Taylor maps
of particle optical elements by evaluating Lie derivatives can only compute transfer
maps of main field regions, and numerical integration in DA is very time consuming.
For the method of symplectic scaling (SYSCA), it will be analyzed how known scaling
properties of maps in geometric coordinates can be used to scale symplectic repre-
sentations of the transfer map of a Hamiltonian system. The representations used
are various generating functions and exponential Lie operators. To apply SYSCA,
a symplectic representation is computed by integration in DA as a function of the
magnetic field of one specific particle optical element and a specific particle. The
Taylor expansion of this function is stored to a file. Scaling this symplectic repre-
sentation of the fringe-field map for a different particle or for a different size of the
optical element is much faster than the conventional methods which leads to accurate
fringe—field maps and it is also much more accurate than a number of conventional
approximations which will be mentioned. Additionally, this method leads to maps
which are symplectic up to order n. Several examples will demonstrate the usefulness

of this method.



Chapter 1

Normal Form Theory

The idea of normal form transformations for simplifying differential equations is very
old (according to [Nay93] it goes back to Euler’s days). After Poincaré’s work on
maps in nonlinear dynamics [P0i99], normal form transformations were used for maps
by Birkhoff [Bir27] and many others after him. Reference [Tur91] gives a detailed
account of the history of normal forms. For symplectic maps, the possibility of normal
form transformations was mentioned in [DF76] and computationally performed for
Taylor maps in high orders in [FBI89]. In these approaches the symplecticity was
guaranteed by the use of exponential Poisson-bracket operators. In [Ber93b] a method
of computing the normal form of maps was demonstrated which can be applied to
non-symplectic maps as well. This approach can be evaluated in a straightforward
way with DA-based programs and was implemented in the code COSY INFINITY
[Ber92b]. This chapter will explain this method, and it will be shown that it can be

used to obtain pseudo invariants for symplectic maps.

We will use the symbol “=,” to indicate that the left and right hand side of an
equation have the same partial derivatives at the origin up to order n; in other words,
the Taylor expansions of the left and the right hand side agree up to order n. It can
be shown that “=,” is an equivalence relation and therefore establishes equivalence

classes. A differential algebra of these equivalence classes can be constructed [Ber92a]
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which can be used to formulate relationships for the partial derivatives of functions.
This theory establishes in a rigorous way that the well known method of evaluating a
function of a Taylor expansion leads to the correct Taylor expansion of the resulting

function and therefore to correct partial derivatives.

All arguments will be performed with Taylor maps, but it is worthwhile to keep
in mind that an n'* order Taylor map, i.e. a map whose vector components are
polynomials of order n, is one representative of an equivalence class established by

“=,7. What is found for Taylor maps is also true for partial derivatives.

1.1 Normal Form Theory for Order n Symplectic
Maps

Conventions: Some notations will be used often, therefore we want to define them
now. Jog 1s the 2d x 2d matrix with

1 foreoddand j=¢+1

Jagij =% —1 forievenand:=j7+1 . (1.1)

0 else
The identity function will be symbolized by Z, i.e. z(Z) = a; for all Z. Often an
incorrect notation is used by writing expressions like (f_Ta_))kE, while 2" is understood
to be an element of IR*? and fis a function IR?*? — IR*@. This must be wrong, since
7 € IR* can not be differentiated. Sometimes this problem is corrected by using
the identity I to write (ng)kf Since this notation can become very peculiar and
unconventional, a slightly different but very useful notation is advocated. The clarity
of the incorrect notation can be conserved by simply choosing Z' to be the identity
map. This convention will be used consequently. Elements of R?? will usually be

denoted by 7.

At this point attention should also be drawn to another incorrect use of notation.



For a function ¢ : IR*® — IR, g(f) is incorrectly written, since g acts on elements of
IR*, not on functions like f The correct notation for a concatenation of functions
isgo f This clear notation can become important to avoid misunderstandings. An

—

example is the ambiguity of g(f—l— Z), which could either mean go (f—l— Z)org- (f—l— )
Strictly speaking it is also incorrect to write go Z for £ € IR*, since “o” concatenates
functions, and Z is not a function. In this chapter the notation ¢(¥) is usually used;
whenever this would cause confusion, ¢|z is written for the evaluation of the function

g at ©. Now enough about these trivialities, which are only mentioned to advocate

correct use of notations.

The partial derivative of f with respect to its ¢'* variable is written as 9;f. If f
only depends on one variable, f will denote the derivative. Multidimensional maps
will be denoted by capital vectors, e.g. ]\_j, and their 2d x 2d Jacobi matrix by the
capital letter, e.g. M; so M;; = 0;M;. The Gauss bracket or integer part “[...]”
will often be used. All the maps we will mention will be assumed to be sufficiently
differentiable, such that all partial derivatives at the origin equated by “=,” will be
defined. All the maps we will mention will be origin preserving. Since this restriction
will be implied for every map, we will not mention it further. Concatenation of

functions is denoted by ”0”.

Before we state the theorem about normal forms, we will define some terminology

and review some properties of symplectic matrices.

Definition 1.1.1 (Order n Symplecticity)
A 2d dimensional map ]\_j, with a Jacobi matriz M that satisfies the symplectic con-

dition up to ordern — 1,

MJqMT =, Jaq , (1.2)

is called order n symplectic. The set of all order n symplectic maps which are @'*% —



@ is denoted by SP*(@). Correspondingly, SP**(IR) symbolizes the set of all order

n symplectic maps from IR*? into IR*.

A Jacobian satisfying MJy,yMT =, 1 Jyg satisfies det(M)? =,_; 1. Therefore,
an inverse of the matrix ZW((T) exists. All operations which lead to a matrix inverse
via Kramer’s rule can be performed with the Taylor expansions of the elements of
M. Neglecting all orders higher than n — 1 yields a matrix M; with the property
MMy; =,_1 MiM =,,_; 7., which symbolizes the unit matrix. The unit matrix is

denoted by 7, since it is the Jacobian of the identity map 2.
M JogM =,y —JpgMp(M JogMT) JogM =, _; Jaq (1.3)

Therefore, just as there are two conditions for symplectic matrices, there are two

equivalent conditions for order n symplectic maps,
{M|MT JyuM =, _y Jq, M} = {M|MJ2aMT =,_1 Jog, M} , (1.4)

where the maps are either IR?? — IR*® or ¢%¢ — ¢'%,

Theorem 1.1.2 For IF' being either IR or@', the concatenation szzl) € SP*(IF) and

Be SP(IF) is order min(m,n) symplectic.

Proof: Let us first establish the Jacobian C of the concatenation ' = A o g,

2d
Cyj = 9;Ai(B) = 3 0;Bi{(9A;) o B} or C = A(B)B . (1.5)
=1

Now the theorem follows immediately, because

CJ24CT = A(B)BJyuBY AT(B) =, (ATJ54A) 0 B =pinmm) Jad - (1.6)

Definition 1.1.3 (Non—Degenerate Maps)

The eigenvalues of the Jacobian at the origin ZW(@) of a map M are called the linear



eigenvalues of M. We cdll a map non—degenerate if all its linear eigenvalues have

multiplicity one.

Theorem 1.1.4 If X is an eigenvalue of a symplectic matriz N, then also \™! is an

eigenvalue of N and they both have the same multiplicity.

Proof: The symplectic condition NJyyNT = Jyy yields N=' = JngTJ;dl, which
shows that N=! and N7 are similar matrices, since J;;' = —.Jyy. Therefore, N and
N~! have the same characteristic polynomial; this proves theorem (1.1.4). This also
shows that non—degenerate symplectic matrices cannot have 1 as an eigenvalue. We

will always arrange the eigenvalues of symplectic matrices to get Ag;_1Ag; = 1.

Definition 1.1.5 (Resonance of Order m)
The 2d eigenvalues \; of a non—degenerate symplectic matriz, which are ordered to

give Ay;_1X\y; = 1, are said to be in resonance of order m if there is a set of d integers

ki with Y4 k] =m 4+ 1 and [TL, A =1,

Definition 1.1.6 (Order n Inverse)

A map Abn with A" 0 A = Ao A~Y" =, 7 is called an order n inverse of A.

—

Theorem 1.1.7 Let order n symplectic map M be OTIgIN PTESETVING, U.€. ]\1(6) = 0.

Then M has an order n symplectic order n inverse.

Proof: First it will be established that every map with a non-singular Jacobian at
the origin has an order n inverse. We use the linear map M; = ]\_j, which has an
inverse, and we write N = M o Zﬁfl — Z which has (5N1)|6 = 0 for all its components.

Now,

n

M™% =, Mi'o (243 (-1)'NY) (1.7)
=1
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where raising a map to power ¢ means concatenating it ¢ times with itself. Inserting

shows that M ~1" is indeed an order n inverse of M:

M=o M =, M o(Z+ (=1)"N"")M, =, 7 (1.8)
MoM™" =, Z+N)o(Z+(-1)"S. N)=,7%. (1.9)
=1

Since the Jacobian of M at the origin is a symplectic map, its determinant is plus
one [MHO91], and there is an order n inverse of M. Since the unit matrix Z is the

Jacobian of the identity Z, it can be written Z =,y (M~'" o ]\2)]\1 and therefore

{(M™" o MYM JpgMT(M™5"T o M)} o M~ =,y M~V JogM =" =, | Jpy
(1.10)
which finally proves order n symplecticity of the order n inverse.

It is worthwhile to remark that the equivalence classes of origin preserving order

”

n symplectic maps form a group, if “=,” is introduced as an equivalence relation.

With these definitions and with the aforementioned conventions, we will set out
to prove the main theorem about symplectic normal forms. This theorem deals with
general order n symplectic maps from /R*" into IR*" and leads to a complex normal
form map; therefore it is not very intuitive. For the special case of maps M with linear
eigenvalues of modulus one, theorem (1.5.4) on real normal forms will be shown later,
which has a graphic interpretation. In this case the real normal form map produces
rotations in d two dimensional subspaces up to order n. The amplitudes of these
rotations will be seen to be invariants of M up to order n+1. However, such invariants
can also be found for the general case. The general theorem will be formulated first

and specific cases will be considered later.

Theorem 1.1.8 (Symplectic Normal Forms)
A non—degenerate map M € SPde(]R) with linear eigenvalues which are not in res-

onance to any order m < n can be transformed by means of a« map A and an order
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n inverse A" € SPX(@) to N =, Ao M o A='" € SPX (@) such that there are 2d

polynomials f;, 1 € {1,...,2d}, of order [(n — 1)/2] which satisfy the conditions

Jaic1 foi -1y 1 and f2:0i fo; =((n-3)/2) J2;0; 2 Vi,5 € {1,...,d} (1.11)

and describe the 2d components ofﬁ by

N[ =n Z[(f[ o] 6?) with A; = Z2;-172; Y1 € {1, e ,d} . (112)

Maps N and A with the given properties are called a normal form map of M and a
normal form transformation for M respectively. In special cases, further restrictions
are imposed on f;, which will be the subject of another theorem. We will prove that
in first order such a transformation exists and then proceed by induction to higher
orders. This proof is chosen because it illustrates a method with which a normal form

map and a normal form transformation can be computed.

1.2 First Order Transformations

The map ]\_j, which has no constant part ]\?(6), will now be transformed to have a
diagonal linear part. Let ]\1(6) denote the Jacobi matrix at the origin. This matrix
can be diagonalized, since it is non—degenerate by the assumption of the theorem.
The linear transformation that diagonalizes ]\1(6) will be denoted by A;. In order to
illustrate that A; can always be chosen symplectic, we will review some properties of

symplectic matrices. A discussion of such properties is, for example, given in [MH91].

Theorem 1.2.1 The eigenvectors v; and Uy corresponding to eigenvalues \; and A

of a symplectic matriz with My # 1 are Joq orthogonal, i.e. U1 .Jyvy = 0.

Proof:

(MAx — DT Jaath = 0 (NT JgaN — Jog)0, = 0 (1.13)
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Theorem 1.2.2 If a non-degenerate symplectic matriz B has only eigenvalues of

multiplicity one, then there is a symplectic transformation C, possibly complez, to

diag(A1, ..., Agq) which satisfies Ay Ag; = 1.

Proof: Since the matrix B is non—degenerate, the eigenvectors v; are linearly in-
dependent. Because det(.Jyg) # 0, the vectors Jyq) are also linearly independent.
Therefore, with theorem (1.2.1), 17}TJ2d17k # 0 when MA;r = 1. Let us order the eigen-
values to have Ag;_1A2; = 1 and scale the eigenvectors to get ﬁ;_ljzdl_fzi = 1; then the
matrix C~1 with column vectors v is symplectic. According to the proof of theorem
(1.1.4) its inverse C is also symplectic. Furthermore C BC™! = diag(Aq, ..., A2q) with

A2ic1Ag; = 1.

Let us choose 14_1)1_1 = Y ¥ %z with the eigenvectors 7 of M(ﬁ) according to
theorem (1.2.2). After the transformation %_1)1, the Jacobi matrix of the n'* order

Taylor map N, with Ny =, A; 0 M o /_1)1_1 has the property
Nle(a) == /\l5lk Vlk € {1, ce ,Qd} and )\22'_1 . /\22' =1. (114)

With this choice, %_1)1,/4_1)1_1, N, € SPX*(@); N has the structure of the theorem about

symplectic normal forms to first order, i.e. Nl =y zi(fiod) with fi = A,.

1.3 Nonlinear Transformations

We will break down the rest of the proof, which addresses the nonlinear structure, in

three parts.

1. Prove that there are transformations A and A~'" which transform M to normal
form structure N; = z/(f; o @) for some polynomial f;. This part was already
proven in the literature [Ber93b]. For completeness and since it does not take

much space, it will be proven here as well.
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2. Show that requiring order n symplecticity for N is equivalent to the conditions

for f; which are imposed by the theorem on symplectic normal forms.

3. Prove that A and A='" can be chosen order n symplectic.

After having performed the first order transformation, we proceed by applying

maps /_1)2, ceey A, which successively transform M from second order up to order n,
ﬁm_l:nf_l)m_lo...oglo]\_jogflo...og;f_’?. (1.15)

Every map A; is chosen so as not to have an influence on any order below z. Since
we are only interested in partial derivatives up to order n, we choose all maps ﬁm,
%_fm, and /_l);bl’” to be polynomial maps of order n. We assume that the components of
me_l already have the structure N,,_1; =, -1 z(fiod) to order m—1. The map Nm_l
is then said to be in normal form up to order m —1. We now look for a transformation

A,, which only affects the orders greater or equal to m and transforms the map into

normal form to order m.

The linear part of the map ]\71, which also is the linear part of the maps N; with
it €{1,...,m — 1}, is denoted by L. According to section (1.2), the Jacobian L is a

diagonal matrix.

(7
=n Np1+TwoL—LoT, . (1.16)

T, is a polynomial map which only has m** order contributions. This map T., has to
be chosen suitably in order to eliminate as many Taylor terms of N,o_1 as possible.

To find the proper choice for fm, we write it as a Taylor expansion. For simplification
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of notation, we use the norm ||k|| = Y2, |k| and denote the {** component of T, by

|IK]|=m

Tpy= . (Tglk)zi .- 2 (1.17)

k

With this notation, it then follows that the /** component of the commutator of L

and T, has the Taylor expansion

L]Ofm—TmJOZ

[[k||=m
= Z (Tm7l|k){/\12i€1 et Zécfld — ()\121)161 el (/\2dZQd)k2d}
E
[[k||=m . A i
= 3 (Tglk) (N = AP e M) 23 (1.18)

k

For simplicity we will employ the notation NF = 1, )\fl. Most Taylor coefficients in

—

N,,_1 are cancelled when
(LK) - (N = XF) = (Nouer ) - (1.19)

D;(E) = (N — XE) is called the resonance denominator. The terms that can be
eliminated and the proper choice of T, depends on this denominator. We will show

that with the choice

o (N1 |B)/Dy(E)  if Dy(E) #£ 0
(Loalk) = { 0 if Dy(k) =0 (1.20)

for all orders up to n, N has normal form structure. Later we will prove that this
definition of T\, allows A,, and /T;Ll’” to be chosen € SP2%. It is worthwhile to note
that the choice of 0 in the case of Dl(g) = 0 is arbitrary. Other choices do not
influence the m!" order due to cancellation in the commutator. However, these terms
do influence the order m + 2 and can further be chosen to cancel higher orders of
the map. Since this process, called minimal normal form [MW92, MW93], does not

conserve the order n symplecticity of %_1), it will not be analyzed here.
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All terms in Z\_fm_l for which the resonance denominator does not vanish can be

eliminated. Two cases can be distinguished in which the denominator vanishes.

— —

1. Dgi_l(k) =0 if kgj_l — kgj = (52']‘ and Dgl(k) =0 if kgj_l — kgj = —(Sij, because
A2i—1A2; = 1. The corresponding Taylor coefficient cannot be eliminated, except

by deliberately choosing maps M with coefficients (Nm_171|]_€)) that vanish for

these k.

—

2. Even if the first case does not apply, D;(k) can vanish. For this to happen,
T4, A% _| must have nontrivial solutions for integers k; with Y%, |k;| < m + 1.
Such a case is called resonant and is excluded by the conditions in the symplectic

normal form theorem.

All coefficients in the polynomial N,,_y ,_1, except those with ky;_y — ko = 05,
will be eliminated by the transformation A,,. With an equivalent consideration for

Ny—1,2i, this means

[|k||<m
Nm,Zi—l =m Z (Nm,Qi—1|k)22i—1(2122>k1 ---(sz—l?«bd)kz)d_1 ) (1-21)
E
[|k||<m .
Nm,Zi =m Z (Nm,Zi |k)2’22 (lez)kl ---(sz—12’2d)k2d_1 . (1-22)

k

To order m, the map Nm has normal form structure N,,; =, z/(fi o @), which is the
structure we strive to obtain to order n. Performing these steps up to order n will

lead to a map N = N, with normal form structure up to the evaluation order n.

Now we come to the second task of establishing the conditions on the functions

fi.
Theorem 1.3.1 Let the 2d components on\_f have the form

N[ =n Z[(f[ o] C?) with A; = Z29;-172; Y1 € {1, e ,d} . (123)
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Then the conditions

Jai—1 foi =((n-1y2) 1 and f2;0; fa; =[(n—3)/2) f2;0; [z V1,5 € {1,...,d} (1.24)

are necessary and sufficient for N to be order n symplectic.

Proof: We use the functions ¢; = f; o @ and write the Jacobian N of N as

N11 e Nln
N=| : : (1.25)
Ny ... N,,
with the 2 x 2 matrices
821—1(222'—1922'—1) 821(222'—1922'—1)
N; = . 1.26
: ( Oa—1(z2i 920 ) Oulzai g2 ) (1.26)

With this notation, we can write the symplectic condition as

NJygNT =, Jyy (1.27)

d
S NudaNj =n1 J2bij Vi je{l,...,n}. (1.28)

=1

For every combination ¢, 7, this 2 x 2 matrix equation yields component wise four
equations. Altogether there are 4n? equations. We will denote the relation in the ot”
row and the % column by < a, 3 >.

Case < 1,1 >:

=1 821—1(222'—1922'—1)021(22j—192j—1)
- 821(222'—1922'—1)aZZ—l(ZZj—IQZj—l)
= ).=1 Z2i—122j—1(821—1922'—182192]'—1 - 02192i—1021—192j—1)
sz—lgzi—1azi92j—1 - 2’2@'—192;'—182]'922'—1
= E?lzl ZZi—IZZj—IZ2l—1221{(alf2i—lalf2j—1 - alei—lalej—l) o C_i}
Zzi—122j—1{(f2i—laif2j—1 - f2j—1ajf2i—1) 0d} =,-10

= fr-10if251 =[(n—3)/2] J2j-10; faia (1.29)
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Case < 1,2 >:

=1 O2-1(22i—192i-1)02(22;925)
- O91(22i-192i-1)021-1(22;92;5)
=Yio1 22i-122j(021-192i-102192; — 02192i—1021-192;)
22792i-102iG2; + 22i-192;02j-1G2i—1 + G2i—1G2;0;;
=Y ziciz2z-1208 (01 faic100f2; — 01 fai—101f2j) © @}
22i—122;1(f2i-10;i fa; + [2;0; faic1) 0 @} + g2i—192;0i; =n—1 by
—  Oi(zif2i-1f2) =[(n-1)/2 | and (1.30)
fai10if2j + 20 faica ={(n-3)72) 0 for i # j (1.31)
= Ja-ifu (o2 Ly Saic10if25 + [2i0; frich =((n-3)/21 0 (1.32)

Equation (1.31) can be derived from fy;_1 f2i =[(n—1)/97 1 and < 1,1 >,

faic10if2j =(n-vyyn Sfric1f2i(f2j-10if2))

=[(n-3)/2] fai—1fa; (= f2;0i faj—1)

=((n-3)/2] —[2;(f2ic10if2j1)

=i(n-3)/21 —Jf2;(J2i-10; f2i-1)

=(n-3)/2) —J2i0ifai-1 - (1.33)
Case < 2,1 >:
This equation of the 2x2 matrix can be obtained from the < 1,2 > case by exchanging
¢ and j and multiplying by —1. Since ¢,7 € {1,...,n} are arbitrary, this leads to
conditions equivalent to equation (1.32).
Case < 2,2 >:
The condition of the < 2,2 > position can be obtained from the case < 1,1 > by

exchanging 2: — 1 by 2¢ and 25 — 1 by 2y,

J2:0: f2; =[(n—3)/2) J2i0; fai - (1.34)
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The condition of < 1,1 > can be obtained by fa;_1f2i =[(n—1)/2 | and this line,

faic10ifaj1 =qn-vym Srioifaifaica(f2i0:f2j1)
=in-3)/21 Jai_1S2if2i-1(—f2i=10if2})
=n=3)/2] —Jr_1f2;_1 20:f2;
=(n-a)/2 —faic1f2j-1F2i0; fai
=((n=3)/2] Jei1f2j—1(—f2i-10; fas)

=(n-3)/2) f2j-10;faio1 - (1.35)

This proves that the conditions (1.34) and fa;_1fa =[(n—1)/2) | are necessary and

sufficient for the order n symplecticity of N.

Finally to the third task of establishing the order n symplecticity of the normal
form transformation. To show that the map N is order n symplectic and therefore,
with theorem (1.3.1), satisfies all the claims of the theorem of symplectic normal
forms, we are left with showing that the transformations A,, can be chosen order n

symplectic with the choice of T, presented in equation (1.20).

Definition 1.3.2 A map T for which the Jacobian of JoaT is symmetric is called
Hamiltonian. Let a map F be@? x Ry —@* and let F;* @ — T with F;*(a_:’) =
ﬁ(f, t*) VZ € @* be Hamiltonian for all t* € IRY. Then a differential equation for
7: RF — @* of the form

a7 = Fo (i,1) (1.36)
with the identity t : IRF — IRY is called Hamiltonian. If the general solution of a
Hamiltonian differential equation M : @' x R} — @* with 02d+1]\2 =Fo (]ﬁ,t) and

A?(:E’,O) = VT € Q% exists, it is called a Hamiltonian flow.

Questions of existence and uniqueness are, for instance, expressed by the theorem

of Picard-Lindelof and will not be stressed here.
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Theorem 1.3.3 [f]\_j 0% x IRF — @ is a Hamiltonian flow, then the map My :

—

@? — @*, which is defined by Zﬁt*(f) = M(Z,t*) V¥ € @, is symplectic for all

t* € RS

Proof: We introduce the 2d x 2d matrix M : 0% x R} — T with M;; = 0, M;.
For a given t* € RY, My : % — @** defined by My (Z) = M(Z,1*) V& € @** is the

Jacobian of Zﬁt*. Similarly we introduce the 2d x 2d matrix F' with F;; = 9;F;. Then,

2d
Dpasa My = 0;0haaM; = O;F;0 (M 1) = S 0, M{(0F}) o (M, 1)} |
=1

DraiM = {Fo(M,t)}M . (1.37)
We define another matrix P = M JyqM7T; then

Orar P = {F o (M, 1)} MJpgMT + MJpgMT{FT o (M, 1)} (1.38)

= GP+PGT with G=Fo(M,t). (1.39)

Inserting any Z € @'*® into the first 2d components yields a linear ordinary differential
equation for the elements of W : IRY — @ with W(t*) = P(Z,t*) Vt* € IR*.
W(0) = .Jaq, because ]ﬁo = Z. Such an ODE has an unique solution. Since F;*
is Hamiltonian for all t* € IRY, J,qGG is symmetric and therefore all components of
(' Jaq + J2aGT vanish. This establishes that W = Jy4 is the unique solution for all

Z € @* and therefore P = .Jyq. This finally implies the symplecticity of ]ﬁt*,

MEJy My = Jog Vt* € R (1.40)

Theorem 1.3.4 For a C* function p:@** — @ and with the Poisson—bracket oper-
ator : p: acting on a differentiable function h via :p: h = 5TpJ2d5h, exp(:p:)Zisa

symplectic map.
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Proof: If y: IRY — @'*¢ satisfies the autonomous Hamiltonian differential equation
07 = —(Judp) o f = (:p: Do, 70) =i (1.41)

then for any differentiable function ¢ : @?? — (', we have
d(qo§)=0§"{(Jq) 0§} = (0" pJaadg) 0= (:p: q) 07 . (1.42)

An example for such a function ¢ o ¢/ would be the right hand side of equation (1.41).
The differential equation (1.41) can be solved by power expansion with respect to
t € IRE,

*2

y(t7) = YO +Cp: Dlp + S lrp:tp: Da + - (1.43)

= {exp(t”: p:)Z}a (1.44)

in the range of convergence of this sum. y : IR* — @'*® defined by the sum can be

inserted into the differential equation (1.42) to show that it is a solution.

This gives ¢(¢*) for all initial conditions g, and for all t*. Therefore, exp(t : p :)Z

is a Hamiltonian flow and, with theorem (1.3.3), exp(: p :)Z is symplectic.

The following theorem will only be needed later, but it is suitable to prove it here,

since the necessary tools have just been assembled.

Theorem 1.3.5 Let two functions p, g :@*? — @' be such that the Hamiltonian ODE
0y = (: p: 2)oy has a solution for all starting conditions y(0) = yo and such that the

Taylor expansion of g oy : IRT — @ around 0 converges at 1 to (g o y)|;. Then

exp(:p:)g =go(exp(:p:)2) . (1.45)

Proof: The exponential operator is defined by its power series,

*2

* — * t
{exp(t™ :p)gtp = 9(Wo) + P 9)lp + =

g ipiCpigis+... - (1.46)
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With equation (1.42), we can reformulate the right hand side to

o) + 1090 Mo+ 5 (a0 Do+ (147

—

= (g0 M)l =go{exp(t”: p:)Z}g (1.48)

for t* = 1. Since this holds for all 7y, it proves the theorem.

Theorem 1.3.6 [ff is a homogeneous Taylor map of order m and Z + T is order

m symplectic, then there is an exponential Poisson-bracket operator with

exp(: by )2 =m Z+ T. (1.49)

Proof: With equation (1.4), we can write the symplectic condition as
(Z 4+ TV Jog(Z +T) =y Jog = T Jpg = —JogT (1.50)

This is equivalent to the statement that Jy;7" is symmetric or that the Jacobian of
JoaT is symmetric. Therefore, the potential problem Ot = JogT has a solution ¢,

which is a homogeneous polynomial of order m 4 1 and

exp(:tm 1)Z = 2 — szgtm = 24T . (1.51)

In order to guarantee that A, isin SPX(@), we only have to show that 2+ T,

—

is order m symplectic and choose A, =, exp(: ty )2 AL

m

=, exp(— : t,, :) will be

5
an order n inverse of A,,.

We assume that all the A},[fl_ln € SPX@) for i € {1,...,m — 1} and, with
theorem (1.1.2), N1 € SPX*(@). Before we use the symplectic condition to check
the symplecticity of 2+ fm, we analyze restrictions on the m* order of Nm_l, which
is closely related to T, by the equation (1.20). We separate the map N,._1 into two

parts. The first part F' contains all contributions which already have normal form
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structure; therefore, it contains all m — 1 orders and the normal form part of order
m, Fi = z(fiod). Since it is order m — 1 symplectic, the functions f; satisfy the
condition (1.24) according to theorem (1.3.1) for n = m — 1. The second contribution
R contains the rest of order m,

—

Npr = F+ R (1.52)

We write the Jacobi matrices of F' and R as F and R respectively and employ the
2 X 2 matrices notation which was used in equation (1.27). The linear part of the

map Nm_l has the diagonal Jacobian L with

Lij = 6;; ( /\26_1 /\(; ) ; (1.53)
and we write

824—1R2i—1 824R2i—1 824—1F2Z'—1 aQ'FZi—l
R;; = J J d F;; = J J . 1.54
! ( Oaj1Rai OqjRai ) ane Hi ( OrjrFoi 09 Fyi (1.54)

The symplectic condition will again be analyzed for the four equations in the 2 x 2

matrix separately,

n

S (Fu+ Ril)Jz(Ff; + R]T,) =mo1 J26i; Vi,5 € {1,...,n} (1.55)

=1

= > FyloF) 4 LiJaRY + RijJaLii =mey s (1.56)

=1
Parts of the required manipulations are equivalent to steps in the proof of theorem
(1.3.1); we will therefore skip some lines and refer to the equations (1.29) and (1.32).

Case < 1,1 >:

22i—122j—1{(f2i—1aif2j—1 - f2j—1ajf2i—1) o 5}
+A2im102iRoj—1 — Agj—102jR2ic1 =1 0 (1.57)
> f2i-10if2j-1 — foj-10i frici =(m-3)/2 0 (1.58)

and /\22'—1822'32]'—1 - /\2]'—1823'322'—1 =m-1 0. (1-59)
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This separation can be performed, because the polynomial on the left hand side of
equation (1.59) has no terms of the structure z9;_129;-1(h 0 @) for any monomial h of
order [(m —1)/2]. Such terms cannot occur, since R does not contain terms of normal
form structure. However, the rest of equation (1.57) has only terms of this structure.

Case < 1,2 >:

29i-122j{(f2i—10i fa; + f2;0; f2i—1) o d
+6i;(faic1 f2i) 0 @ + Agim102:Raj + A2jOsj_1Roic1 =m—1 0;j (1.60)
= faicifoi =(m-1)/21 L5 f2ic10ifa; + f250i faici =[m-3)y2) 0 (1.61)

and Agi_109iRaj + A2j00j—1R2ic1 =m—1 0. (1.62)

This separation can be performed with reasoning corresponding to that of the < 1,1 >
case. The polynomial of the left hand side in equation (1.62) has no terms of the
structure zg;_122j(h o @) for any monomial h of order [(m —1)/2], the rest in equation
(1.60), however, only have terms of this structure.

Case < 2,1 >:

This equation of the 2 x 2 matrix can be obtained from the < 1,2 > position by
exchanging ¢ by j and vice versa and multiplying by —1. Since ¢,5 € {1,...,n} are
arbitrary, this leads to conditions identical to < 1,2 >.

Case < 2,2 >:

The condition of the < 2,2 > position can be obtained from the position < 1,1 > by

exchanging 2¢: — 1 by 2¢ and 25 — 1 by 2j and vice versa.

The conditions (1.58) and (1.61) establish that the map ﬁ, which simply consists
of all terms in N,,_; with normal form structure, is symplectic up to order m. This
is a nontrivial statement, since symplecticity of F was only assumed to order m — 1.
The equations concerning the rest of the map R are essential for establishing order m

symplecticity for the map 2"+ T,.. We use the symplectic condition, which we write
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with the Jacobi matrix 7' of T,,. T is a 2n X 2n matrix and, as before, the T;; are

2 X 2 matrices,

T11 e Tln
T = : : . (1.63)

We can write the symplectic condition as

T Tt = Ty — zanﬂJQTﬁ = Jyb;; Vi,5 €1{1,...,n}. (1.64)

=1

Since we just performed a similar computation for Nm_l, we can obtain the symplectic
conditions by setting F=7%and R =T, in the equations (1.56).
Case < 1,1 > 0y Tyjoq1 — 0y Toi1 =m—10
Case < 1,2 > 0y Ty + 09j1Ti1 =m-1 0
Case < 2,1 > —0y115j1 — Oy 1o =m0
Case < 2,2 > 0Oy1Ty; —09-1T% =m0
Since the third and fourth condition follow from the first and second by changing
indices as pointed out earlier, and since the same symmetries with respect to indices
apply to the corresponding equations for ﬁ, it is sufficient to show that the first two
equations always hold by means of the above equations for R. Comparing the Taylor
coefficients in the equations for T yields

Case < 1,1 >:

p=kit+bia, q=k+dyz, (1.65)
0 = (Lzj-1|p)p2i — (12i1|)2; = (1.66)
0 = (Rojor|P)paihaict — XXg;) = (Raica|Q)q2i(Najot — M Ai) <= (1.67)

0 = (1= X)) {haict (R |F)pai — Anjo1(Raica|)g2;} - (1.68)

The last line is guaranteed by equation (1.59).
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Case < 1,2 >:

pr=ki+b2, q=k+0o2-1, (1.69)
0 = (I%P)p2i — (T2i-1|9)q2i-1 = (1.70)
0 = (Raolp)pai(Paics — NAgj1) + (Raica | gzj—1(Agj — Mhg) <= (1.71)

0 = (1- ;\)g/\zi/\zj_1){)\2i—1(R2j—l|mp2i — Agj-1(R2i-1]q) g2} - (1.72)

The last line is guaranteed by equation (1.62).

This finally shows that A,, can be chosen order n symplectic. A,, is not unique,
since one could add any polynomial of orders higher than m + 1 to ¢,,; this would
change the terms in A, from order m + 1 up to order n. This implies the possibility
that A might not be unique. However, the question if there are normal form transfor-
mations other than the one which is constructed here and how these would be related

to A will not be analyzed here.

Performing this procedure order by order to the truncation order n gives the

—

normal form map N € Spid(@'), the normal form transformation A = A,0...0 A; €

SPX(@), and its order n inverse A-ln g SPX(@) with

—

N=,AoMoA '™, (1.73)

1.4 Invariants

Definition 1.4.1 (Order n Invariants)

A function I is called an order n invariant of a map M if [o M=, I.

We want to show that normal form transformations can be used to find d order
n + 1 invariants, which are not related to each other by functional dependences. To

formulate this clearly, we introduce the concept of independent functions.
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Definition 1.4.2 d functions I; :@* — @ are called independent if there is no func-

tion f: @4 =@ with I = fo(Iy,..., L1, l141,..., 1) for any L € {1,...,d}.

It can easily be observed that the d components of the identity function z are
independent, since z; can have different values for the same values of Z;, k # [ when

these functions are applied to appropriate ¥ € C'%.

Theorem 1.4.3 If a map [:@% >adis locally invertible in some volume, then the

components off are independent functions.

Proof: Assume there is a function f :@%~! — @' which satisfies
Li=fo(ly,...,0-1,l141,...,14) . (1.74)
Applying the local inverse I~ to the right and the left hand side yields
zi=fo(z1, 221, 2141y - -+ 5 2d) (1.75)

for the domain of the inverse, which, as just observed, cannot be true for any f.

Theorem 1.4.4 (Invariants of Order Symplectic Maps)
For a non—degenerate map M € Spid(ﬂ%) with linear eigenvalues which are not in

resonance to any order m < n, d independent order n + 1 invariants of M can be

found.

Proof: With theorem (1.1.8), a normal form transformation can be found to order

n and the d polynomials of order n + 1 given by [; =,11 Ag;_1Ay; are order n + 1
invariants, because

LioM =41 (Agi_goM)(Ago M) (1.76)

=41 (Naiq 0 A)(Ny; 0 A) (1.77)

- Agic1 Asi({(faicr 0 @)(faio @)}y o A) =py1 I . (1.78)
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The agreement up to order n+1 in line (1.77) follows from the fact that A,;_50 M =5
Ny, 10 A and that Ny 0 A has no constant part, Ny; 0 A =p 0. Similarly in line (1.78),
{(faic10d@)(fro0d)} oA =,_1 1 and Ay;_1Ay; =1 0. Since the polynomials I; = z;, the
Jacobian of the map I at the origin has determinant one and this map is therefore
invertible in a volume that contains the origin, due to the implicit function theorem.

With theorem (1.4.3), one concludes the independence of the functions ;.

1.5 Real Normal Forms

For the case that the linear eigenvalues of an order n symplectic map are either
real or have modulus one, it is possible to find additional properties of the functions
A and N. Due to these properties, it will be possible to formulate a real normal
form transformation to a real normal form map. This special case is of particular
importance, since all maps with 2 x 2 block diagonal structure in the Jacobian at the

origin fall into this category.

Conventions: We will order the linear eigenvalues to obtain |\ = 1 for [ in
{1,...,2r} and Ay € IR for k in {2r + 1,...,2d}. An important step towards real
normal forms will be the next theorem. To express this theorem, we have to define a

certain subset of @'%¢,
C={J|F €@* x R, yy; 1 = iy;Vj € {1,...,2r}} . (1.79)
It is useful to define the set of maps which take C into C,

S={M|M()eC VjecC}. (1.80)

Theorem 1.5.1 If each linear eigenvalue of M in the theorem for symplectic normal

forms is either real or has unit modulus, then the normal form transformation A and
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the normal form map N have the property

A:R¥ 5C and NeS. (1.81)

Proof: The eigenvalues of modulus one satisfy Ay;_; = )\gj. In order to make %_1)1
symplectic, all eigenvectors are scaled to observe v7;_;.J2q02; = 1. With M(G)l?}*j_l =
AgjU5; 4 for the first 2r eigenvalues, one gets vy;_; = av;. The factor a has to be

purely imaginary, since

-1 _ —-1-5T = ST = =T > —1x%
QT = Q7 Uy JagUsj = Uy Jaglaj = —Uy;Jagls; = —aT T (1.82)

Scaling the vectors v, to give 17%}*]2(117% = 1 requires @« = —1i. Since for every
eigenvector with real eigenvalue its real part is also an eigenvector, the eigenvec-
tors ©p with & > r are chosen to be real. We can write A;' = 21221 v;2z; and

14_1)1_1 0 A = 12;[1 U A1 = Z. Multiplying with ﬁgj_ljgd from the left reveals

Al 2; = ﬁgj_ljgdgz _Zﬁg;*JQdZ_): iAI,?j—l V] € {1, .. .,7"} and (183)

Atk = Uy JwZ € R VYhe {r+1,...,d}. (1.84)

This is equivalent to the statement %_1)1(.1_:’) € C for all real vectors Z. The inverse /4_1)1_1
must take elements of C into IR*®. From these properties and the fact that M takes

real vectors into reals vectors, we can conclude that N, € 8.

The next step is to show that all Nm, which are obtained from N, by the steps
of the normal form transformation, are in §. Assume that Nm_l takes elements of C
into elements of C. Writing the components of N,y as polynomials, this means

E <7’L 7 k r— T
SIS (N gy Ryl yle - iityler b (1.85)

_ o lElgn v koo k ko . Kar k AT g
=t 2 (N1 k) yt2ys" - ys2r o™ ygat - (—i) 2= ¥

These lines entail relations for the Taylor coefficients, which can be expressed most
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conveniently with the 2d x 2d matrix 5,

1 ifl=k4+1 and k£ <2r odd
)1 itk=1+1 and k£ < 2r even
=1 it k=1 and k> 2r (1.86)
0 else
Equation (1.85) reveals
(Npo1.2j-1|k) = i( N1, k) - (—i)2iza Bt (1.87)

Since this condition does not relate coefficients of different orders, an n'* order Taylor

map which is in § has this property for any truncation order smaller than n.

According to equation (1.20), T, has this property also, since for the resonance

denominator a similar equation holds, namely

Doica(F) = (Apicr — M) = (Aar — MF)* = Dyu(Sk)" . (1.88)

To finally show that A = exp(: t,, :)2 has the same property, we prove a helpful

lemma for which we need another 2d x 2d matrix

1 ifl=k+1 and k < 2r odd

5 1 k=141 and k <2r even

SH=41 i k=1  andk>2r (1.89)
0 else

—

and the corresponding map § with §(y) = Sy.

Lemma 1.5.2 IfT € S and F € S, then TTHF € S.

Proof: It will be useful to remember that, for a map M and its Jacobian M,

J{go M} = MT{(dg)0 M} . (1.90)



30

The function which takes all ¥ € C into F(gj’)* is denoted by F*. Due to membership
in S, T and F are functions on C with T = ST* and F = SF*. Accordingly, F*o03

%

takes y* into ﬁ(gj’)* for all ¥ € C. From this information, the subsequent relations

follow:

(OF)l; = ({FF 0 5}lp) = {({F" 05} 0 57")|g)" (1.91)

= ({STIF} ) = ({STIST FYp)" . (1.92)

Now it can be concluded that

—

TT(§)(IF)|; = TT(5)ST{(STIST'F)|z}* (1.93)

= STITSTSTIF g} = S{(TTIF) ), (1.94)
which proves the lemma.

To analyze the exponential Poisson—bracket operator, we observe
i B = 0Tty JygOF = TEOF | (1.95)

All terms in the expansion of the exponential map have this structure,

exp(: b )2 =24 T + §T£8Tm + a(Tﬂ{(a)?Tm + —(Tr0)

T+ ... (1.96)
and, due to lemma (1.5.2), with fm, also A, is an element of S. Also the order n
inverse /_X);Ll’” =, exp(— : t,, :)Zis in §. Since the concatenation of two elements of &
is again in §, also Nm =, [fm oﬁm_l o/_l);l’” isin §. In this last step it is again crucial
that truncating Taylor maps preserves membership in §. Performing the normal form

transformation to the evaluation order n yields therefore N € S, which proves the

first part of theorem (1.5.1).

The performed transformation can be written as

—

A):nAno...o[fzo[fl. (1.97)
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%_1)1 takes real vectors into C and the concatenation of all nonlinear maps %_fm isin S.
This proves the second part of the theorem (1.5.1), namely that A takes elements of

IR*? into C.

Theorem (1.5.1) has strong implications for the functions f; of the normal form

map in theorem (1.1.8).

Theorem 1.5.3 Let M be a map satisfying the conditions of theorem (1.1.8) on
symplectic normal forms. If each of the r complex linear eigenvalue of M has unit

modulus, then there are r functions ¢; : I" x IR*™" — IR with

frj-1 =iy exp(ig;) and (1.98)
fai =iy exp(—igy) for j € {1,...,r}, (1.99)
fr : I'x R™™ — IR for k€ {2r+1,...,2d} .  (1.100)

The phases ¢; satisfy the condition 0;¢; =((n—3)/2 0:9;-

Proof: From theorem (1.5.1) and with N; = z(fiod) where a; = z3;_124;, it follows

that
{z2j-1(faj-1 0 @)}y = 1({z2;(f2j 0 @) }g)" VG EC . (1.101)
Realizing that @(if) € II" x IR*™ for i € C, one concludes
Frie1(8) = {125} VEe I" x R . (1.102)
In order to take advantage of the requirement f; 1 fa; =(n-1)/2) 1, We write fo; 1 =
exp(ig;) + Pj and fo; = exp(—i¢;) + P,
(exp(id;) + F;)(exp(—1¢;) + P) =(n-1)/21 1 - (1.103)

The constant part of this equation shows that P; has no constant part. For comparing

higher orders, we write

Pjexp(—i¢;) + Pl exp(1d;) + P/ P; =((n-1)/2 0 (1.104)
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and assume that P; has no contributions up to orders m — 1. Since the constant part

of f; equals \;, we get up to order m that
PN+ Q0 = 0. (1.105)

Therefore, the m!" order of P; must have the structure ¢A;R,, ; with R, ; : [I" X

IR*~" — IR. Writing the non—constant part of ¢; as qbgn) shows that
Faict =m Ai{exp(id\™) + iRy i} = Ajexp(i6t”) + iR, ;) . (1.106)

The last equation holds, since R,, ; has no contributions to orders lower than m and
therefore exp(Ry ;) =m 14+ R j. Rmj can be chosen to be 0 by taking its contribution
into qﬁ(n). Performing this argument up to the evaluation order n yields that up to

J

order n, fo;_; has the structure of exp(i¢;) for some function ¢; : I" x IR*" — IR.

According to the theorem on symplectic normal forms (1.1.8),

fzz&fzj =[(n—3)/2] fgjaj‘fgi Vi,7 € {1, ce d} . (1.107)

Writing the f; as given by equation (1.99) yields 0;¢; =[(,—3)/2] 9;¢i, which proves the

theorem.

This finally puts us into the position of formulating a theorem on real normal form

transformations.

Theorem 1.5.4 (Real Symplectic Normal Forms)

A non-degenerate map M e Spid(ﬂ%) with linear eigenvalues which are not in reso-
nance to any order m < n and are either real or have modulus one can be transformed
by a transformation B € SPX(IR) to R=,BoMoB "¢ SPX(IR) where all these

maps are IR*? — IR*® and

Ryjo1 =n  zgj_1cos{®p; 0 3} + z9;sin{e); o 3} , (1.108)
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Ry =, —zgj_1sin{y;o E} + zg; cos{t); o E} , (1.109)
Rog—1 =n Zok—19k O b , (1.110)
Ry =n 2w/ grob, Dal=1, Ap € R . (1.111)

The function b is given by b; = z%j_l—l—z%j for |Agj| =1 and by = 2951221 for Ay € R.

The functions ; and g, are IR — IR.

Proof: We will again choose n'* order polynomial maps for é, 5, and B~1" A
linear transformation € and its inverse are needed to obtain these maps from the

normal form theorem (1.1.8),

1 : 1 .
Cajmr = 7§e_m/2(22j—1 + zy) , Oy = 7§QM/2(_22J—1 + 23)
-1 1 /2 : -1 1 /2 :
Cojor = Nk (22j-1 +1225) , Oy = Nk ( z2j-1 —1225) ,
Cr=2, and Ol =2 for je{l,...,r}, k>r. (1.112)

The easiest way to see that (-1 is the inverse of C is to multiply the Jacobi matrices.
Since these matrices have block diagonal structure, the result is evident. All 2 x 2
submatrices on the diagonal have determinant one and therefore are symplectic, which

establishes the symplecticity of C. Let us now prove the claim R=CoNo(C-.

1

.
First evaluate ¢ =d o C~1,

7 7
¢ = 5( %j—l + 23]) = §bj and ¢, = 29p_122k = by . (1.113)

Let us write a scaling transformation § by

s; = %zj for j<rand s, =z forj>r (1.114)

and introduce the new phases 1); = ¢ 0 §. The functions b; o C o A are order n + 1

invariants of the map M, since they are related to the I} = a; 0 A of theorem (1.4.4)
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by §o b=ao (. Performing the transformation C on R leaves

Ryjio1 = Caq0No(C™ (1.115)
1 : o o =
= —e"’r/Z{Zgj_l(f;)j_l 0@) + z9;(f2j0d)} 0 C71 (1.116)

V2

1

=n 758_”/2{(2’%—1 + z25) cos(¢; o @)
+ i(22j_1 — 22;)sin(¢; 0o d)} o c-1 (1.117)
=, Zj—1c0s(; 0 3) — z9;8in(?; o g) ) (1.118)
Similarly we obtain
Ry = ChoNoC™ (1.119)
1 .
=, ﬁe”ﬁ{(—zzj_l + z3;) cos(¢; o @)
— (2251 + 22;) sin(¢; o d)} o c-! (1.120)
=, z2j_1sin(1j o E) + zgj cos(1p; o E) ) (1.121)
For real eigenvalues Ay one gets
Rok—1 =n z2k-1(gr © E) , Rok =5 zax/(gk © E) with gr = far—105. (1.122)

Finally we have to establish that é(f) = (C_')o/_l)) zis areal vector. A takes 7 € IR
into C and C takes elements of C into IR* which establishes that B is R* — R,
The phases v; are real, since 5(7) € " x IR*"" and is taken into IR by é;, according

to theorem (1.5.3); similarly gx(Z) = far—1 0 §(&) is real.

Interpretation: With the help of a 2d x 2d matrix which depends only on g, we

can formulate the real normal form map as

Ryj—1v \ [ cos(vpo 3) —sin( o 3) Z2j-1
( Ry; ) o ( sin(¢) o g) cos(#) o 3) ) ( 29 ) ) (1.123)
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for complex Ay;. For real eigenvalues Ay, a diagonal matrix can be used,

( gﬁi‘l ) o (gk ! 1/(g oz(; ) ( o ) : (1.124)

The motion generated by R is described by rotations on a circle for every |X;| = 1 and
by motion on a hyperbola for every A\, € IR. The speed of this motion only depends
on the b;, the order n + 1 invariants of the map R. These invariants are the square
amplitudes 22, | + 22, of the rotations and half the square minimum distances from

the origin zgr_129x of the hyperbolas.

1.6 Action—Angle Variables

Definition 1.6.1 (Order n Action—Angle Variables)

Given a Taylor map N; we call maps J action variables and & angle variable ofﬁ if

1. the map (j, @) is order n symplectic,
2. the functions J; are order n + 1 invariants of ﬁ,

3. up to order n — 1, the functions a; o M — a; can be expressed as functions of

the J only.

The rotations in real symplectic normal form space remind one strongly of action—
angle variables for periodic motion in classical mechanics. We will prove that they

are indeed order n action—angle variables.

Theorem 1.6.2 Action—angle variables of normal form maps
For a normal form map N as given in theorem (1.1.8), there are order n action—angle

variables J and &.
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Following, we introduce variables and show that they satisfy the properties of order

n action—angle variables for the normal form map N. Let

1
Jj =z 1205, @ = §1Og(zzj/22j-1) 7 (1.125)

where we restrict the domain of the action—angle variables to {y|y € C,y; # 0}.

The Jacobian of (J_)7 @) is denoted by K and has 2 x 2 block diagonal form. Like

before, we represent these blocks by Ky with k1€ {1,...,d}, i.e.

K = ( e ) . (1.126)

2231 222k
Since the determinant of each 2 x 2 block is one, the matrix K is symplectic. The J;
are order n + 1 invariants of the map N. Let us analyze the change of the functions

.
«; under action of N

= 1
ajoN —a; = J{log(Nupj-1/Nus;) —log(2i-1/2:)} (1.127)

= %ﬂog(fzj_l) —log(fa)} 0@ =n1 igjoJ (1.128)

It has to be noted that the domain of the functions «; o N — «; does not have to
be restricted. This shows that all three conditions to call (J_)7 @) order n action—angle

variables of N are satisfied.

In spite of this theorem, it becomes clear that the usual concept of action angle
variables is not suited for discussions in the context of Taylor expansions. This was
seen in some intermediate steps when the origin had to be excluded and rises from
the fact that the polar angle cannot be defined as a differentiable function at the
origin. It is therefore much more suitable to stay in the real normal form space and

to consider rotations and hyperbolas as the most basic concept of motion.

Definition 1.6.3 (Normal Modes)

If a map IR** — IR?® can be transformed by symplectic transformations to rotations
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and hyperbolic motion in d decoupled spaces, then these decoupled motions are called
the normal modes of the map. The square of the radius of rotation and half the square
of the distance of the hyperbolas from the origin are called normal invariants of the

map.

It is worth mentioning that every map which can be transformed to action—angle
variables also has normal modes. The transformation between these two notions of
elementary motion can be taken from the proof of theorem (1.6.2). By this definition,

a symplectic map in its normal modes has the structure of R with

(e )=(@) @) (). o

for the r rotations and with a diagonal matrix for the d — r cases of motion on a

( gii‘l ) - ( gk 1/h2 ) ( Zl;_l ) : (1.130)

The functions 8; and hy are R* — IR, and the d components of b with b, = Zgj_l + 29,

hyperbola

and b, = z9,_129; are invariants of R.

Given a symplectic map M that can be Taylor expanded at the origin; its Taylor
map M, up to order n is order n symplectic. Our previous discussion was based on
the condition that the linear eigenvalues are not in resonance up to order n. In the
case that the map M has d normal modes, it is a reasonable question to ask if the
resonance condition could avoid the possibility of computing the normal form map of
M,. A statement about this problem can be proved most easily with the help of the

following two theorems.

Theorem 1.6.4 Symplectic maps preserve the area in all of the d zg;_1 X z9; sub-

spaces.
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Proof: First we need to establish the conservation of the Poisson brackets : f :

g under symplectic maps. We can write the derivative with the Jacobian M as
G(f o M) = MT{(Jf) o M}.

cfoM:(goM) = {(3Tf)o M}MJy,uMT{(dg) 0 M} (1.131)

= (5TfJ2d5g) oM = (:f:9)o0 M . (1.132)

When new coordinates are defined by the map, Cj = M((f) with ¢, Cj € IR*, then the

change of an area element is given by the change of the differential 2—form

dQ2j1dQq;  dQaj—1 dQy;

dQ2j—1 NdQq; = dqaj_1 N dgaj dgas dgs  das dq%_l) (1.133)
= dgsyn A dasy(c Mg M)l (1.134)
= dgaj 1 A dgai{(: gzt gay) 0 M}z (1.135)
= dgzj_1 Ndgs; . (1.136)

This is true for every of the d subspaces and proves the theorem. This proof and also

another more intuitive proof can be found in the second chapter [SSC94].

Theorem 1.6.5 Let a symplectic map in its basic modes be written as equation
(1.129) and (1.130). Then there are functions ; : IR* — IR and gy : R* — IR

with 8; =1; 0 b and h; = g; o b.

Proof: First we will give a graphic proof using theorem (1.6.4), after that an al-
ternative more formalistic proof will be given. Let us analyze what conditions the
theorem about area preservation in every z;;_; X zy; coordinate plane imposes on
normal modes. Consider first the case of rotations. An area located between two
similar radii and two initial angles ¢;; and ¢, ; is transformed into an area between
the same radii and two angles ¢; s and ¢, s by one application of the map M. If area

preservation is to hold, the difference between the angles is invariant. Therefore, the
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phase advance can only depend on the invariants of the map. A similar argument is

possible if the motion is confined to hyperbolas. If the factors ¢ in the 2 x 2 matrix

()5 ) ()

depend only on invariants of motion, the map is area preserving. If the factors would

describing the motion,

depend on the position on the normal invariants, this condition would be violated,
since not all area elements located between two hyperbolas would be conserved under
application of M. As a conclusion it can be stated that the functions 0; and hy in
equation (1.129) and (1.130) only depend on the invariants of the map, which are the

components of b.

For the alternative more formalistic proof, we use C and €1 as defined in equation
(1.112) to obtain the map N =C~'0 RoC which is an element of S. Elements of S
are maps which take elements of C into elements of C as defined in equation (1.79).

This means that i Ny;_1(¥) = Noj(v)*, V5 € {1,...,r}.

With the Jacobian of N written as

O2j—1Ngi—1 Oy Naiq
N;; = J , 1.138
! ( O2j—1Nai 0Ny, ( )

the symplectic condition will again be written in 2 x 2 matrix notation as

: Nogioq e N2j—1 : Nogjq Nz;

J30i; = (NszNT)Z'j = ZNilij;‘? = (  Nai : Nap1 ¢ N :NQJ: ) , (1.139)

=1
where the notation : f: g = 5TfJ2d5g for the Poisson bracket between f and ¢ was
used, which was already defined in theorem (1.3.4). The conditions of the < 1,2 > po-
sition and of the < 2,1 > position lead to equivalent conditions due to antisymmetry

of the Poisson bracket. We are therefore left with the conditions

. Ngi_l . Ngj_l = 0, : Nzi . NQJ = O, . Ngi_l . sz = 52] . (1140)
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From this it follows that
(I N2i—1 . 22]‘_122]') = (I Ngi_l . Ngj_lsz) (1141)
= Ngj_l(I Ngl'_l . NZJ) —|— (I Ngi_l . NQj_1>N2j (1142)
and therefore
ZZj—182j—1N2i—1 - Z2j82jN2i—1 = 5ijN2j—1 . (1-144)
If we write N; = z;n; and insert into the second line, we get

Z2j—la2j—1n2i—1 - Z2ja2jn2i—1 =0 ’ (1-145)

from which we conclude that there is a function ¢ : C — IR with h = g o @ where @ is

again defined by a; = z2;_129,. Similar to the evaluation in the equations (1.113) to

—

(1.122), we conclude that R =C o NC-! has the structure

Rapoa ) _ ((coslyof) —sin(s0D ) ( o ) 1.146
( Ry, ) ( sin(¢); 0 b)  cos(tp; 0 b) 2o, ) (1.146)

for rotations and
Ron_1 gr O b 0 Z2k-1
= o 1.147
( Rk ) ( 0 1/(gk 0 b) 2ok ( )

for motion on hyperbolas.

Theorem 1.6.6 If a symplectic map M can be transformed to normal modes by a
symplectic transformation B)} and M as well as B can be Taylor expanded up to order
n, then the Taylor map M, can be transformed to normal form by means of the method

presented in the proof of theorem (1.1.8).

Proof: The map M can be written with the existing transformation B and R as

M=B"'0RoE. (1.148)
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One can compute A=C"0B with ¢! from equation (1.112). Since with the given
assumptions, all the involved maps have Taylor expansions to order n, this relation

holds with respect to =,, for all m € {1,...,n}. Therefore,

—

M=,A"'"0NoA (1.149)

where, due to theorem (1.6.5), N has the structure of a normal form map given
in theorem (1.1.8). Assigning the linear transformation A = A gives the linear
transformation for the theorem (1.1.8) on order n symplectic normal forms. This
transformation can be used to compute Nl =, %_1)1 oM o %_1)1_1. The second order
expansion of Ao A_)l_l yields the map Z + fg, which eliminates all second order terms
of N; which do not have normal form structure. It is order 2 symplectic and can
therefore be used to compute A, = exp(: t3 :)Z. Similarly all subsequent orders are
treated with

—

24T =_Ao 1_10...0A_1’n. (1.150)

Continuing this strategy to order n shows that all the T., exist and that there is no
problem with vanishing DI(E), even when there are resonances of the linear eigenval-
ues. This shows that under the assumed conditions all the (le|]_$) in equation (1.20)

vanish whenever DI(E) vanishes due to resonances described in part 2 after equation

(1.20).

Theorem (1.6.6) gives rise to a very useful corollary which can be used as the basis
for computer proofs to establish that a system does not have d invariants of motion

or to establish that a Hamiltonian system is not integrable.

Corollary 1.6.7 (Excluding Invariants) Given a Taylor-expandable symplectic
map M : R* — R, If at any order during the normal form transformation a
division by a vanishing resonance denominator becomes necessary and the numerator

at that point does not vanish, then the map M does not have d invariants of motion.
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Corollary 1.6.8 (Excluding Integrability) If a Hamiltonian equation of motion
has an unique Taylor expandable time step one map M and the normal form transfor-
mation procedure would at some order require a division of a non—vanishing coefficient

by a vanishing resonance denominator, then the Hamiltonian system is not integrable.

Constructing computer proofs, of course, requires completely rigorous arithmetic.

Such computations can be achieved with interval arithmetic techniques [Moo88].

1.7 Pseudo Hamiltonians

Theorem 1.7.1 For a non-degenerate map M € SPid(]R) with linear etgenvalues
which are not in resonance to any order m < n and all have modulus one, a function

H: R* — IR can be found with

M =, exp(: H :)Z'. (1.151)

Proof: According to theorem (1.5.3), there are d polynomials ¢; of order [(n—3)/2]
with the property that the Jacobian of qgis symmetric. This implies that the potential

problem 9% = q; has a solution ® which is a polynomial of order [(n —1)/2].

In order to prove N =, exp(—t¢ : ® o d :)Z, the following observation will be

instrumental;
d
Do {zya(hod)} = 2o {Ok1(®0@)u(hod) — Dak(® 0 @)as_1(h o @)}
- azj(cpk:la)(h 0 @) (1.152)
= zdj 2ajo1 22k 220 (On®Okh) 0 @ — (D DDh) 0 @}
- Z;_l{(aj@) o @} (hod) (1.153)

— z{(—dsh) 0@} | (1.154)



43
and, due to antisymmetry of the Poisson bracket,
:®od:{z(hod)} = z;{(¢;h)0d} . (1.155)
With these formulas the evaluation of the exponential operator becomes obvious;
exp{—i:®od }zg;-1 =, exp{ igpod}z_1, (1.156)
exp{—i:®Pod:}zy; =, exp{—idod}zy; . (1.157)
The original map M can therefore be represented by

— —

A7V o (exp(—i: ®od:)?) o A=, M. (1.158)

In the next step, the conservation of Poisson-bracket operators under order n

symplectic maps is needed.

Theorem 1.7.2 For a map M € SPX(IF) and two functions g, f € C$
:foM: (go]\_j) =n_1 (:f:g)o]\_j ) (1.159)

The field IF is either IR of @ and the functions are either real or complex respectively.

Proof: A corresponding proof for symplectic maps was given in equation (1.132).
Now we merely have to check what changes by considering order n symplectic maps.

With the derivative of concatenated maps written with the help of the Jacobian, we

prove 5(f 0 Z\_j) = MT{(gf) o Z\_j}
cfoM:(goM) =  {(7f)o MYMJ,uMT{(dg) o M} (1.160)

=,_1 (5TfJ2d5g) oM =1 (: frg)o M . (1.161)

With this theorem and with theorem (1.3.5), we can reformulate equation (1.158)
to a single exponential Poisson-bracket operator. The notation H = —i® od o A
yields

M =, exp(: H :)Z. (1.162)
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H is called the pseudo Hamiltonian of the map M. 1t is an order n + 1 invariant of
]\_j, since it is a function of the invariants I; = a; o A from theorem (1.4.4). This fact

also becomes clear by virtue of theorem (1.3.5):

HoM=, Ho (exp(: H :)2) =, exp(: H:)H =, H . (1.163)

Finally we want to show that H is R* — IR. Since the functions ¢; are I" x
R — IR and 9;® = ¢;, we get ® : " x IR*™" — II. Theorem (1.5.1) specifies that
Ais R* — C, @ in turn takes elements of C into fI” x IR*~". Taking all these facts

together we find that H = —i® odo A is a real valued function of R,

1.8 Parameter Dependent Normal Forms

The presented theorems also apply to maps M : [R*+r — [R? that depend on p
parameters §. For such maps, every Taylor coefficient can be viewed as a function of
fixed but arbitrary parameters. All proofs are performed as before, and finally these
functions of parameters in N and A are substituted by their Taylor expansions to the

evaluation order to obtain the parameter dependent Taylor maps.

For computations, one starts with a Taylor map with respect to the coordinates
as well as the parameters. Then one performs all computations according to the
described normal form method while taking the partial derivatives with respect to

the parameters into account when equating with “=,”.

It ought to be mentioned
that in a given order m there will be contributions of coordinates to lower orders
¢ < m, when parameters occupy m — 2 orders in the corresponding term of the
Taylor polynomial. It can be shown by reviewing the previous sections that in all the
given proofs it was never required that a given order only contains the same order

14

in the coordinates. Due to “=,”, we were only concerned about the order of partial

derivatives, which can be taken with respect of coordinates as well as parameters.



45

One exception applies. In the parameter—free case the map was assumed to be

—

origin preserving M(G) = 0. In the parameter dependent case ]\_j((_)), 6) = 0 will be
required. However, 6(5*) = ]ﬁ((_)), 5*) with a 6* € IR does not have to be 0; Cis a
parameter dependent constant part, which has to be eliminated before performing the

normal form transformation. The procedure, described subsequently, can be found in

[Ber93b].

This simplification is achieved by transforming the map to a parameter dependent
fixed point. To do this, we have to extend the involved maps to be IR*¥*? — [R2%+?,

— -

e.g. (M,6). Following, (Z,6) will describe the identity function. After the required
transformation /_1)0, the n'* order polynomial map No =, Ag 0 (A_j, g) o ( _)51, _)) will
have the property

— —

No(0,6%) =, (0,6%) V6" € IR”, (1.164)

whereas at the parameter dependent fixed point Z;, : IRP — IR*® of the original map,

M has the property
Zri0(8) =n M(Zia(6),8%) V6" € IRP . (1.165)

The fixed point is a function of the parameters and can be expressed by the following

lines,

— — —.
*

(Oa ) =n (AJ - 5’ 6)|(gﬁx(5’x)75‘*) y (1166)

— — — —

(V= 2,875y =n (Zul8).87) V& € 7. (1.167)

The required inverse exists, since the linear part of the map M does not have 1 as an
eigenvalue. To completely understand this notation, one has to keep in mind that 6*
is a vector of IR, whereas (Z,8) is the identity map in R***?. The transformations

Ay and 14_1’5 ! are therefore

—

Ag=7—Zjigod, Al =74 75,06, (1.168)
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which are symplectic maps.

1.9 General Normal Form Theory

If a map is not order n symplectic or if its linear eigenvalues are degenerate, one can
still try to transform it in such a way that its Taylor map to a given order has a simpler
form, meaning that it has less non—vanishing coefficients. Such a transformation can

be obtained from the general normal form procedure which will be lined out.

Definition 1.9.1 Let a map M:@?—a@? be given and let its Jacobian at the origin
be diagonalizable. The successive performance of the following n steps produces the

general n'™ order normal form transformation A of M.

1. Find a linear map A, such that the Jacobian of AioMo /_1)1_1 is diagonal.

2. From ]\7m_1 = [fm_l 0...0 /_1)1 oM o /_1)1_1 o...0 Abn find f_fm with the help of

m—1

—

T, which is given analogously to equation (1.20) by

(Now-14B)/Du(F) if Di(F) #0 (1.169)
Fy=0 " '

(T lke) = { 0 if Dy(F)

where the previously used notation for Taylor coefficients is applied. A, is given

by

— —. — —m =,

Am =m exp(i{@)g, At = exp(—12%0)7, (1.170)

where the exponential Lie operator is defined by the power expansion of the exp

function. To order m this yields

— —

Ay =m 24T, A=, 2T, . (1.171)

m

As shown in section (1.3), equations (1.170) and (1.171) guarantee that A,

changes No_1 in a suitable fashion to eliminate the highest possible number of
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m'* order Taylor coefficients in A)mﬁm_lff;l’”. Use this iteration from m = 2

tom =n.

In general this method leads to an n** order polynomial map A=, A,0...04

which simplifies the Taylor expansion of M by N =, Ao Mo A-1". For two special

cases, we will specify further properties.

Definition 1.9.2 (General Resonance of Order m) The d eigenvalues of a di-
agonalizable d X d matriz are said to be in general resonance of order m if there is a

set of d integers with S, [ki| = m + 1 and [T, \F = 1.

Following we will call a map diagonalizable when its Jacobian at the origin is diago-

nalizable.

Theorem 1.9.3 (Nonlinear Diagonalization) If a diagonalizable map M:q¢—
@? has linear eigenvalues which are not in general resonance to any order m < n,
then there is a map and an order n inverse A and A=Y such that the polynomial

map of order n with N =, AoMoA-1" s given by Ny = A\ z;.

Proof: Due to the condition, there are no general resonances up to order n, and

therefore all resonance denominators D;(k) do not vanish and the normal form process

creates a map with no Taylor coefficients between order 2 and order n.

Theorem 1.9.4 For a non-degenerate map M € SPid(]R) with linear etgenvalues
which are not in resonance to any order m < n, the formalism demonstrated in the
proof of theorem (1.1.8) is equivalent to the general normal form transformation, if
the linear matriz in step 1. of definition (1.9.1) is chosen to be symplectic and the

etgenvalues are ordered such that Agj_1Ay; = 1.
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Proof: The diagonalization with a symplectic matrix is identical to the diagonal-
ization performed in section (1.2). To show that also step 2, the iteration to higher

orders, is identical to the process in section (1.3), we have to show that

—

exp(fnfa)é’: exp(: ty 1)2 (1.172)

with 5tm = Jgdfm. This, however, is obvious, since the Poisson bracket is defined as
it f = 5Tth2d5f = T;?;a_)f
One can also restrict the formulated method to avoid small denominators when

perturbations of order n symplectic maps are analyzed.

Definition 1.9.5 Let a diagonalizable map M : R* — IR* hque linear eigenvalues
which are not in general resonance to any order m < n. The successive performance

of the following n steps produces the restricted n™* order normal form transformation

A of M.
1. Find a linear map Ay such that the Jacobian of A oMo A_)l_l is diagonal and
Azj—1 = A3, for complex eigenvalues.

2. From Nm_l = [fm_l 0...0 /_1)1 oM o /_1)1_1 0...0 14_1;1_?, find f_fm with the help of

—

T, which is given analogously to equation (1.20) by

0 if k?j—l — k2] = (52]‘_1J for odd !
(Tm,l|k) = 0 lf k2] — k2j—1 = (52]‘71 fOI‘ evell Z (1173)
(Nm—11|k)/Di(k)  else

and choose the maps A, and /_1);1’” as in equation (1.170).

This choice of T, corresponds to the choice for order n symplectic maps given in
equation (1.20), since here (fm|/_€)) is chosen 0 whenever Dl(g) is 0 for an order n

symplectic map. When the transformation procedure is performed successively up to
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order n, the only Taylor coefficients which are not eliminated are such that N; = z;(h;o
d) with a; = z2;_12z9;. However, there are no special restrictions on the polynomials

h; of order [(n — 1)/2], since M was not assumed to be order n symplectic.

It is worthwhile to introduce a real restricted normal form. To do this, we first
observe that N € & with the definition of & and C given in equation (1.80). The
formal proof is lengthy and was already performed for order n symplectic maps when
theorem 1.5.1 was proved. Therefore, it will only be mentioned that every step in
that proof can be performed for the non-symplectic case, when the linear map A is
chosen to be R?*?* — C. With the reasoning used for the order n symplectic case it

— —

follows also that B = CoNoC~!is a real map and we can write R with the structure
Baia N L rogy [ C08(Wi0b) —sin(vi06) ) (225 (1.174)
Ry; sin(t); o b) cos(t); o b) Zj

for complex eigenvalues A;_; and Ay, and

Raog—1 7{ gk © g 0 Z2k—1
=, b - 1.175
( Ry, ) e ( 0 1/(gk 0 b) 2ok ( )

for real eigenvalues. b again is given by b; = Z%j—l + zgj and by = 295_129;.

Let M € SP? satisfy the conditions of theorem 1.5.4 on real symplectic normal
forms and a perturbation of this map M. be given. The restricted normal form
procedure will obtain a normal form map N, of M. which is a perturbation of the
order n symplectic normal form map N. Then the r; are close to one. In the case
of complex eigenvalues, which have modulus one for ]\_j, the motion described by N,

will not be on a circle but will slowly spiral away from the a circle.



Chapter 2

Long Term Estimates for Weakly
Nonlinear Motion

Estimating the time of stable motion for planetary systems has first started the in-
terest in the stability of weakly nonlinear mechanical systems. In accelerator physics
this question became important with the introduction of storage rings. In large stor-
age rings particles often have to be kept in the accelerator for up to a billion turns or
more. The presented work contributes to the complex subject of stability analysis by
providing a method which allows one to compute rigorous lower bounds on the time

of stability in weakly nonlinear motion.

In the past, the question of long term stability in storage rings has been analyzed
by various methods including kick tracking [Tal91], element by element tracking and
one-turn map tracking [Ber88b, Yan91, KSZ92|, symplectic long term generating
function tracking [Ber88a, Ber91b, Yan93, Gja93], approximately symplectic track-
ing [KSYZ91], evaluation of Lyapunov exponents and tune shift analysis [Sch91], as
well as Nekhoroshev estimates [Tur90]. The principle underlying the proof of the
Nekhoroshev estimate [Nek77] was evaluated numerically to obtain lower bounds for
the survival time. We will call this the pseudo invariant estimation (PIE) method

[WR92]. Although some of these methods are useful analysis tools, they all fail to

30
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give mathematically rigorous lower bounds on the time particles stay inside the ac-
celerator when the motion is described by a nonlinear map. We will introduce the
PIE method by using pseudo invariants of normal form theory. This method comes
close to giving guaranteed lower bounds on the survival time. To make the bounds
completely rigorous, an extension of the PIE method is introduced which can ob-
tain such a rigorous bound on the turn number. The pseudo invariant needed for
this method is computed via nonlinear normal form theory, which was described in
detail in chapter (1). The bounds are made completely rigorous by performing the
required optimizations with interval methods. The use of interval arithmetic seems
imperative for any rigorous treatment of the stability problem, since any tracking
method only tests a small part of phase space of measure zero. The functions that
have to be optimized are far more complex than typical applications of interval op-
timization. Through the introduction of arithmetic on the new structure of interval
chains (IC), one can exploit the special properties of the problem and enable interval
optimization. Computations in this structure are performed by introducing a new
data type into the FOXY language, which is the input language of COSY INFINITY

[Ber90b, Ber92b, BZWHO91, Ber93a, Ber94].

2.1 Introduction to the PIE Method

After a short review of stability analysis in weakly nonlinear systems, the PIE method
will be introduced in detail. A section about normal form theory describes our choice
of getting pseudo invariants. These nearly invariant functions of the one-turn map
are essential for defining the beam region and for bounding the survival time. The
importance of resonances and their influence on estimates of the survival time is
discussed. Two refinements will be introduced which increase the obtainable bounds

on long term stability. Up to that point, the PIE method assumes that the one-turn
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map of the storage ring in question is well known. Since this is rarely the case, the

theory has been extended to maps which depend on an unknown parameter.

The PIE method hinges on efficient global optimization; when the required opti-
mizations are performed by scanning the relevant volumes in phase space, the method
cannot be completely rigorous. An introduction into interval analysis and rigorous
global optimization will be given, followed by the definition of interval chains. The
concept of interval chains takes advantage of the special structure of the problem
and is faster than conventional interval arithmetic optimization by many orders of

magnitude for the special functions that have to be optimized.

Most of the demonstrated examples are described by polynomial maps. To ana-
lyze general weakly nonlinear motion, it is necessary to find a bound on the Taylor
remainder of a weakly nonlinear system. We will estimate a bound on such remain-
ders by comparing tracking and one-turn maps. Such an estimate, however, is not
completely rigorous. Interval chains are a subcase of a method called differential
algebra with remainder or RDA [BH94a]. Like DA, RDA enables computation of
the Taylor expansion of a function, but in addition automatically gives a bound on
the remainder of the Taylor expansion in a given interval of the function’s domain.
Toward the end, outlining possible improvements, it will be described how RDA can

be used to also make the predictions for general maps completely rigorous.

2.1.1 History

The investigation of the stability of planetary motion has been an important ques-
tion for over a century. After early attempts by Laplace and Lagrange to under-
stand the stability of the solar system, Poincaré [P0i99], Birkhoff [Bir27], and Siegel
[Sieh2, Sieh6], among others, investigated the problem in detail. Usually the problem

of planetary motion was analyzed by considering it as a perturbation of a known and



53

solvable Hamiltonian system. Innovative investigations of this problem were achieved
by Kolmogorov [Kol54], Arnol’d [Arn63], and Moser [Mos62]. Nekhoroshev formu-
lated a theory which estimates the time of stability of a system with a perturbation
strength proportional to € by an exponential estimate. In reference [Nek77] the fol-
lowing theorem is proven: (citation from p. 4) “Suppose that Hy satisfies certain
steepness conditions, .... Then there are positive constants a, b, and ¢, with the
following property. Let 0 < € < €. Then for every solution I(t), ¢(¢) of the system
with the Hamiltonian Ho(I) + eHy (1, ), |I(t) — 1(0)] < € for all ¢ € [0,T], where

T= % exp(ﬁ%).”

This theorem is proven by performing canonical transformations (1, ¢) — (J, %) in
order to minimize the dependence of the Hamiltonian on ¢ as much as possible, thus
bringing the new coordinates .J as close to invariants of motion as possible, which is
called creating “almost integrals” in [Nek77] on page 21. The exponential estimate is
established by a detailed analysis of this canonical transformation, which is performed
in a perturbative way in respect to €, and by finding the optimum order to which the

transformation should be performed.

For certain problems concerned with general Hamiltonians, celestial mechanics,
and also single particle motion in accelerators, the Nekhoroshev method of exponential
estimates has been used by finding values a and b for the specific problem. Examples

for accelerator physics can be found in [Tur90].

The idea of the proof of the Nekhoroshev estimate has prompted an analysis of
stability of the nonlinear motion in particle accelerators by analyzing it in normal
form space, a space in which the Hamiltonian has as little dependence on ' as pos-
sible. In this space the change of the “almost integrals” or pseudo invariants is not
estimated by bounding the series of canonical transformations but by performing

the canonical transformations on the computer and then evaluating their effect on
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the pseudo invariants. This possibility was first mentioned and programed by R. L.
Warnock for maps obtained by interpolation of individual tracking points. Later it
was realized that Hamiltonians are not needed when the one—turn map or Poincaré
map of a storage ring is known [WRGE89, WR89]. One only has to find the maxi-
mum change 6 of the nearly invariant function during one application of the transfer
map of the accelerator. This maximum change over the relevant regions of phase
space bounds the change of the pseudo invariant for the entire particle motion in this
region. Several other improvements on the method of pseudo invariants were made;
they include using maps which describe many turns in the accelerator and differ-
ent means of finding canonical transformations to the pseudo invariant coordinates
[WR91, War91]. Most of this work was done by R. L. Warnock and R. D. Ruth in the

Stanford Linear Accelerator Center, the fullest account is found in reference [WR92].

Following, our approach to the PIE method will be described in detail and applied
to several examples, thereafter it will be shown how the predictions can be made

completely rigorous and examples will demonstrate the applicability of the method.

Our approach was described in [HB92b, HB93a, HB93b, BH94b)|.

2.2 Pseudo Invariant Estimation (PIE)

Storage rings are designed to hold particles for a long time. For example, the Large
Hadron Collider (LHC) at CERN will have to allow particles to circle the 27 km long
tunnel for one day at one millionth of a percent less than the speed of light in order
to make effective high energy physics experiments; this corresponds to 10° orbits
around the ring. It was pointed out in [WR92] that, if one considers the effect of
every magnet as a perturbation comparable to perturbations encountered during one

year of planetary motion, then this stability requirement corresponds to 10!? years of
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stability in the solar system, far more than the estimated age of the universe.

To ensure that the machine design is capable of holding the required numbers
of particles for such a long time, it is important to develop methods which find out
how long a particle with a given initial condition will remain inside the ring. This
could be done by tracking the orbits of particles through 10® turns, which is far too
time consuming with today’s computing power to be performed accurately. Another
disadvantage of this approach is that the stability of motion can only be checked for a
limited number of particles. Furthermore, the computational inaccuracies can build
up to an untolerable amount. There are, however, some programs available which
follow this approach using kick approximations for the optical elements to speed up

the computation [Tal91, Sch91].

Other approaches look at the one turn transfer map that relates initial phase—
space coordinates Z; to final coordinates after one turn z; = ]ﬁ(é}) This one-turn
map contains all information about particle motion after many turns, since many
turns are described by successive action of the one-turn map. The transfer map
can be approximated in different ways. Recently an appropriate choice of B-spline
functions and Fourier series has been applied [BWRF93]. More commonly the Taylor
expansion of the function is used. This has been done for light optics by Hamilton
[Pra33] and was used for charged particle optics since the 1930s. TRANSPORT
and many other more recent computer codes follow this concept. In [Ber87] it
was recognized that Taylor arithmetic in a DA framework allows to do this to ar-
bitrary order. For the theory behind the DA technique, please refer to the references
[Ber92a, Ber9la, Ber90a, Ber89, Ber87, Ral81], and for different DA programs, refer
to the references [Ber94, Mic94, Yan94b, vZ94]. Time considerations often restrict
calculations to about order 12 [Yan94a]. The accuracy of the Taylor map approach

increases with proximity to the closed orbit. Once the one turn map is obtained,
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particles can be tracked through the map to find out how long they stay inside the
accelerator. Applying high order maps the required number of turns can still be very
time consuming and, as in the case of element by element tracking, the stability can

only be checked for a very limited number of particles.

The PIE method analyzes the one—turn map directly without tracking through
it several times, which in particular avoids computational inaccuracies. Furthermore
this method does not only test single particles but provides information about all

particles in a given region of phase space.

We assume that there is a closed orbit in the ring. Particles with phase space
coordinates near the closed orbit will not be lost, particles which are too far away
from the closed orbit will be lost during their motion around the ring. We therefore

divide the phase space P into the allowed region A and the forbidden region P\ A.

The question we want to answer is: How many turns does a particle which origi-
nates in a given region of phase space O circle the ring without leaving the accelerator.

We therefore look for the number
Nnax = max{n|M"(O) C A} , (2.1)

where Zﬁ”((’)) = {Z\?”(Eﬂé’ € O}, and M”(Z) stands for n applications of M. The
different regions are shown in figure (2.1a). With the following method we will find

a strict lower bound N for Ny ax.

If we find a real valued test function f that does not have common values in O
and in P\ A, then successive action of the map must bridge a gap Af as shown in
figure (2.1b) in order to map a Z € O into P\.A. Particles start to bridge this gap by
entering the phase—space region S; = ]ﬁ((’))\(’). The gap is bridged when a particle
has reached the region Sy = A?(A)\.A. If S; or §§ are empty, particles in O will never

leave A. If they are not empty, the gap goes from f; to f; with f; = max{f(2)|Z € S;}



57

Figure 2.1: a) The initial region O and the allowed region A of phase space P with
O CACP.b) The gap Af that has to be bridged.

and fy = min{f(2)|Z € Ss}. The function
dy = (M)~ f (2.2)

describes how much f deviates from being an invariant of the map ]\_j; dy is called
deviation function. When a phase space point " is mapped through M once, the gap
Af is diminished by ds(Z). If we assume f; > f;, the step from f; towards f; is

always smaller or equal to
6 = max{ds(2)|Z € (A\O)} . (2.3)
A particle that starts in O therefore survives at least NV turns, where

N = [%} < Npaz - (2.4)

We are thus left with four problems:

1. finding a suitable test function f such that N becomes favorable,
2. finding f;, the maximum of f on §;,

3. finding fy, the minimum of f on Sy,
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4. finding 6, the maximum of the deviation function in the appropriate region.

To make the desired estimate as large as possible, we should find a function f which
increases between the allowed and the forbidden region and should, at the same time,

be close to an invariant of the one—turn map to make 6 as small as possible.

The remaining three problems are concerned with finding maxima. These maxima
can be found in a mathematically rigorous way using interval arithmetic, which will
be explained in chapter (4). Doing this would, together with equation (2.4), give a
mathematically rigorous estimate for the survival time of particles propagated by the
given one turn Taylor map; this will be described in a later section. First we have to
choose a suitable pseudo invariant f, and we are faced with the problem of describing
the phase-space regions O and A in a sensible way. We will use nonlinear normal

form theory on Taylor maps to solve both problems.

2.3 Normal Form Transformations and Pseudo
Invariants

Normal form theory for general order n symplectic maps is treated in detail in chapter
(1). In the context of the PIE method we are only interested in the special case of
stable linear motion, which means that all linear eigenvalues have modulus one. The
phases of the linear eigenvalues are the tunes of the system, with Ay;_; = exp(:27v;),
J €{1,...,d} for d degrees of freedom. For this special case, the definition (1.1.5) of

resonances reduces to the well known resonance conditions for the tunes.

Definition 2.3.1 (Resonance of Order m for linearly stable systems)
The d tunes v; of a non—degenerate stable symplectic 2d x 2d matriz, are said to be
in resonance of order m if there is a set of d integers k; with Y, |k;| = m + 1 and

¢ kiv; =0 (mod 1),
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Theorem 2.3.2 (Normal Forms for Linearly Stable Maps)
A non-degenerate linearly stable map M e SPde(]R) with tunes which are not in

resonance to any order < n can be transformed by a transformation Be S?id(ﬂ%) to
R=,BoMoB'"¢e SPX(IR) and
( Raj ) _ ( cos{i5(B)} —sin{v;(5)} ) ( ) | @.5)
Raj sin{e;(b)}  cos{ih;(0)} J \ 22
The map b: IR — R is given by b; = Z%j—l —|—z§j. These functions b; are order n+1
invariants of the map R and the polynomial of order n+1 given by I; =,44 bj(é) are

order n + 1 invariants of the map M.

Please refer to the section on symplectic normal forms for the proof of this theorem,

which is just a restricted form of theorem (1.5.4). It can immediately be seen that
b;(R) =n41 b; (2.6)

which means that the functions b; are order n + 1 invariants of R. In a similar vain

we write

]J(A_j) =n+1 b]‘ ] g 0 A_j =n+1 bj ] E ] E =n+1 bj ] g =n+1 Ij . (27)

Up to order n, the motion in normal form coordinates is described by rotations.
The amplitudes of these rotations are invariant up to order n + 1. The proof given
in chapter (1) demonstrates a method which allows direct computation of the normal
form maps. During the calculations, Taylor terms of M; have to be divided by the
resonance denominators Dl(z) with

. d
D (k) = exp(i27y) — eXp(iQWZ kiv;) . (2.8)
i=1
Since the resonance denominators vanish at resonances below order n+1, the theorem

on symplectic normal forms excludes tune resonances. However, it can be shown that
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there is no problem with resonances of the linear eigenvalues when the map M is the

Taylor map of a system which has d exact invariants of motion.

To illustrate the normal form transformation, the motion in phase space for 2000
turns in a typical accelerator is shown in the left part of figure (2.2). For each turn,
the horizontal position x as well as its canonical conjugate momentum a is displayed.
The finite width and the irregular structure of the band is a result of nonlinear effects
and of coupling to the other degree of freedom, the motion in vertical direction. From
the picture one can see that the particle positions are bounded for the number of turns
shown. However, it is very difficult to estimate if particles are on average moving away
from the origin or not and what would happen if the number of turns were increased.
The right picture in figure (2.2) shows the same motion after transformation by the
normal form map. The motion now has nearly circular shape, which will make it

much easier to estimate the long term stability.

L S——

Figure 2.2: Phase Diagram for 2000 turns in an accelerator for four initial conditions.
The left picture shows the motion displayed in standard particle optical coordinates
x and a, and the right picture shows the same motion in normal form coordinates.
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2.4 Maps to Test the Method

We will use six different maps to test the normal form invariants and the PIE method
with and without interval optimization. Two of these example maps have one degree
of freedom and four have two degrees of freedom. One map on two and one on four
dimensional phase space is known to have completely stable motion; these maps are
suitable to check what PIE yields for systems where infinite survival times can be

guaranteed by analytic calculations.

2.4.1 The Physical Pendulum

A pendulum of length [ and mass m in an uniform acceleration ¢ is used as a model
for stable motion in two dimensional phase space. The chosen position coordinate x
is the arc length of the pendulum’s elongation. The Hamiltonian is given by

2

_r z
H = . mglcos(l) . (2.9)

In order to compare this motion to motion in an accelerator, we transform from the
time t to a length s as independent variable, p,,,, is the maximum momentum for

bound motion,

s =10 — o gl (2.10)

m

Furthermore, we introduce the dimensionless canonical momentum a = p/pyqa.. With
these coordinates and the independent variable s, the motion is canonical for the new

Hamiltonian

G =

p;zxﬂ(:zz,apmw) = — — ZCOS(§> ) (2.11)

The motion is governed by Hamilton’s equations

d d
Tr=0.G, —a=-0.G, (2.12)
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and the linear map becomes
zy \ _ 1 c9s(27ry) 2l sin(27v) z; . S (2.13)
ay — 57 sin(27v) cos(27v) a; A7l

The phase v corresponds to the tune in an accelerator and the invariant ellipse of

linear motion is given by

£E2

Ii(z,a) =, 57 +2la* =¢. (2.14)

when the emittance is ex. This invariant of the linear map agrees up to order 2
with the order n + 1 invariant I; of the n'® order map. In the examples to follow,
we chose an emittance of ¢ = 10,000 mm mrad and a tune of v = 0.379 if not
stated specifically. The nonlinear map is computed by evaluating the exponential

Poisson—bracket operator acting on the identity up to order n:
M=, exp(— : 47vlG :)Z . (2.15)

As introduced in theorem (1.3.4), : f : g denotes the Poisson bracket between f and

g. If not specifically stated, we will use order 8 in the examples.

2.4.2 Henon Map for One Degree of Freedom

The Henon map [LL83] is a standard test case for the analysis of nonlinear motion,
because it exhibits many phenomena encountered in Hamiltonian nonlinear dynamics.
These include stable and unstable regions, chaotic motion, and elliptic fixed points.
The Henon map can even serve as a very simplistic model of an accelerator under the
presence of sextupoles for chromaticity correction. The figures (2.3a,b) show typical

tracking pictures for the Henon map
Ty \ _ x o c.os(27r1/):1:2- + sin(27v)a; ’ (2.16)
ag a4+ kx —sin(27xv)x; 4 cos(27v)a;

which is a composition of a kick map and a rotation.
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Figure 2.3: 9 particles tracked for 500 turns through the Henon map. The starting
conditions were x = 0.1 -7, 7 € {1,...,9} and the kick strength was 1.1. The tune in
figure a) is 0.255 and in figure b) 0.29.

Since kicks and rotations are symplectic, the Henon map is symplectic. One can

find Hamiltonians which have the Henon map as time step one map, for example,
1
H = 7r1/{:1:2 +a? — Q(tk)a:vz + (tk)2:134} — gkrz:‘o’ ) (2.17)

However, it is not possible to find a time independent Hamiltonian, since in general
the Henon map does not have an invariant of motion. To compare with accelerators,
the tune corresponds to v and the linear invariant ellipse for emittance ex is I1(z, a) =2
2?4+ a* = e. In the examples the emittance will be chosen to be 10,000mm mrad and

the tune will be v = 0.379 if nothing different is stated specifically.
2.4.3 Coupled Pendulum

Coupling two pendulums is not very suitable for comparison with an accelerator, since
in linear approximation the motion does not decouple for a natural choice of coordi-
nates, whereas in accelerators the linear motion in horizontal and vertical direction

typically decouples. We therefore choose a physical pendulum with an elastic string,
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a bungee jumping point mass, so to say, which behaves corresponding to mid—plane
symmetry. The figure (2.4a) shows typical tracking pictures for this pendulum. The
motion must be bound for small enough amplitudes, since the energy is a Lyapunov

function [Lya92].
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Figure 2.4: 9 particles tracked for 500 turns through the coupled pendulum. The
starting conditions were angles z/lyp = 0.01 -7 for j € {1,...,9}. This corresponds to
a maximum emittance of 4050mm mrad. The horizontal and vertical tunes in figure

a) are 0.36 and 0.78, and in figure b) 0.37 and 0.78.

The pendulum has a relaxation length Iy and is elongated at rest by A to the
rest length [y = Io + A. The canonical positions are z, the angle times [y, and v,
the elongation from the rest length. Lagrange’s formalism leads to the conjugated

momenta p, = mi(1 + y/ly)* and p, = my. The Hamiltonian is given by

1
H=—(p

2m

A eyl Do +A? . (21)

The frequencies of linear motion are w, = 1/¢/lp and w, = /g/A. Like for the

mg(lo + y) cos(

physical pendulum in subsection (2.4.1), normalized coordinates will be introduced.

The maximum momentum for bound motion is P = 2m+/gly and

m

s=tlmee o Py B o g (2.19)

’ ’ ’ 2
m Pmazx Pmax Praz
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The new Hamiltonian is

G = %(a2

x

S (y+A)?
lo

L4yl
8Al,

1
2 + )

T+ v7h) (2.20)

)+

As in equation (2.15), the Taylor map is computed by M=, exp(— : sG :)Z. In linear
approximation, the map is given by

(o) = (ol somem) (2]

2

Ty

Yy cos(2rvy) 2y lhAsin(2xv,) a;
_ . L (2.22)

by —E sin(27vy) cos(27vy) Y

b;

The tunes depend on the independent parameters and their ratio depends on the

parameter of the pendulum,

S ZO
S , = vg\| — - 2.23
T, VA (2.23)
The invariant ellipses corresponding to the emittances e,7 and €,7 are
a? 2 y? 2
— + 21 = €, 20/ LA = ¢, . 2.24
2o Y T oA T VRAY TG (2.24)

If not mentioned differently, the pendulum will have length {; = 1m, tunes v, = 0.17,
vy = 0.91, emittances of 3000rmm mrad, and its map will be evaluated up to order

8.

2.4.4 The IUCF Ring

As an example storage ring, we used the ring of the Indiana University Cyclotron
Facility (IUCF). The electron cooling device and the RF system were not used, since
we want to compute the stability of motion when no such devices are present. The
device is usually used for emittances of 0.37 mm mrad, which are made so small by

electron cooling. Since we want to analyze operation without cooling, we assumed
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€; = 3.77mm mrad and ¢, = 2.2rmm mrad if not otherwise stated. The uncertainty
of the first magnet’s strength is assumed to be 0.01% and the linear tunes are chosen

to be v, = 0.7727 and v, = 0.6650 in the examples shown.

Figure 2.5: a) Layout of the IUCF ring, only dipoles and quadrupoles are shown. b) z—
pr phase space positions for 500 turns. The initial conditions are (z = 55,y = 5)-107*
with j € {1,...,10}.

2.4.5 The PSR II Ring

A second example storage ring is the PSR 11, which was designed as a possible upgrade
of PSR at the Los Alamos Meson Physics Facility (LAMPF). This device was analyzed
for emittances of 407mm mrad and for a uncertainty in the strength of the first magnet

of 0.01%. The linear tunes are chosen to be v, = 0.2313 and v, = 0.2705.

2.4.6 The Demo Ring

The third storage ring which will be analyzed is a simple example ring. It consists of
three identical cells. Every cell is mirror symmetric in the elements which influence

the first order. The dispersion also is symmetric, which makes each cell an achromat.
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Figure 2.6: a) Layout of the PSR 1I ring, only dipoles and quadrupoles are shown.
b) z—p, phase space positions for 500 turns. The initial conditions are (x =5 j,y =
5-7)-1072 with j € {1,...,8}.

The chromaticities, which describe the linear dependence of the tunes on energy, are
canceled by two hexapoles and the effect of nonlinear resonances is reduced by two
further hexapoles. These hexapoles are adjusted by reducing the nonlinear resonance
strength which can be computed by the normal form method. The 12 hexapoles are
not shown in figure (2.7). This device was analyzed for emittances of ¢, = 57 mm
mrad €, = 77 mm mrad and for an uncertainty in the first quadrupole of 0.01%. The

linear tunes are v, = 0.37 and v, = 0.67. If not otherwise stated, the transfer map of

the Demo ring will be evaluated to 8" order.

2.5 The Pseudo Invariant and How to Parame-
terize Regions

Describing the initial region and the allowed region is essential to finding §; and Sy and
therefore to finding a function that changes substantially between those two regions.

Accelerators, usually have mid-plane symmetry, which implies that the linear map
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H<

Figure 2.7: a) Layout of the Demo ring, only dipoles and quadrupoles are shown. b)
z—p, phase space positions for 500 turns. The initial conditions are (z =5 - j,y =
5-7)-1072 with j € {1,...,8}.

does not couple the z—p, and y—p, component of motion. The projection of the linear
motion of beam particles in the z—p, subspace lies on invariant ellipses. The area of
these ellipses is called the z and y emittances of the beam. Since the product of two
ellipses is topologically a torus, the linear motion is said to lie on an invariant torus.

The allowed region for a beam in a storage ring is typically given by the acceptance

in the z—p, phase space and the y—p, phase space.

The = and y acceptances are defined as the largest invariant ellipses that can be
transported through the accelerator in the horizontal and vertical plane respectively.
The reason for giving the acceptance as an invariant ellipse is described as a peel—-
off effect. After every turn, a particle is on the same invariant ellipse in the x and
y section of phase space. Turn by turn the particle’s position rotates around these
ellipses. The angles of these rotations, which are 27 times the tunes, are chosen not
to be a fraction of 27 to avoid resonances. If some obstacle in the beamline touches

an ellipse, sooner or later all particles on this ellipse will hit this obstacle and get lost.



69

Any obstacle therefore peels off particles lying outside an invariant ellipse.

The rotations in nonlinear normal form theory correspond to the concept of ro-
tations on the invariant ellipses. It is therefore natural and follows from the same
argument that in a nonlinear theory the allowed region or nonlinear acceptance A
should be given by a nonlinear invariant of the map, which can be computed by
normal form theory. According to theorem (1.4.4), normal form theory gives, one

invariant circle for each of the d degrees of freedom.

The pictures a) and b) in figure (2.8) describe the nonlinear invariants which
specify the boundary of the allowed region. Since the linear contribution in the map

dominates, they are close to invariant ellipses of linear motion.

There are many different invariant surfaces which can be described by the d non-

linear invariants /;. The two most suitable ways will be discussed here:

A, = {5|Zj]i(5)/ei§1}, (2.25)
Ao = {FL(2) < e, Vie{l,...,d}} . (2.26)

The corresponding beam shape is expressed in figure (2.8¢) by drawing the biggest
allowed = and y coordinates. Elliptic beam shapes correspond to A, and rectangular
beam shapes correspond to Ag. To keep the notation simple, we describe the ini-
tial region O in a similar way with nonlinear emittances ae;w, where @ < 1. The
boundaries are most easily described when a norm is introduced which measures the
distance from the closed orbit according to the invariant torus on which the parti-
cle moves in n'* order approximation. If we want to represent the beam by a round
shape, we choose ||Z]|o, while if we want to describe it by a rectangle, we choose ||Z]|g,
where

EI zd: @ , Z)le = max{]i(g),i e{l,...,d}}. (2.27)

=1 (3 (3
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In real normal form space, to which the transformation B in theorem (2.3.2) leads,
the beam region can be suitably represented by a set of invariant tori. These tori
can be transformed into phase space by the order n inverse B1m. We parameterize
such a curve by the emittances ¢; which describe the torus in normal form space by
writing

Z)) ) ,0; € 10,27, Vie {1,...,d}},
(2.28)
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With this notation, we can introduce regions in phase space which can describe the

initial region and the allowed region. Let

d ..
Fol6,0) = {FFeT(E<y T <), (2.29)

Fa(6,0) = {FFeT(.6< T < Viefl, .. .d}}, (2:30)
then the regions of interest are given by
Os = Fs(0,0) , Ay =F;(0,1), se€ {o,0}. (2.31)

Since B~'" is an order n inverse of g, this definition is approximately the same as
11Z]]s < ¢ or ||Z]|s < ¢ with ( € {a,1}; therefore, the pseudo invariant ||Z]|s fluctuates
very little on the surfaces of O, and A,. Phase space points in the regions of interest

are easily parameterized by the choice of the ¢; and n;.

It is worthwhile to note that the first order inverse B~'! is the exact inverse of
the first order of B. B~1! transforms circles into invariant ellipses of linear motion.
Therefore, when n = 1 is chosen in equation (2.28), then the conventional definition
of the acceptance is obtained. Since the polynomial map B1lmis continuous, it maps
closed regions of normal form space into closed regions of phase space. Therefore,

this definition of the acceptance is meaningful; particles can never leave the region of

F5(0,¢) without crossing the surface Fs((, ().
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To make the desired estimate as large as possible, we should find a function f which
tends to increase when the norm increases and should at the same time be close to
an invariant to make ¢ in equation (2.3) as small as possible. The appropriate choice
is £2(2) = 1710 and fo(2) = [17]lo

There are three reasons which suggest the use of f,. First, for d degrees of freedom,
evaluating fo takes d times longer than evaluating f,, since d pseudo invariants have to
be evaluated, whereas for f,, the polynomials /;/¢; can be summed before evaluation.
Second, since the beamline is generally circular, it seems more appropriate to choose
this notation. A third reason comes from a somewhat heuristic argument. The
figures (2.9) shows that the average invariant defects ]i(]ﬁ) — I; are of the same order
of magnitude on the surface of A,, whereas they fluctuate substantially on the surface
of Ag. If one accepts the heuristic view that bad pseudo invariants in the normal
form picture are an indication of a low live time of beam particles, then it is more

—

appropriate to specify the beam shape by ||Z]|,. Following, the quantities with the

circular subscript will be used and the subscript will be dropped.
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Figure 2.8: The motion on nonlinear invariants in the phase space section z—p, in
figure a) and y—p, in figure b). The allowed and the forbidden region and the definition
of ||Z]| is depicted in figure c).
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Figure 2.9: Fluctuation of the pseudo invariant on the surface of the allowed region.
Elliptic beam shapes (s = o) and rectangular beam shapes (s = O) were used for the
left and the right picture respectively. The four cases and the emittances used are
the coupled pendulum (€; = 0.6¢, 2 = 0.4¢), the [IUCF ring (e = 0.3¢, €3 = 0.7¢), the
PSR II (& = 0.05¢, e = 0.95¢), and the Demo ring (¢; = 0.4¢, 2 = 0.6¢).
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2.6 Analysis of Pseudo Invariants

The PIE method relies on the choice of the function f, which should be as close as
possible to invariant under application of the map M. In order to get a sense how
well the order n + 1 invariants of the normal form transformation are invariant under
]\_j, typical cases were tested. These cases are the six systems described in section
(2.4).

In figure (2.10) the invariant defect is shown for the physical pendulum. The
deviation function d; = f(]\_j) — f with the pseudo invariant f was plotted over the

region in phase space parameterized with equation (2.29).

The coordinate axes in the picture are polar coordinates /e and ¢. In high orders
the invariants are extremely accurate. This accuracy is only possible because the

physical pendulum has an exact invariant, the new Hamiltonian G of equation (2.11).

In table (2.1) the smallest resonance denominators in every order up to order 10
are displayed for the Physical pendulum and the Henon map. The denominators
are equivalent for these two examples, since we chose v = 0.379 for both. All reso-
nance denominators have absolute values which are sufficiently big to avoid divisions
by dangerously small numbers. However, the normal form transformation requires
successive divisions by these denominators and after multiple divisions, very big and
inaccurate coefficients can occur in the normal form map. This fact however will not
have an influence on the reliability of predictions given by the PIE method, since no

exact invariants are required.

Also for depicting the invariant defect for the Henon map, polar coordinates /e
and ¢ were used. The accuracy of the pseudo invariants is less than for the pendulum,

since no exact invariants exist.
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The other four examples are systems for four dimensional phase space. We will
therefore depict the invariant defect on a torus 7 (€). The coordinates in the figures
are the angles ¢y and ¢ which parameterize this surface. In figure (2.12) the invariant
defect is shown for the coupled pendulum. In high orders (here eight) the invariants
are extremely accurate. When comparing the accuracy of the coupled pendulum to
the other systems, it should be noted, that the emittance of the pendulum is about
1000 times bigger. This accuracy is only possible, because the physical pendulum
has an exact invariant, the new Hamiltonian GG of equation (2.20). In table (2.2) the
resonance denominators up to order 10 are displayed. In figure (2.13), the invariant
defect is shown for the IUCF ring. The invariants cannot reach the accuracy of
the coupled pendulum, since no exact invariants of motion exist. In table (2.3) the
resonance denominators up to order 10 are displayed. The tables (2.4) and (2.5) show
the smallest resonance denominators for every order for the PSR II and the Demo

ring; the figures (2.14) and (2.15) show the invariant defects for these systems.

i27r(k1 1% +k2 1/2)

127y,

Order | 1 | k1 | kg | € —e

2 1] 2 0 | 0.42830104E-01
3 113 0| 0.11284027
4 113 | —110.64523782E-01
5 114 ] —110.11918375E-01
6 115 | —=110.12615773E-01
7 116 | —110.83713329E-02
8 101 | =T710.10957355E-01
9 112 | —=710.17465246 E-01

10 1] 4 6 | 0.41817583E-02

Table 2.2: Resonance denominators for the map of the coupled pendulum.

2.7 Influence of Resonances

In the chapter about normal form theory it was mentioned that in general a nor-

mal form transformation is only possible if no resonance condition up to order n is
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Figure 2.12: Invariant defect for the coupled pendulum on a pseudo invariant torus

The coordinates are in [0,27] x [0,27]. The range of the depicted function is [—2.55 -
10-13,7.36 - 10~13].

Order | 1| ky | ky | ei2™ — gi2n(kinathars)

2 2 1| —110.20728920
3 2| -1 21 0.61769437E-01
4 2 2| —210.18997422
5 21 -2 31 0.11370423
6 2 3| —310.16133895
7 1] =7 0| 0.74483076E-01
8 2| =3 | —=50.15128203E-01
9 2 9 0 | 0.37879416E-02

10 2 3 71 0.15616662E-01

Table 2.3: Resonance denominators for the map of the IUCF ring.
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Figure 2.13: Invariant defect for the map of the IUCF ring on a pseudo invariant

torus. The coordinates are in [0, 27] X

[—6.84-1072,6.00 - 107°].

[0,27]. The range of the depicted function is

o
o
o,
@
~
ol
&

i27r(k1 V1 +k2 IJ2)

6227“/1 —e

N Kol
o

0.25862576E-01

0.82362671E-02

0.23559090E-01

0.14964352E-01

0.19723880E-01

0.20173918E-01

0.14362837E-01

0.23856960E-01

[ e e N e S I Sy STy RS

OO0 || O | Wb
CYUOU || W W NN~

—_

el || do| dof o o] =]~

0.74841996E-02

Table 2.4: Resonance denominators for the map of the PSR II ring.
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Figure 2.14: Invariant defect for the map of the PSR II ring on a pseudo invariant

torus. The coordinates are in [0, 27] X

[—1.76 - 1072,1.65 - 10~°].

[0,27]. The range of the depicted function is

o
o
o,
@
~
ol
&

izﬂyl i27r(k1 V1 +k2 IJ2)

€ — €

N Kol
o

0.25862576E-01

0.82362671E-02

0.23559090E-01

0.14964352E-01

0.19723880E-01

0.20173918E-01

0.14362837E-01

0.23856960E-01

[ e e N e S I Sy STy RS

OO0 || O | Wb
CYUOU || W W NN~

—_

el || do| dof o o] =]~

0.74841996E-02

Table 2.5: Resonance denominators for the map of the Demo ring.
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Figure 2.15: Invariant defect for the

torus. The coordinates are in [0, 27] X

[—7.22-107°,6.95 - 10~°].

map of the Demo ring on a pseudo invariant
[0,27]. The range of the depicted function is
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satisfied. It was also mentioned that this transformation can always be performed,
even when resonances are present, if the motion is integrable, meaning there are as
many invariants of motion as degrees of freedom. In general this is not the case, since
probably most real systems are non—integrable. We therefore have to face the fact
that resonances up to evaluation order have to be avoided in order to perform the
normal form transformations needed for the PIE method. The figures (2.16) show
the tune space for two degrees of freedom. In an accelerator these freedoms are the
motion in vertical and in horizontal direction. The resonance conditions create lines
in tune space on which the tunes are not allowed to lie. These lines are shown in
figure (2.16a) for resonances up to order 6 and in (2.16b) for resonances up to order
12. Similar graphs are shown in most elementary accelerator physics text books and
elementary papers [CS58, ES93]. In these graphs the tunes vary between 0 and 1/2.
This quadrant of the complete tune space is depicted, since the set of resonance lines
is mirror symmetric in respect to the lines v; = 1/2 and v, = 1/2. If the tunes lie
close to a line, small denominators D;(E) occur in the normal form calculation, the
transformation becomes inaccurate and the quality of the pseudo invariants decrease.

The reason for this fact is not only a computational problem but there are physical

reasons, since at resonances, good pseudo invariants do not exist.

To analyze this fact, we computed the effect of the tune on the pseudo invariants
and thus on the long term estimates of the PIE method. For the Henon map, we
scanned the tune in 200 steps from 0 to 1. The variation of the deviation function is
recorded in figure (2.17a), where a logarithmic scale was used. The rapidly increased
deviation from invariance and thus the rapidly decreased survival times close to tune
resonances can be clearly seen for every single resonance up to order 8, which was
the evaluation order of the normal form transformation. This figure suggests the well

known fact that it is advisable to keep the tune of storage rings out of “resonance



82

Figure 2.16: Regions of resonances for two degrees of freedom up to order a) 6, b) 12.

holes”.

In figure 2.18 the tune of the physical pendulum was scanned from 0 to 1 in 200
steps and no resonance problem can be observed. Normal form theory is able to ap-
proximate the exact invariant given by the Hamiltonian in equation (2.11) even when
the resonance denominators vanish. This also indicates that in the case of the Henon
map, the problems at resonances are not only due to the resonance denominator

problem.

In order to see if this effect is only of a computational nature or if the physical
reason of non—existing pseudo invariants of good quality is important, we used the
Henon map and performed only a fourth order normal form transformation. The re-
sult is depicted in figure (2.17b). The invariance defects tend to become larger, since
now the invariant surfaces are only approximated to much lower order. However,
resonances of orders higher than the evaluation order cannot be observed. If the de-

creased invariance of f were only due to physical reasons, such resonances should be
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seen. It can also be observed that with higher orders the invariance decreases at res-
onances. This is not too surprising, since nonlinear normal form transformations try
to approximate a non—existing invariant. We can therefore conclude that the normal
form invariants are the Taylor expansion of true invariants if these exist, however we
cannot conclude that they are the best possible pseudo invariants, especially close to
resonances. The figures (2.17a) and (2.17b) also show that there is an optimum order
for normal form transformations, which can be quite low if the system is close to low
order resonances. For the example system we analyze, the tunes were sufficiently far
away from resonances, such that this maximum order was not yet reached at order 8.

This can be seen in the tables (3.1a—d).

Figure (2.19) shows a corresponding picture for the deviation function of the PSR
IT ring. Calculations were performed in order 8. The tunes v, and v, were scanned
from 0 to 1 in 100 x 100 steps. In order to obtain comparable systems, the map of
the PSR II was computed as discussed in section (2.4) and then composed with a
linear map to obtain a symplectic map with the desired tunes. Again the figure is
shown with a logarithmic scale. The boundary of the tune space has zero tune and

is therefore excluded.

Resonance lines up to order 3 can be clearly seen. The lines which can be observed
are one second order resonance line, v, +v, = 1, and four third order lines, v,+2v, = 2,
vy — 20y = —1, v, +2v, = 1, and v, — 2v, = 0. Influences of other resonances cannot
be observed. This indicates two things. First, not only the tune is responsible for the
quality of pseudo invariants, and second, the increased deviation from invariance is

not only an artifact of the normal form method but reflects properties of the system.

Figure (2.20) shows many more resonance lines. Resonances up to order 5 can be
seen. Again it is apparent that not all resonances are observed. It can be imagined

that survival time versus tune plots of this or similar kind can be helpful for machine
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Figure 2.17: Variation of the maximum ¢ of the deviation function d; with tune for
the Henon map of a) order 8, b) order 4. The scale is logarithmic and inverted.
Staying out of resonance holes yields long survival time predictions with the PIE.
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Figure 2.18: Variation of the maximum ¢ of the deviation function dy with tune for
the 8t order map of the physical pendulum. The scale is logarithmic and inverted.
Due to the existence of an invariant, resonance denominators do not cause a problem
during normal form computation.
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analysis and optimization. However, more experience with this technique is needed

to make detailed predictions.

2.8 Symplectic Representations

The fact that the normal form method yields invariants hinges critically on order n
symplecticity of the normal form map. This fact and also the notion that symplecticity
guarantees area conservation in every zy;_; X z3; plane in phase space suggests to look

for completely symplectic transfer maps to describe an accelerator.

This can be done by computing an order n generating function for the transfer
map. The procedure for this computation was mentioned in the references [Ber88a,
Ber91b, Ber90a]. The Taylor expansions of generating functions of symplectic map
can be computed with DA based programs, generating functions give implicit defi-
nitions of symplectic maps, whereas the n'* order Taylor expansion of a symplectic
map is only order n symplectic. The implicit definition of the transfer map by a gen-
erating function is usually inverted numerically with a Newton method. This method
was implemented in COSY INFINITY. As mentioned in [Ber92b], six different modes
of symplectic tracking are possible. The map can be represented by the four differ-
ent generating functions Fy, Fy, F3, and Fj, or the linear part of the map can be
factored out of the map and the mixed variables generating functions F, or Fj can
be used to approximate the nonlinear part of the map by a completely symplectic

transformation.

We used this procedure to check if it is reasonable to compute pseudo invariants
by nonlinear normal form theory and to represent the map by a completely symplectic
representation. The analysis revealed that the normal form invariants /; of chapter (1)

are not better pseudo invariants for a symplectic map generated by either of the six
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generating function. In fact, usually the normal form invariants are better invariants

for the Taylor maps than for any of the symplectic representations.

We believe that the reason for this behaviour is the order n 4+ 1 invariance of the

functions I; under transformation of the Taylor map. The relation
L(M) =41 I (2.32)

only holds for the Taylor map, not for a symplectic map defined by a generating func-
tion, since the partial inversion by a Newton method changes all orders of the map,
not only orders higher than n. The Taylor map M is the Taylor expansion of a sym-
plectic map. Therefore, increasing the order of the expansion makes M become closer
to a symplectic map. In table (2.6) the invariance defect of the coupled pendulum for
the 9** order polynomial f is shown for symplectification of the map by evaluating it
to different orders. The quality of the invariants does not change substantially, since

the first 9 orders cancel with and without this kind of symplectification.

Order | Coup. Pend. (107'3) | IUCF (107?) | PSR II (107?) | Demo (107?)
8 5.858924 5.746786 1.597229 8.808577
9 9.721390 5.717355 1.599737 9.759362
10 9.677259 5.721978 1.599741 9.735593
11 9.744150 5.722880 1.599745 9.137200
12 9.745815 5.722909 1.599745 9.867690

Table 2.6: Maximum of the deviation function after symplectifying the map by adding
higher orders.

In figure (2.21) the deviation function is given for the three example accelerators.
For the emittances used, the different generating functions yielded graphs which dif-
fered less than printer resolution. Therefore, the generating function F; was used
for all figures. The domain in phase space on which the deviation functions were

evaluated is the same as in the figures (2.15,2.13,2.14, and 2.15). In all cases the
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function f is a better pseudo invariant for the Taylor map than for the symplectic

map represented by the generating function.

Even for many turns, where satistfying the symplectic condition could be superior,
our calculations show that the normal form invariants are better invariants for the

Taylor map, as can be seen in table (2.7).

C. Pend. (107'%) IUCF (10~') PSR 1T (10719) Demo (10713)

Turns | £} M F M F M F M
10 293 276 831 323 126 115 | 122581 | 129261
20 534 508 969 938 232 223 | 97341 | 87990
30 723 705 1191 | 1496 321 310 | 77279 | 67182
40 866 840 1091 1396 379 373 | 21238 | 36807
50 1002 949 1497 1219 462 449 | 43855 | 61792

60 1232 1214 1178 1334 371 561 128 125
70 1476 1444 1427 1028 674 666 162 153

80 1656 1637 1187 934 761 754 172 177
90 1803 1778 859 1134 820 814 194 186
100 1941 1890 1007 721 856 853 209 210

Table 2.7: The maximum of the deviation function as a function of the turns when
the map is represented by a generating function.
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Figure 2.21: Quality of normal form invariants when the map is represented by a
generating function for the four examples with two degrees of freedom: a) the cou-
pled pendulum, the range of the displayed function is [—2.15,9.45] - 107'*, b) [UCF:
[—1.16,1.11]-1078, ¢) PSR 1I: [—2.63,2.63]- 1072, d) Demo: [—6.36,8.49]-107°. For the

order 8 symplectic Taylor maps, the corresponding figures were displayed previously



Chapter 3

Optimization by Scanning

On page (57) four problems were mentioned. The first problem, finding a suitable
pseudo invariant f, has been discussed. The remaining three problems are connected
to finding the minimum of f on Sy, the maximum of f on §;, and the maximum of
dy on A\O. The regions S; = ]ﬁ((’))\(’) and §f = ]\?(.A)\A cannot be represented
as clearly as the regions O = {Z]a > ||Z]|} and A = {Z]1 > ||Z]|}. This does not lead
to a problem when phase space regions are used which contain §; and ;. When the
maximum 6o of the deviation function on O and the maximum é on A\O is known,

it is sufficient to choose
Si=Fla,a+b0), Sf=F(1,140) (3.1)

with the phase space domain F(¢,() defined in equation (2.29).

The functions f and dy have some properties which allow to make sensible sim-
plifications. Those properties will be demonstrated for the proposed PSR II. The
evaluation order is 6 and the acceptances are ¢; = 100mm mrad. As shown in figure
(3.1a), the function F(z) = max{f(Z)|F(z,z)} is typically growing monotonously
with # so that the maximum of f(Z) on S, occurs on F(a + 6o, + 6p), which is
approximately described by ||Z]| = «; and the minimum of f(Z) on §; occurs on
F(1,1), where ||Z]| is approximately 1. The function D(z) = max{ds(2)|F(x,z)} is

92
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Figure 3.1: Figure a) depicts F(z) and figure b) D(z) in the allowed region. The

variation of the pseudo invariant relative to ||Z]| is shown in figure c).

also typically growing monotonously as shown in figure (3.1b). Therefore, the maxi-
mum ¢ occurs also at the border of the allowed region, where ||Z]|| is approximately
1. Furthermore, figure (3.1c) shows that the variation of f(2) on S; and Sy is much

smaller than Af = f; — f; which therefore is close to 1 — «. We obtain the estimate

1l -«
N = e, BFLT (3.2)

which involves finding only one maximum on a subspace with nearly constant ||Z]|.
The figure in section (2.6) show the range of the functions d; on the border of the
allowed region A for all the example systems. The function d; does not have sharp
maxima so that sampling with 20 steps in each direction gives a good approximation
of the maximum value. Table (3.1) displays N for different systems and for different
evaluation orders for & = 1/2. Due to energy conservation, the pendulum and the
coupled pendulums are stable for all times. The quality of our estimate is shown
by the big numbers N which we obtain for those cases, in spite of the fact that the

emittances are chosen to be extremely large and nonlinearities quite important.

The evaluation of the functions f and dy, using interval arithmetic to find the max-
imum values and therefore establishing a mathematically strict lower bound for the

turn number N,,,, will be analyzed in a later section. First we want to demonstrate
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Order | Pendulum | Henon Map | Coupled Pendulums
2 434 6 43
3 434 41 915
4 1,039,578 1,109 85,907
5 1,039,578 7,149 2,577,221
6 455,537,706 27,556 61,418,923
7 455,537,706 176,827 1,535,527,685
8 92,114,163,553 1,474,124 29,750,319,370
9 92,114,163,553 9,133,037 357,584,630,384

Order IUCF PSR II Demo
2 9 806 6
3 321 831 129
4 1,288 252,893 1,220
5 19,995 235,650 25,657
6 370,294 6,977,545 84,087
7 3,265,268 8,255,710 1,320,751
8 11,277,884 65,472,668 4,554,994
9 65,734,218 76,092,850 55,548,695

Table 3.1: Minimum number of turns required to move from the initial region to
the forbidden region. The initial emittance was chosen to be half the acceptance.
The maps were evaluated in order eight, whereas the pseudo invariants were com-
puted to the indicated order. Scanning was performed with 20* points for k relevant
dimensions.
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some possibilities of improving the obtained estimates.

3.1 Refinements and Examples

Two methods will be introduced that increase the quality of the bounds on long term
stability. One is connected to separating phase space in appropriate regions, the other
involves multi-turn maps. Furthermore, unknown parameters of the system will be
included in the estimates. The results for the six example maps are accumulated in
table (3.3). In this table the guaranteed number of turns for the assumed acceptance
em, which is given in section (2.4) for each example, and an initial beam with emittance
en/2 is given. For the coupled pendulum and for the IUCF ring, the emittance for
which a beam can be guaranteed to survive 10® turns is also shown. To limit the
computation time, we evaluated 10¥ points for k relevant phase space dimensions.

The parameter interval was also covered by 10 points.
3.1.1 Dividing Phase Space

Because of the rapid increase of § with increasing ||z}, it is appropriate to separate the
regions between ||Z]| = a and ||Z]| = 1 by surfaces F(a;, ), ¢ € {0,...,k}, where
ap = a and o = 1. With u; = max{f(?)|Z € F(a;,;)} and [; = min{f(2)|Z €
F(ai, i)}, the lower bound on the number of turns becomes

k li—wuiy . -
N=>" —5 with 6; = max{d;(2)|F (i, e;)} . (3.3)
—1 ;

The turn numbers obtained from this technique and the transportable emittances
are given in table (3.3) in the third line. In our experience, this separation of phase

space can improve the estimate by up to a factor of 10.
The potential of this approach can be seen when using

D(z) = max{d(2)|f(?) =z} . (3.4)
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We estimate the change that occurs in & by k& map applications as z(n + k) —z(n) =

D(z(n + k)) - k and approximate for big turn numbers N as

¢ dx
o D(&)

N(z) = (3.5)

In figure (3.2) n(x) corresponds to the area under the curve. The PIE method without
dividing phase space, however, only gives the area in the rectangle as guaranteed

survival time.

1.18 - 108

I T
" 1
2

Figure 3.2: Dividing phase space approximates the area under the displayed curve by
several rectangles to obtain the bound on the survival time. Without this improve-
ment, the PIE method would only give the area of the drawn rectangle.

3.1.2 Time Evaluation

Figure (3.3a) shows how close the pseudo invariants are to invariants of motion.
Over many turns the quantity of f changes but it always oscillates around a mean
which grows very slowly. The normal form method, however, bounds the growth
of the pseudo invariant by considering the largest growth that can happen in one

application of the map. As demonstrated in figure (3.3b), the biggest change that can
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Figure 3.3: a) slow increase of the pseudo invariant over many turns, b) periodic
change of the pseudo invariant after relatively few turns.

be generated by N applications of the map is usually much smaller than NV times the
largest growth that can happen during a single turn. Therefore, it is advantageous to

consider the maximum growth that can occur when the map is applied several times.

In order to find the optimum number of map applications, the maximum and
minimum of d(Z) over the allowed region A was plotted for many turns. The fig-
ures (3.4a—f) display the variation of d(Z) for our examples. For the improvements
illustrated in table (3.3), the number of map applications used are displayed in table

(3.2).

Pend. | Henon | Coup. Pend. | IUCF | PSR II | DEMO
14 37 6 89 247 100

Table 3.2: Number of map applications used for improving the estimation.

3.1.3 Parameter Dependence

So far, the normal form method assumes that the one—turn map of the storage ring

in question is well known. Since this is rarely the case, the theory has been extended
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Figure 3.4: The figures display the variation of the deviation function in the allowed
region for the six examples. From top left to bottom right these are a) Pendulum, b)

Henon map, ¢) Coupled pendulum, d) IUCF, e) PSR II, f) Demo.
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to maps which depend on an unknown parameter. Neither particle energy nor the
magnet parameters are known exactly and have to be treated as parameters which
can not be accurately specified. We computed the map as a function of a parameter of
interest and then scanned not only through the interesting region of phase space, but
also through the interval in which the parameter could lie in reality. The unknown
parameter for each example is mentioned in section (2.4), where the examples are

introduced.

If the map M is a function of a parameter, then the nonlinear normal form trans-
formation B also depends on a parameter. Using DA programs allows, as mentioned
in chapter (1), to compute the Taylor expansion of this parameter dependent map B.
The pseudo invariant f then also depends on the parameter. Changing the parameter
changes the transfer map and the pseudo invariant simultaneously, such that f stays
a good pseudo invariant for a wide range of the parameter. This is apparent when

one considers that
foM—f=p410 (3.6)

also holds for parameter dependent normal form transformations, where partial deriva-
tives in respect to the parameter and in respect to the coordinates are considered when

equating with “=,7.

We belive that the described method usually gives a very reliable lower bound
on the number of stable turns. However, to make completely rigorous statements
about guaranteed bounds, several steps have to be performed in a more rigorous
way. In particular, it will not be sufficient to approximate the maximum of 6 by
scanning. Interval arithmetic methods which guarantee a global maximum have to
be used. Utilizing this guaranteed optimization requires a short introduction into

interval arithmetic.
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Lower bound for

Pendulum

Henon map

Simplest application 92,114,163,553 9,133,037
Length and Strength uncertainty 1% 23,556,300,993 8,167,533
Divided phase space 452,868,876,965 44,999,781

Multi-turn maps

388,804,862,856

1,456,171,297

Both

1,895,348,117,634

4,779,711,057

Lower bound for PSR II Demo

Simplest application 76,092,850 55,548,695
Quad field uncertainty 0.01% 47,166,060 51,963,620
Divided phase space 373,642,327 284,008,517

Multi-turn maps

21,172.838,624

1,042,575,616

Both

18,731,455,785

5,121,716,506

Coup. Pendulum

predicted turns

stable emittance

Simplest application

357,584,630,384

5.00 x 5.007m mrad

Length uncertainty 1%

144,173,434,143

3.40 x 3.407m mrad

Divided phase space

1,765,031,547,898

11.3 x 11.37m mrad

Multi-turn maps

1,029,815,934,687

6.00 x 6.007m mrad

Both 5,087,629,041,331 | 14.5 x 14.57m mrad
IUCF ring predicted turns stable emittance
Simplest application 65,734,218 | 3.3 x 2.07mm mrad
Quad field uncertainty 0.01% 18,535,102 | 2.9 x 1.77mm mrad
Divided phase space 335,420,083 | 4.8 x 2.97mm mrad

Multi—turn maps

5,804,832,318

8.1 X 4.87mm mrad

Both

27,745,430,680

13 X 7.77mm mrad

Table 3.3: Lower bounds on the turns of particles for initial emittance of one half
the acceptance and lower bounds on the stable emittances for 10® turns obtained by
various variations of the PIE method.



Chapter 4

Rigorous PIE with Interval
Arithmetic

The introduced method of pseudo invariant optimization has the potential to be com-
pletely rigorous. Equation (2.4) is a strict inequality, if all the maxima and minima
can be strictly bounded. In the field of numerical analysis with automatic result ver-
ification, a number of methods have been developed which lead to rigorous bounds
on the extrema of functions. Below, the basics of interval arithmetic will be intro-
duced and it will be explained how interval arithmetic can lead to rigorous bounds
on extrema. In preparation of the presented work, several methods of standard inter-
val optimization have been used. However, for the complicated function d; involved,
which is a multidimensional polynomial of order n(n + 1) when n is the evaluation
order of the normal form transformation, conventional techniques turned out to be
fair to slow to be useful at current computer speed. Therefore, these standard meth-
ods will only be shortly mentioned and the reader is referred to the references. In
the weakly nonlinear systems of interest, the inefficiency of the conventional methods
is mainly due to the low order contributions in the polynomial dy. In order to take

advantage of the special structure exhibited by the deviation function, namely

dy = fOT) = f =1 0. (4.1)

101
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we introduced an innovative concept which we shall call interval chains. Interval
chains allow one to bound the contribution to a polynomial of order higher than
n + 1. Using interval chains therefore completely eliminates the inefficiencies caused
by low order contributions. After this concept is introduced, several examples will
be presented. The example maps used are the same as those of the previous chapter

and the refinements used correspond to those in section (3.1).

4.1 Interval Arithmetic

Interval arithmetic was developed because of the fact that the set of numbers which
can be expressed on a computer is finite. Therefore, computers cannot store accurate
information about a real number, except that it is located within an interval of width
equal to or greater than the computer accuracy. Thus, if completely accurate arith-
metic should be performed on a computer, an arithmetic for intervals has to be de-
veloped. Such an arithmetic is also necessary to formulate accurate statements using

results of measurements, because measurements usually do not yield real numbers but

intervals, often denoted by error bars [AH83, Kul89, May89, Moo66, Moo79, Moo88|.

Following, intervals will be symbolized by capitol letters and real numbers will
be denoted by small letters. The upper and the lower bound of an interval will be

denoted by underscore and overscore respectively,

X=[X,X]={z[X <z <X}, (4.2)

If f: IR— IR then f(X) is defined as the set of possible results for all elements of

the interval X,

J(X) = {ala = f(a),z € X} | (4.3)

It will be our goal to describe a method to find an interval which contains all

possible results. Such an interval that encloses f(X) will be denoted by F/(X) 2 f(X).
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Elementary Operations

If we are concerned with functions which can be constructed by a finite number of
elementary operations, it is sufficient to ensure that the result of every elementary
operation on intervals is an interval containing all possible results. If this is true
for any elementary operation, it will infallibly be true for the result of the complete
function evaluation. This thought leads us to the need of establishing the result of
elementary operations between intervals. The required property of an elementary

operation between n numbers, described by the function e : IR" — IR, is given by
E(Xi,...,X,) De(Xq,..., X,) . (4.4)

In order to achieve results F'(X) which approximate f(X) as closely as possible, one
tries to define the elementary operations such that the equality holds in equation

(4.4).

At first we choose addition, subtraction, multiplication, and division as elementary

operations:
X4Y = [X4+Y, X+Y], (4.5)

XY = min{XY,XY, XY , XY}, max{XY , XY XY XY}, (47)

XY = [X,X]-[1/Y,1/Y]for0€Y . (4.8)

The addition and the multiplication are commutative and associative. It is important
to note that intervals with addition do not form a group, since there is no inverse
of addition, which follows immediately from equation (4.10). In particular, —X =
[~ X, —X] is not the additive inverse of X, because X — X = [X — X, X — X] # 0.

There is also no distributivity law, but subdistributivity

X - Y+Z2)CX-Y+X-Z. (4.9)
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The diameter of an interval is defined as d(X) = X — X, and the absolute value
is defined as |X| = max{|X]|,|X|}. It is helpful to know the diameter and absolute

value of results of elementary operations

AX£Y) = d(X)+dY), (4.10)
dX-Y) < d(X)|Y]|+dY)|X], (4.11)
X +Y] < [X|+|Y], (4.12)
X Y| = |X]-|Y]. (4.13)

If more complicated functions have to be evaluated, which cannot be established by
a finite number of those four operations, then further elementary functions have to

be defined. Examples are sine and cosine functions of intervals.

Interval Blow—up

The function f: z +— z — =z yields f(X)=0and F(X)=X - X =[X - X, X — X].
This readily establishes that interval computations, albeit yielding all possible results,
can overestimate the set of possible results substantially. In this example the set of
possible results {0} is contained in F(X), which is however a great overestimation.
The blow—up occurs because the constructed arithmetic treats the two intervals X
to the right and to the left of the operator — as two unrelated intervals. Another
exampleis f: z +— x*x. The results for an interval X = [—a, a] can be in the interval

f(X) =[0,a*], whereas the arithmetic yields a bigger interval F(X) = [—a?, a?].
There are three major ways to minimize blow—up:
i) Reduction of the number of elementary operations. This can be achieved by

restructuring the evaluation of the function. For example, f(z) = ¢ — & can be

restructured to f(z) = 0. Because of the subdistributive property of interval
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arithmetic (4.9), a reduction of the number of multiplications by restructuring

parenthesis will always be useful.

ii) Introduction of new elementary operations. For example, e(z) = z* can be

introduced as new elementary operation which is evaluated such that E(X) =

e(X) by E(X) = [max{0,(X - X)}, (X - X)].

iii) Decreasing the absolute value of intervals involved in a multiplication decreases
the resulting diameter according to equation (4.11). Therefore, it is sometimes
helpful to use a so—called centered form, which can be obtained from the inter-
mediate value theorem. The intermediate value theorem states for differentiable

functions on X:
Vz,c € X 3¢ between z and ¢ such that f(z) = f(¢) 4+ f'(§) - (z —¢) . (4.14)

Any value f(z) with € X is in the interval f(c¢)+ F'(X) - (x — ¢). Therefore,

we can write the centered form F¢(X) D f(X) as
FE(X) = f(e) + F/(X) - (X — o (1.15)

and have achieved a multiplication with an interval X —¢, which has the smallest

absolute value when ¢ is chosen to be the center of X. The center of an interval

X is defined as m(X) = (Y—I—X)/Q.

The possibility of computing an interval

F(X) D f(X) (4.16)

in a straight forward way for complicated functions f implies the possibility of finding
upper bounds on f in the interval X. F(X) is such an upper bound. If F(X)

overestimates the maximum of f on X substantially, the interval X can be subdivided
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in several subintervals X; with U; X; = X and a better bound can be found by
f(z) < fn = max(F(X;)) . (4.17)

When the width of X; is made small, the bound will become tight, due to decreased
blow—up. This interval rastering method automatically gives a measure for the over-

estimation

fn — [ < max(F(X;)) — max(F(X;)) . (4.18)

The series of graphs in figure (4.1) shows how the blow—up reduces when the region

of interest is covered with smaller intervals.

For further refinement of global optimization with intervals see [Jan91, JK92,
Jan92a, Jan92b, Han79, Han80, RR88, WHS85, Rat92, Cse91, Eri91, Han88, IF79,
MRB88, Moh90]. One important refinement is the successive decrease of the width of
the subintervals X; after exclusion of subintervals X which certainly do not contain
the maximum due to

F(Xp) < max(F(X;)) . (4.19)

Conventional local optimization can find intervals X; with big F(X;), which will

effectively exclude many intervals X}, by criterion (4.19).

4.2 Interval Chains and Optimization

The deviation function

d 7 (A — T
dy = f(M)— f = ZM =, 0, (4.20)

with I; = B3, , + B2, is a polynomial with coefficients that cancel up to order n if the
map M and the normal form transformation B were computed to order n — 1. This
fact is established by theorem (1.4.4). Since the functions I; are polynomials of order

n and the Taylor map M has order n — 1, the deviation function is a polynomial of
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Figure 4.1: Top left: The function of which an upper bound should be found. Others:
Covering the region of interest with smaller intervals reduces the overestimation of
the maximum.
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order n(n — 1), where all contributions in the first n orders cancel out. Conventional
interval arithmetic evaluates d with intolerable blow—up, due to this cancellation.
To obtain reasonable estimates at all, one would have to cover A by about 10%*
volumes described by 4 intervals for systems with 2 degrees of freedom. Evaluating
ds 10** times in interval arithmetic is certainly out of the question for current and
near future computer speed. If we found a method to bound only the contributions
to a polynomial of order higher than n, we could evaluate the deviation function
by bounding only the relevant orders. The cancellation of lower orders would not
influence this result and thus all blow—up due to cancellations would be avoided. The

concept of interval chains will achieve this goal.

Definition 4.2.1 (Interval Chains, IC) An interval chain I. consists of a finite

sequence of intervals I;, 1 € {0,...,n+1}:
]g ::(]b,]i,]é,...7]n+1> (4.21)

where I; is called the i*" order of the interval chain.

For interval chains, we define the elementary operations addition, scalar multiplica-
tion, and multiplication. The results of those operations are interval chains with the

following elements:

(L:+'JE% = ]i+'Jﬂ Ofgi S n'%17
(rl.); = rl;,, 0<:<n+1,relR,

(]c'Jc)i = Z]jji_j, OSZSR,

i=0

n+1 n+1

LT = (L Y T)). (1.22)



109

For convenience of notation, we denote the :** order contribution of an m!* order
polynomial p by p;. Then p: IR* — IR can be written as p: p(%) = 3", p:(Z). For

¢ greater than m, p; is chosen to be zero.

Definition 4.2.2 Call an interval chain P(A*) = (Py,..., P.y1) an interval chain
(IC) evaluation of a polynomial p of order m on the interval box AF = Ay x ... x Ay

if P; 2 {pi(¥)|7 € A*}, 0 < i <nand Popy 2 {SL,41 pi(7)]7 € A*}.
Thus P,41 bounds all contributions to the polynomial of order higher than n.

Theorem 4.2.3 If F(A*) is an IC evaluation of a polynomial [ on A* and G(A¥)
is an IC evaluation of a polynomial g on A*, then F(AF) + G(AF), F(AF) - G(AY),

and rF(A*), r € R are IC evaluations of f +g, f-g, and rf on A¥, respectively.

Proof: Given the polynomials f : f(Z) = Yi., fi(Z) and ¢ : ¢(&) = 2 0 9i(Z), then

by definition

F 2 {f(@)F € 4 G»D{gimfeA’“} 0<i<n,

n+1 2 { Z f |£E € Ak} ’ n+1 2 { Z gz |:E € Ak} (4'23)

i=n+1 i=n+1

from this we infer
(F(A) + G(A")i = Fi+G2{(f+9)(D)|F € A"}, 0<i<n+1,
(rF(Ak))i = rF; D {(rf) (5)|5€ AR 0<i<n41,

(F(Ak) ) G(Ak>)i = ZFGZ —j 2 {ij 7)gi-;(7)|7 € Ak}

= {(f9){(@)|F € A*}, 0 <i <,

n+1 n+1

(F(AY) - GA ))ur = D (F: > Gy)

1=0 j=n+1—1
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= > [F( i Gi+ Gopr)] + Fn+1(i Gi+ Gry)

1=0 j=n+1—1 7=0

n (o3

n I¢] n B
DAC X gt X0 g+ (X fi)(zgﬂr Yo g)l(A")

1=0 j=n+1—1 7=n+1 i=n+1 7=n+1

U

o B

= D0 X awlAy

1=0 j=max(n+1-1,0)

atf B a+p
= [ 20 QO fimig)(A%) = { X (f9)u()|7 € A} (4.24)
i=n+1 j=0 i=n+1

The expression in the fourth line from the bottom contains the expression in the next

line, since it is an interval evaluation of the function in the third line from the bottom.

Some notations will become useful: Let I be an interval, then [[; k] is an interval

chain with the k" order being I and all other orders being 0. We will only use
[I[;m+1]=(0,...,0,]) and [[;1]=(0,7,0...,0) . (4.25)

Given an IC by I. = (Io, I, ..., I,41), then the interval [I.]; = I} is the k™ order of

I..

Theorem 4.2.4 Let now A be any algorithm based on addition, scalar multiplication,

and multiplication that evaluates a polynomial p at ¥ = (x4, ..., xx). Then performing

AOTL

—

I. =[(0, A1,0,...,0),...,(0,Ax,0,...,0)] = [AF;1] , (4.26)

a vector of interval chains, yields an IC evaluation of p on A*.

Proof: For all I € {1,...,k}, the interval chain (0, A;,0,...,0) is an IC evaluation
of the identity polynomial 7; : #;(F) = x; and P(AF) is the result of finitely many
elementary operations which evaluate p and therefore, using theorem (4.2.3), we infer

that P(A*) is an IC evaluation of p on A*.
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Bearing this in mind, it is easy to see that for an IC evaluation D(AF) of the
deviation function dy on A* it holds that {d;(Z)|Z € A*} C D,;1, since d; is known
to have no contributions with orders lower than n + 1 if the map and the normal
form transformation are evaluated to order n — 1. In this approach cancellations up
to order n do not contribute and blow—up caused by such cancellations is completely

avoided. In fact, subtraction of f is not necessary at all any more, since
D = [d(L))}r = [ o M(I))ugr = [f(E)lngr = [f o M(I)]upn ,  (427)

with the polynomial f of order n.

But even with these simplifications, the resulting objective functions have a ten-
dency to exhibit interval blow—up because of complexity, while the bounds of the
function have to be determined rather tightly in order to guarantee many turns. Fur-
thermore, the functions have a large number of local maxima. All these effects make
the exclusion of intervals rather difficult and not practically possible unless in the or-
der of 10* intervals per dimension are used. These large numbers make bookkeeping

of intervals for later exclusion rather cumbersome if not impossible.

Because of this situation, the conventional methods discussed in subsection (4.1),
which are based on disposing of intervals that can be excluded and halving of the
remaining ones combined with occasional local optimization in real arithmetic, are
not directly applicable. For this reason, we restricted ourselves to a mere rastering of
the objective function with a large number of intervals of equal size. The results in
the next section were obtained by choosing 630 intervals for the examples with one
degree of freedom and 1,000,188 for the example with two degrees of freedom. Because
of limitations in computation time, it was still assumed that the maximum of the
deviation function occurs on the surface of the allowed region. Without the concept

of interval chains a realization of the described method was virtually impossible. For
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examples with two degrees of freedom approximately 10'? times more intervals would

have been needed for similar results.

4.3 Parameterizing Regions for the IC-PIE Method

To avoid interval blow—up, it is advisable to perform as few operations as possible.
This fact becomes obvious when subdistributivity in equation (4.9) is considered. We
therefore try to minimize the computations required to represent the initial and the
allowed region. Previously the invariant tori of order n were represented by equation
(2.28). The conventional emittance and acceptance of linear motion is given by the
invariant tori of first order motion, which are given by n = 1 in equation (2.28), and
by construction of the sets F(&,() in equation (2.29). We now write the tori in linear

normal form space as

Inr(€) = {7] ( 21 ) = ﬁ( COS(@)) ) L6 €027, Vi€ {1,....d}}  (4.28)

29 sin(¢;

and the regions in linear normal form space as

d p.
Far(6,¢) = {717 € Tor(i), 6 < 3T < () (4.29)

7

Then the relevant phase space regions are given by

F(€,¢) = {B7' (D)7 € Fnr(£,Q)} (4.30)

where Efl is the linear part of the inverse normal form transformation B-1.

To find the maximum deviation function é on the surface of the acceptance, we

have to find

§ = max{(foM — f)o B Fyr(1,1)} (4.31)

= max{foB;'oBioMoB '~ foB ' |Fnr(1,1)}.
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The map ByoMo Efl is the transfer map in the first order normal form space and
is to first order a rotation in every zg,_; X z9; plane in phase space. Call this linear
rotation map Randlet N = B,oM o 5{1 0 é‘l; N is the identity to first order.

Write g = f o Efl to get
5:max{go]\70]§—g|f]\rp(1,1)} . (4.32)

g 1s a polynomial of order n if the evaluation order for Misn—1. g therefore does
not contribute to the order n 41 of the interval chain which is used to bound d; and
the second appearance of ¢ in equation (4.32) can be omitted. The rotation R leaves
the tori invariant and can therefore be avoided; we finally get the simple interval

evaluation of
§ = max{g o N|Fnr(1,1)} . (4.33)

Now the intervals [0, 27] in the definition of Ty in equation (4.28) have to be covered

by many small intervals. The maximum upper bound of the intervals [¢g o N 1]nt1

has to be found for all interval chains I. that cover Fyr(1,1). This yields a rigorous

upper bound for 6. All blow—up due to linear transformations is avoided in this way.

4.4 Comparison Between Intervals and Interval
Chains

Several nonlinear systems were studied using the interval chain rastering methods to
provide upper bounds for the invariant defects. In order to get a sense for the quality
of these upper bounds, the numbers were compared with approximations for the max-
imal invariant defects obtained by a rather tight rastering in real arithmetic. Because
of the large number of local maxima, this method proved to be the most robust non—

interval approach to estimate the absolute maxima of the functions involved. Lower
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Order of Interval Interval Conventional
Invariant | Bounding Chains Rastering
(guaranteed) | (guaranteed) (optimistic)
3 11,252 743,667 849,195
4 11,252 743,667 849,195
5 11,306 876,059,284 982,129,435
6 11,306 876,059,284 982,129,435
7 11,306 432,158,877,713 | 636,501,641,854
8 11,306 432,158,877,713 | 636,501,641,854

Table 4.1: Predictions of the number of stable turns as a function of the order of the
polynomials describing the normal form transformation for the physical pendulum
with a maximum elongation of 1/10 rad. Because of energy conservation, the map is
known to be permanently stable.

bounds on the number of stable turns obtained by conventional intervals are given
in the tables (4.1), (4.2), and (4.3) in order to illustrate the usefulness of interval
chains. When conventional intervals were used, the deviation function was simplified
as much as possible by accounting for cancellations up to second order analytically.
The number of conventional intervals and the number of interval chains used in the

bounding are equivalent.

As the first example to check the method, we used a one-dimensional physical
pendulum. This is a good test case, since energy conservation requires the nonlinear
motion to be stable. Table (4.1) shows the results of the stability analysis for this case.
As is to be expected, the number of stable turns predicted increases with the order
and hence accuracy of the approximate invariants. While the approximate scanning
method can take full advantage of this increased accuracy, the interval bounding
method shows a saturation at 11,306 turns. This asymptotic behavior is connected to
the size of the intervals because of the unavoidable blow—up of intervals in the process
of cancellation of large terms. The blow—up in third order dominates the calculation,

causing the higher order improvements to not materialize. The method of interval
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chains takes care of all the cancellations up to evaluation order and consequently the

estimate is much better.

Order of Interval Interval Conventional
Invariant | Bounding Chains Rastering
(guaranteed) | (guaranteed) | (optimistic)
2 895 891 1,086
3 1,736 9,926 11,450
4 1,668 54,016 65,667
5 1,674 678,725 809,612
6 1,670 3,389,641 4,351,679
7 1,671 42,640,927 52,474,387
8 1,671 192,650,961 | 263,904,035

Table 4.2: Predictions of the number of stable turns for the Henon map at tune 0.13,
strength parameter 1.1, and starting position (x,a) = (0.01,0) as a function of the
order of the normal form transformation.

As another example, we chose the Henon map described in section (2.4). The
results of these calculations are shown in table (4.2). Similar to the previous case, the
number of predicted turns increases with order. In the case of interval bounding, the
number of guaranteed turns shows asymptotic behavior limited by blow—up. Again

the superiority of strict bounding with interval chains is obvious.

Order of Interval Interval Conventional
Invariant | Bounding Chains Rastering
(guaranteed) | (guaranteed) | (optimistic)

3 179 16,137 38,385

4 179 18,197 38,857

5 173 309,356 560,309

6 173 347,312 613,135

7 171 925,531 2,184,998

8 171 1,004,387 2,248,621

Table 4.3: Predictions of the number of stable turns as a function of the order of the
approximate invariant for the Los Alamos PSR II storage ring for the motion in a
phase space of 100 mm mrad.

In the final example, we study a realistic accelerator, the Los Alamos PSR 11
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already described above. The same data are shown as for the two previous, more aca-
demic examples. To limit the calculation time, the intervals used for the optimization
were b times as wide as the intervals used for the previous two tables. The results

are shown in table (4.3).

4.5 Refinement of the Rigorous Estimates

In section (3.1) the long term estimation by pseudo invariants was improved by three

methods:

1. analysis of multi—turn maps,
2. separation of phase space,

3. consideration of random parameters.

The improvements obtained by separating phase space in smaller regions can increase
the bound on the survival time by about a factor of ten. With interval arithmetic
this method becomes impracticable. As observed, using arithmetic with interval
chains, one can bound the maximum of the deviation function d; rigorously and
rather tightly. This is only possible, since all low order contributions to the deviation
function vanish. When separate phase space regions are used, one has to find several
maxima and minima u; = max{f(Z)|Z € F(a;, )} and [; = min{ f(2)|Z € F(, )}
as mentioned in equation (3.3). The polynomial f does not have the property that
low orders vanish and therefore the advantages of ICs do not materialize. At current
computer speed, these maxima and minima can therefore not be bounded rigorously

with the required tightness.

In order to minimize interval blow—up, it is desirable to minimize the number of

operations needed. For the rigorous computation with intervals, we chose therefore
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the first order acceptances to describe the allowed and the initial region, and we
performed all first order transformations analytically without blow—up, as already

described in section (4.3).

Therefore n = 1 was used in equation (2.28) when representing F((, () by equation
(2.30). For optimization by scanning, it was necessary to use the nonlinear acceptance

to make [; — u;_1 as big as possible when separation of phase space was used.

Because of the described problems with finding extrema of f, it is not possible
at current computer speed to find the required maximum on §; and minimum on
Sy rigorously. In the examples given below we performed these optimizations by
scanning. The more critical deviation function d; however was bounded rigorously.
As mentioned before, the introduction of interval chains improved the computation
time at least by a factor of 10**. However, even after this reduction of CPU time, at
current computer speed the needed computations take very long. In the examples a
restriction to the surface of the allowed region was necessary when dy was optimized

with interval chains.

One can try to use multi-turn maps and random parameters to refine the 1C—
PIE method. For the simple application of PIE, the surface of the allowed region
was completely covered in order to rigorously bound the maximum of the deviation
function. In the case of two dimensional phase space, the surface was covered by 800
intervals; for four dimensional phase space, 8,000,000 intervals were used. For the

parameter dependent case, these numbers were 160,000 and 50,000,000, respectively.

4.5.1 Analysis of Multi—Turn Maps

It was discussed in section (3.1) and displayed in figure (3.3) that the quality of the

pseudo invariants fluctuates depending on how often the transfer map is applied. One
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can try to use multi-turn maps for rigorous estimation with the use of 1Cs.

Usually the map has to be applied k£ times for every phase space interval, in order
to evaluate the k-turn map. Computing the n** order Taylor approximation of the k-
turn map would only take approximately [log,(k)] Taylor map compositions and would
save a lot of CPU time, however, using this approach would not be rigorous, since
the orders higher than the evaluation order n, which are created by the compositions,
would be neglected. Interval chains allow one to take advantage of the speed increase
achieved by Taylor map compositions. This is due to the fact that we can bound the

high order contributions of map compositions by applying ICs.

In the subsequent section (4.6), Taylor maps with remainder intervals will be used
to describe non—polynomial maps rigorously. For this we denote the map by M and
its n'* order Taylor map by {]\_j}n The remainder only has contributions of orders
higher than n. An interval bound on the remainder of {]\_j}n over a phase space region

A will be denoted by the vector of intervals ﬁl(A), and then
M(Z) € {M},(2) + E;(A) VZe A. (4.34)

With interval chains, a remainder of the two—turn map M? can be computed if a
region B; of phase space can be found with B; DO M(A) One way to find such a

region is the interval evaluation of M, by

—

By = {M},(A) + Ry(A) D M(A) . (4.35)

Let él(Bl) be the remainder of the Taylor map in the region B;. Then the Taylor
expansion of the two-turn map is bounded by

—

M*2) € {MY({M}n(2) + Ba(A)) + Ba(By)

(M} (2) + (MY (M (1A 1]) + [Ba(A)s 0+ 1])]wss + Ba(By)

m

= {M?*}.(3) + Ra(A) , (4.36)
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and one is left with an interval remainder for the n'® order expansion of the two-
turn map. [ﬁl(A);n + 1] could only be written because the remainder only has
contributions of order higher than n. The necessity to know a bound on the region
A?(A) in order to compute EQ(A) can make computations very involved. This becomes
apparent when a remainder interval for the 2*—turn map is computed from a given
2f=1_turn map with remainder interval. Let equation (4.34) be given and assume
that from this information a bound on the 2¥~! turn map was computed with ICs to
get

- 2k—1

M¥7(2) € {M* 7' }.(2) + By (A) VZ€A. (4.37)

The demonstrated method computes the remainder of the 2¥—turn map by
Rox(A) = [{M* 7 L ({M* 7}, ([A; 1)) + [Bae-1(A); n 4 1)) ngr + Baros (Bayrr) (4.38)

with the region Bgx—1 D A_pk_l(A), which can again be found by interval arithmetic
evaluation of {]\_f)ﬁ_l (A) + §2k—1 (A). However, finding the remainder éQk—l (Bgk-1)
requires to repeat all the procedure of obtaining bounds of compositions from M up

to M2, now for Bys—1 instead of A.

This general problem can be overcome easily in case of the PIE method. The
reason for the simplifications is that the simple application of the PIE method for
the one—turn map gives bounds on all the needed regions B;. If an interval remainder
of the 2'~turn map is desired, then let B = F(0,7) and let the maximum § of the
deviation function in this region be given. Choose 7 such that A = F(0,7 — 2" §)
is the phase space region for which remainder intervals are to be found. B therefore
contains all regions ]\_j"(A) for : € {1,...,2'}. We can compute all remainders over
that region B to get bounds for map applications in the region A. The step from the

2¥=1 _turn map to the 2*turn map simply reads

M*(2) e {M*¥}, (4.39)
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+ MM (A5 1)) + [Byer (B)sn 4 1)]ags + Hoxea (B)

There is now no need to go back to a lower turn number for obtaining bounds on a
different region than B. All the required interval chain evaluations can be performed
on a set of smaller intervals covering B. As before, the union of all remainders found

on the subintervals is then used as an interval remainder.

The size of remainder intervals decreases drastically with the evaluation order
used. This is shown in table (4.4), where the union of the remainder intervals for the
different phase space coordinates is displayed. To allow comparison to the previously
demonstrated calculations, we continue to use order 8. In table (4.5) the bounds on
the remainder of the multi—turn maps for various turn numbers is displayed for four
examples. For the Pendulum and the Henon map, 700 intervals were used to cover
the region of interest. For the coupled pendulum, the number of intervals was 1,000.

For the PSR II ring, 1,000,000 intervals were used to reduce blow—up.

The deviation function d; is bounded by

dj(2) € [FEMP L (A410) + [Bin+ D + {F(M*)}a(2)  (4.40)

= [FHM*}a([A51]) + [+ 1)) (4.41)

The term {f(]\_pk)}n vanishes, since f is an order n invariant of M as well as of M2*.

The higher order Taylor coefficients of the composed map M?* increase with k,
and with the increased nonlinearities also the interval blow—up increases. This blow—
up counteracts the advantages of applying multi—turn maps, which do not materialize
with the current evaluations of intervals and at the evaluation order used. Increasing

the evaluation order substantially, however, is not possible at current computer speed.
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Order Pendulum Henon
6 [—0.288,0.288] - 10™> | [—0.450,0.483] - 1074
7 [—0.455,0.455] - 1077 | [—0.997,0.724] - 10~°
8 [—0.456,0.456] - 10~7 | [—0.189,0.199] - 105
9 [—0.112,0.112] - 10~® | [-0.600,0.562] - 10~
10 [—0.113,0.113] - 10~® | [-0.182,0.179] - 10~°
11 [—0.347,0.347] - 1071° | [-0.450,0.500] - 10~
12 [—0.350,0.350] - 10~1° | [—0.145,0.140] - 10~
13 [—0.121,0.121] - 10~ | [-0.433,0.462] - 10®
14 [—0.122,0.122] - 10~ | [-0.142,0.150] - 10~®
15 [—0.422,0.422] - 1013 | [-0.481,0.461] - 107*
16 [—0.425,0.425] - 10713 | [-0.152,0.153] - 10~*
Order Coup. Pend. PSR 1II ring
6 [—0.401,0.401] - 10~> | [-0.451,0.451] - 107°
7 [—0.499,0.499] - 10~¢ | [-0.370,0.370] - 10~°
8 [—0.113,0.113] - 10¢ | [-0.358,0.358] - 107
9 [—0.152,0.152] - 107 | [-0.289,0.289] - 10~
10 [—0.332,0.332] - 1078 | [-0.278,0.278] - 10~
11 [—0.482,0.482] - 1072 | [-0.217,0.217] - 10~®
12 [—0.982,0.982] - 107*° | [-0.207,0.207] - 1073

Decreasing width of the remainder interval with evaluation order.
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Turns Pend. Henon
2 | [-0.659,0.659] - 10~'* | [ 0.000,0.000]
4 | [-0.354,0.354] - 1071° | [-0.128,0.114] - 10~®
8 | [—0.261,0.261] - 10=° | [-0.732,0.870] - 10~
16 | [-0.353,0.353] - 107® | [—0.296,0.339] - 10~°
32 | [-0.457,0.457] - 10=7 | [-0.190,0.199] - 10~
64 | [—0.791,0.791] - 107¢ | [-0.221,0.239] - 10~*
128 | [-0.124,0.124] - 10~* | [-0.214,0.216] - 10~
256 | [—0.218,0.218] - 10~ | [-0.361,0.320] - 102
Turns Coup. Pend. PSR 1II ring
2 | [-0.247,0.247) - 107" | [-0.367,0.367] - 10~ !
4 | [-0.108,0.108] - 107 | [-0.144,0.144] - 107°
8 | [-0.509,0.517]-107'° | [-0.212,0.212] - 10~®
16 | [-0.373,0.374] - 107° | [-0.240,0.240] - 10~7
32 | [—0.449,0.449] - 107® | [-0.441,0.441] - 107©
64 | [—0.586,0.592] - 10=7 | [—0.789,0.789] - 10~°
128 | [-0.705,0.705] - 107¢ | [—0.932,0.931] - 10~*
256 | [—0.117,0.115] - 10~* | [—0.880,0.880] - 102

Table 4.5: Remainder intervals for multi—-turn maps.
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4.5.2 Random Parameters

We want to find a lower bound on the survival time for a given accelerator including
uncertainty of a parameter in a given tolerance. The same settings as in table (4.6)
were used. Instead of the length or field strength, also other parameters could have
been used, like the uncertainty of the particle’s energy or uncertainty in the length

of an element.

The pseudo invariants are computed by parameter dependent nonlinear normal
form theory, which is described at the end of chapter (1). While a different parameter
produced a different transfer map, it also produces a different pseudo invariant which

changes very little during one application of that map. This is due to the fact that

foM—f=p40 (4.42)

holds for parameter dependent map, when “=,” equates partial derivatives in respect

to parameters as well as in respect to coordinates, and f(Z,6) as well as ]\?(5’, ) are

functions of the parameter 6.

Lower bound for Pendulum Henon map
Simplest application 52,366,096,777 5,830,904
Length and Strength uncertainty 1% 14,051,907,204 3,123,964
Lower bound for Coup. Pendulum IUCF

Simplest application 56,917,938,176 19,500,358
Length/Field uncertainty 1% / 0.01% 27,080,626,416 10,768,020
Lower bound for PSR II Demo

Simplest application 58,680,622 10,106,151
Length/Field uncertainty 1% / 0.01% 45,819,009 4,831,120

Table 4.6: Lower bounds on the turns of particles for an initial emittance of one half
the acceptance, obtained by the IC-PIE method.
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4.6 Using Taylor Maps with Remainder Bound

So far we were only concerned with nonlinear motion which is described by Taylor
maps. The number of interest was the survival time of particles in an accelerator.
This time was formulated as the number of map applications for which no phase space
point of the initial beam distribution is mapped into a forbidden region. A method
was presented with which rigorous lower bounds on this number can be obtained.
In the phase space regions which we analyzed, the Taylor maps usually describe
the accelerator well and the limits obtained are valuable for storage rings, however,
strictly speaking they are not rigorous, since the transfer map of an accelerator is not

a polynomial map.

This problem could be overcome if a bound on the remainder of the Taylor map
would be known. The method of RDA, described in reference [BH94a], potentially
provides a way of rigorously bounding the Taylor remainder of functions which can be
evaluated with DA based programs. As on page (108) for ICs, also for this method
elementary operations are introduced such that an operation between two Taylor
maps with remainder intervals yields again a Taylor map with remainder interval.
Furthermore, function evaluations on Taylor maps with remainders are introduced, as
well as a derivative. With these operations, all functions which can be evaluated with
DA programs to obtain their Taylor map, can also be evaluated with RDA programs
to obtain their Taylor map and a bound on the remainder. The implementation of
the rigorous RDA method is a bigger project and will be future work. Here we will
estimate remainders by comparing the 8% order map with the 19 order map for the
two dimensional case and with the 12** order map for the cases of four dimensional

phase space. The results for the examples are shown in table (4.7).

The long term analysis will be performed with the Taylor map and the remainder



125

Pendulum Henon Coup. Pend.
[—0.517,0.517] - 10~2 [ 0.000,0.000] [—0.268,0.268] - 10~
IUCF ring PSR 11 Demo ring
[—0.248,0.248] - 107! | [-0.282,0.282] - 10~** | [-0.727,0.727] - 10~®

Table 4.7: Maximum error of the Taylor map in the phase space region of interest.

term by evaluating

dg(2) € {f(M)}a+[FM(AL]) + [Byn+ 1])]usr (4.43)

= [f(M([A;1]) + [Byn + 1)) (4.44)

with the remainder K. Calculations equivalent to those of section (4.5) were performed

with this complete map and the results are shown in table (4.8).

Guaranteed Turns | With Unknown Parameter
Pendulum 21,517,254,240 10,064,641,158
Henon 5,831,178 3,123,964
Coup. Pend. 25,021,201 24,506,730
IUCF 19,441,816 10,749,711
PSR 11 49,241,881 39,571,014

Table 4.8: Results of the IC-PIE bounds on the survival time of particle motion for
rigorous description of the systems by a Taylor map with remainder intervals.



Chapter 5

Symplectic Scaling (SYSCA)

The map which relates coordinates Z; in the initial plane of an optical system to
coordinates Z; in the final plane contains all information about optical properties.
This map depends on the parameters of the system and is expressed by M : R¥+r

IR* for d degrees of freedom and p system parameters &;, such that
2y = M(%,6) . (5.1)

It occurred first to Hamilton that optical systems could be analyzed by computing
the Taylor expansion of their transfer map [Pra33]. He utilized what he called the
characteristic function to compute this expansion to third order for rotationally sym-
metric optical systems. This concept was also used in charged particle optics. The

motion of the particles is described by a set of ordinary differential equations

— —

d
—Z = f(2,4,s), (5.2)
ds

where s is the coordinate along the central trajectory and 2’ describes the usual particle
optical coordinates. The general solution of this set of differential equations yields the
transfer map of the system. Starting from the 1930s, many references can be given

which carried the computation of Taylor maps to higher orders. Some important

contributions can be found in [BS34, BBB64, Wol65, PR71, Ros87]. The Taylor

126
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coefficients are typically described as multiple integrals over powers of solutions of the
linearized equation of motion. The kernels of these integrals can be computed with the
program MOPS [Pre92] to an arbitrary order; above order seven the formulas tend to
become very lengthy. If the fields involved do not change with s and consequently the
equation of motion (5.2) is autonomous, then the linearized equation of motion can
be solved in basic functions and also the integrations can be performed analytically.
In this case the Taylor coefficients can be computed with the program COSY 5.0 up

to fifth order [BHW8T].

I

S_ S St

<

fringe field =

<

Figure 5.1: Definition of fringe—field and main—field maps.

Because of the simplifications involved in the regions where the field does not
depend on s, traditionally the field of a particle optical device is separated into the
main—field region and the fringe—field region as shown in figure (5.1). This figure also
describes the definition of the fringe—field and the main—field map. To compute the
main-field map Zﬁmf, one assumes that the field 5(:1:, Yy, s) between the effective field

boundaries does not change along the central trajectory and has the structure of the
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field at the middle s = s,, of the element. Outside the effective field boundary the

field is assumed to vanish.

(5.3)

= B x,Y,8y) for s in the main field
Bmf(w,y,s):{ 6( Yy Sm)

for s outside the main field
The abrupt change of the field violates the Laplace equation and can therefore not
represent a physical system. To describe a realistic system, the main-field map has to
be composed with fringe—field maps, which describe the connection of the main-field

to the field—free region outside the element.

The fringe—field map Mff can be decomposed into three maps. To illustrate this,
let so denote the effective field boundary at the entrance of the element, s_ be a
position so far before the optical device that the field can be neglected, and let s
be a position so far inside the element that E(ZE, Yy, s) changes very little with s. The
map ]\_jmf730_,s+ describes the particle motion through the main field given in equation
(5.3) from the effective field boundary to sy. The fringe—field map is constructed in
such a way that a drift D)s__wo from s_ to the effective field boundary composed with

]\_jff and then with A?mf730_>5+ yields the transfer map Z\_L__,SJr from s_ to sy by
]ﬁs__,s_l_ = A_jmf730—>5+ O A_jff O D)S__WO . (54)

This leaves the fringe—field map as

—

M= M-} oM, _.,0oD;' , . (5.5)

mf,s0—s4 s——50

Computing fringe—field maps requires the computation of the map Z\Zs__,er of a sys-
tem where E(m, y,s) depends on s, and therefore the right hand side in the equation
of motion (5.2) depends on s. For this, methods to find general solutions of non—
autonomous differential equations are needed. The method of numerical integration
in DA will be described, which yields Taylor maps to non—autonomous ordinary dif-

ferential equations for an arbitrary expansion order.
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5.1 Integration in DA

Since the theory of differential algebra (DA) and its applications is sufficiently dis-
cussed in the literature [Ber92a, Ber9la, Ber90a, Ber89, Ber87, Ral81], only the un-
derlying idea will be lined out here. As mentioned previously, one can introduce the
notion that functions agree up to order n as an equivalence relation. Equivalence is
denoted by “=,”, which equates functions which have the same partial derivatives at
the origin up to order n. In other words, “=,” equates maps which have the same
Taylor map up to order n. A differential algebra of the corresponding equivalence
classes can be established. Since a Taylor expansion of any map in an equivalence
class represents the whole class, this concept leads to a rigorous description of the
manipulation of Taylor maps. Functions which can be represented by a computer
consist of finitely many elementary operations and elementary function evaluations.
The set of these functions is too big to be handled on a computer. The success which

the DA concept experienced in the last 8 years is due to the fact that there is a

homeomorphism from this set of functions into the differential algebra.

If f is a function of this set, then we symbolize the corresponding element in the
differential algebra as [f],. Let A; be an algorithm evaluating a function f : IR* — IR
then A;7 = f(Z) for all ¥ € IR?. When Z'is the identity function in IR, then A;Z = f.
Due to the homeomorphism, we can evaluate the algorithm in the differential algebra
via

AZ= [ = Ayl = [fln (5.6)

[14 ”

The equivalence class to “=,” of the Taylor expansion of f is denoted by [f].. To
obtain all partial derivatives of f up to order n, it is therefore sufficient to know
the identity and to perform the elementary operations and the elementary function

evaluations which contribute to A in the differential algebra. In the next section
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we will deal with an algorithm which also contains derivatives. Under conditions

explained in that section, also derivatives can be performed in the differential algebra.

Generally the equation of motion is solved by numerical integration. Starting
with an initial coordinate Z; and a choice of parameters §; with : € {1,...,n,},
the integration produces a final coordinate Zy, which means that the combination
of elementary numerical steps performed by the integrator define an algorithm A ;
which evaluates the transfer map ]\?(2’, g) According to equation (5.6), evaluating
the numerical integrator in the differential algebra yields the Taylor map to any order
n. In our applications, the Taylor expansion is computed with respect to 2" as well
as to 6. With the Taylor maps, all partial derivatives up to order n are computed.
Because of this fact, the described function evaluation in DA is often called automatic

differentiation of algorithms. In connection with this method, it is often referred to

[Ral81], the basic idea, however, is much older.

5.2 Evaluating Propagators in DA

—

Let L; denote the operator 5Tf—|— Jsf. Then the equation of motion dz’/ds = f(Z, g, s)

allows one to compute all derivatives of 2 with respect to s by

= = "ar+o.f=1L;f, (5.7)
7 Lz .
T = L) =(Lp)E. (5.8)

Let the central trajectory z = 0 be a solution of the equation of motion for the system
with parameters §= 6, then ]E)((_))7 6, s) = 0. The Taylor expansion of fhas no constant
part and is known to order n, therefore ngfcan be computed up to order n, in spite
of the fact that 5f can only be computed up to order n — 1. However, asf can only

be known to order n — 1. Therefore only maps to autonomous equations of motion,

which have 83]?: 6, can be evaluated in DA by the propagation operator, for which
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we write

i =, exp(L)7 = Y. 2L = fjl(f*fa)*. (5.9)

2:1

In writing this equation, we assume that all the involved sums converge. To use
the propagator for non—autonomous differential equations, an extension of DA would
have to be introduced, in which the coordinate s can be evaluated to orders higher

than n.

In the main—field region the equation of motion is autonomous, and using the
propagator in equation (5.9) to compute the map is very efficient. Figure (5.2) shows
the time advantage as a function of the evaluation order for dipoles, quadrupoles,

hexapoles, and octupoles.

Also the following table makes the time consumption of integration in DA apparent
and shows the computation speed which is accomplished by the symplectic scaling
approximation (SYSCA). It displays the time needed for fitting the multipole fields
of the S800 beamline and the S800 Spectrograph, which are under construction at
the NSCL, to satisfy 14 conditions on first order Taylor coefficients and 6 conditions

on second order.

Only main fields with propagator 51 sec.
Fringe fields with DA integration 7 hours 10 min. 50 sec.
Fringe fields with SYSCA 6 min. 38 sec.

In order to analyze if the transfer map can be represented well by the main-field

. . oL k: 1 k ; .
map, monomials are symbolized by 7% = []??, z* [T;2, 6;,°* with natural numbers

ki, j€{l,...,2d + n,}. The order of such a monomial is given by ||k|| = 2d+”P k;.
Now the ** component of the transfer map M can be written as
Z Z (M;|2F)2F (5.10)
m=1 F
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Figure 5.2: Time consumption of integration in DA relative to main—field map com-
putation with the propagator for different expansion orders. From top left to bottom
right: dipole, quadrupole, hexapole, octupole.
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with symbols (]\MEE) for the Taylor coefficients. Figure (5.3) shows the normalized
average deviation A,, between the Taylor coefficients of the transfer map and those
of the main—field map in order m for four typical charged particle optics devices. The
wedge dipole in the examples of this section has radius 2m, an angle of 30°, and an
aperture of 2.54cm. All other multipoles have: length 41.9cm, a pole-tip field of 2T,
and an aperture of 2.54cm. The chosen ion is ‘0%t with an energy of 25MeV per

nucleon. The fringe fields used are those of the Enge model [Ber92b, KE87, BS81].

A,, is computed by

_.

1 *k) (Mgl )
22§ =

i1 )+ | (Mgl

>|| . (5.11)

If the coefficients (]\L-|ZE) and (Almfﬂ-ﬁ%) are randomly chosen, then A,, is on average

one. This can be seen by the following integration. If the coefficients are allowed to

vary in an arbitrary interval between —/N and N, one can write

la —b| dadb 1 la —b| b|dadb
() < A, > = / / - // 12
8(2) < Am > N Ja] £ |b] 4N? atb (5:12)

1+b _ 1 2b —
- 1+// ¢ %dadb—// 2 hudn)  (5.13)
2b 0 b a

_ %(1+/01{1—26—261n(1;)b)}db) (5.14)
= SO [ 1—ibdb) (5.15)

_ %{1+1n(2) /(1—1—+b)db} = In(2) . (5.16)

Obviously, some trivial computational steps have been skipped.
Figure (5.3) shows that the so called “sharp cut off fringe field” (SCOFF) approxi-

mation, which replaces the transfer map by the main—field map, is very inaccurate for

nonlinear coefficients. Some averages are even larger than one, and thus on average
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Figure 5.3: Accuracy of SCOFF for different orders, a random choice of Taylor co-
efficients would be close to one. From top left to bottom right: dipole, quadrupole,
hexapole, octupole.
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the approximation is worse than a random choice of coefficients. More examples of
the insufficient accuracy of the SCOFF approximation will be demonstrated in section

(5.5) where several examples are discussed.

These results show that the advantages of very quick DA evaluation of propagators

can only be taken advantage of if an efficient fringe—field approximation can be found.

5.3 Desirable Properties of an Arbitrary Order
Fringe—Field Approximation

After stating three properties which we consider desirable for a fringe—field approx-
imation, the importance of each property will be explained in separate subsections.

The approximation should:

1. lead to order n symplectic maps,
2. represent the fringe effect well for a wide range of apertures,
3. be usable for arbitrary orders.

The simplest approximation, as already described, is SCOFF, where fringe fields
are simply ignored. As illustrated in section (5.2), this method strongly violates point
2. The impulse approximation [Hel63] used in the code TRANSPORT [BRCIT77]
violates the points 2 and 3 and the method of fringe-field integrals [HBW90, HIW93,
Wol65] used in the computer code GIOS [WHB88, Wol92] violates the points 1 and

3.
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5.3.1 Order n Symplecticity

The necessity for order n symplectic maps is especially apparent when long term
behaviour in storage rings is to be analyzed. If the Taylor map does not approximate
a symplectic map very well, then, according to theorem (1.6.4), the phase space area
is not conserved in every z,;_1 X zg; phase space section. This is the case for order
n symplectic maps, when the evaluation order n is small. In [Yan91], for instance,
it is illustrated that in case of the SSC lattice, expansion to 12! order is needed to
have a sufficient degree of symplecticity. If the fringe-field map is not computed to
be order n symplectic, even very high evaluation orders can not lead to trustworthy

predictions of long term behaviour.

In figure (5.4) the tracking picture of a 15° dipole for the horizontal plane is shown.
On the left side the coordinates used are the conventional coordinates z—p,, whereas
on the right side the phase space points are displayed in normal form coordinates.
Normal form coordinates are used since violation of the symplectic symmetry can
most easily be seen in these coordinates, where the motion lies on circles if the map

is symplectic.

The top two figures illustrate the action of the transfer map of the dipole. Since 24
applications of the map yield the identity, the motion is stable for all times. Approx-
imating this map by a fifth order Taylor map does not approximate the symplectic
transfer map sufficiently and the tracking points move further and further away from
the origin, as if the motion were unstable. This is shown in the third and fourth figure

in conventional and in normal form coordinates respectively.

To make the map completely symplectic, one can compute the Taylor expansion of
a generating function from the Taylor map. The generating function can then be used

for tracking particle coordinates through a completely symplectic approximation of
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Figure 5.4: Tracking through a 15° dipole, displayed in conventional coordinates on
the left and in normal form coordinates on the right. The figures on the top display
accurate tracking data, those in the middle were created by the 5 order Taylor map,
and the bottom pictures were produced by 5 order symplectic generating function
tracking.
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the transfer map. Strategies for symplectic tracking are discussed in [Ber88a, Ber91b,
Yan93, Gja93]. This method relies on the order n symplecticity of the underlying
map and therefore only a fringe—field approximation which leads to order n symplectic
maps can be used for symplectic tracking. The two graphs on the bottom of figures
(5.4) show tracking with the fifth order approximations of a generating function.
Again the left involves conventional generating function tracking, whereas the right
displays symplectic normal form tracking. It is apparent that the transfer map which
creates the top two figures is only approximated by the generating function which
creates the bottom two figures, but the permanent stability of motion is correctly

represented due to the fact that the generating function represents a symplectic map.

Still another important reason for striving to find order n symplectic fringe—field
maps is the interrelations between different Taylor coefficients which are imposed
by symplecticity. Some systems rely on these interrelations to correct aberrations.
Examples are the high order achromates described in the references [WGB93, WGB94|
and the opening aberration correction for electron microscopes by means of hexapoles
described in [Ros90, Hof91], to mention only a small sample of the wealth of systems
which were designed with the symplectic condition in mind. All these systems can

not be analyzed well if fringe—field maps are used which are not order n symplectic.

5.3.2 Accuracy for a Wide Range of Apertures

Designing spectrographs, simulating electron microscopes, and analyzing beamlines
and high energy storage rings are all topics which rely on the same principle of calcu-
lating transfer maps from the equation of motion. It therefore seems highly desirable
to formulate calculation methods which work equally well for all these subfields of
particle optics. The effect of the fringe fields in these areas is of different importance.

In high energy accelerators, fringe fields typically have less influence, however, also
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in this field substantial influences can be observed. Most fringe—field approximations
assume that the region of the fringe field is much shorter than the region of the main
field. For large aperture spectrographs and for electron microscopes, this is typi-
cally not the case. Therefore, to compute fringe—field maps of general usefulness, this

assumption has to be avoided.

5.3.3 Usability for Arbitrary Orders

With the described DA methods it became easily possible to compute Taylor maps to
very high order. The limit is only given by computer memory and computation time.
To allow the potentials of the DA approach to be used with fringe fields, the com-
putation of fringe—field maps should work for arbitrary evaluation orders. Especially
since an efficient way of computing fringe—field maps was sought for the arbitrary
order code COSY INFINITY, this requirement was important for the development of

symplectic scaling (SYSCA).

5.4 The Principles and Usefulness of SYSCA

At first the basic ideas of symplectic scaling will be outlined and it will be explained
why one can expect that our approach will yield accurate fringe-field maps. This
method was first outlined in [HB91, HB93c]. The accuracy and speed of the approx-
imation will be illustrated on several examples including linear design, high order
effects, and long term tracking. These examples are also analyzed in [HB92a, HB94].
All the steps needed for symplectic scaling will be described in detail; since they can
not only be used for fringe—field maps, the scaling principles will be formulated for

general maps.

Following, we will use geometric coordinates for the map which means the variables
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of motion are the cartesian coordinates and slopes z,z’,y,y’, the path length /, and
the momentum p. Those six quantities form the vector Z, = (z,2',y,y’,, p), which

is transformed by a transfer map which depends on n, parameters D;,
Zpg = M(Z,, D). (5.17)

Here and in the following sections, parentheses sometimes symbolize functional depen-
dences and sometimes they symbolize function evaluations. For example, A_j(gg, l_j) is
a map R**" — JR?? whereas M(ZW-, 5) = ]ﬁ(g’g’ 5)|(2‘gi p) in equation (5.17) is an

element of IR??. Whether a map or a real vector is described will become clear from

the context.

The parameters we want to consider here are the mass m and the charge ¢ of the
particle, the size A of the optical element, and the pole-tip field B. When the size
A is changed, the length and the aperture of an element change simultaneously. Call
]\_j(ig,m,q, A, B): R* x IR* — IR* the general parameter dependent transfer map
of an optical element with the vector of parameters D= (m,q,A, B). From now on
we will restrict ourselves to magnetostatic elements, although parts of the procedure

are applicable to electrostatic elements, too.

Well known scaling properties allow to compute the general parameter dependent
map M(Zg,m,q,A,B) from the specific transfer map Mm*’q*’A*’B*(E’g) : R* — IR*
for one particle type with mass m* and charge ¢* and one parameter setting for
the optical element of size A* and field B*. This is due to the fact that maps in
geometric coordinates observe two scaling properties. The bending radius of the path

of a particle with momentum p at field B is

p

R=——
qB,y

(5.18)

where B, denotes the field component perpendicular to the momentum of the particle.

All maps that describe particles with equivalent bending radii along their path are
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identical. If the specific map ]\_jm*’Q*’A*’B*(Zg) is known for geometric coordinates 7, =
(z,2',y,y',1,p), then it is known for all kinds of particle momenta p. If the specific
map for any other parameter vector (m, ¢, A*, B) is desired, one only has to choose
p appropriately to create a map which describes the trajectory that corresponds to

this parameter setting by

Bq '

NmAB(2,) = A (- (5.19)

This is just another way of saying that the map depends only on the ratio of field to
magnetic rigidity. Therefore the first scaling property is called scaling with magnetic
rigidity. Strictly speaking this property only holds if the field structure B(z,y,s)/B
does not change with the pole-tip field, which means that saturation effects are not
important. However, even when saturation effects are important, SYSCA is very
accurate over a substantial range of the field strength.

One can also compute the field dependent map Mm*’q*’A*(Eg, B): IR* x IR — IR*

from the specific map Mm*’Q*’A*’B*(Eg) by scaling with magnetic rigidity. This map

will become important for geometric scaling.

From the field dependent map ]\_jm*’q*’A*(Eg, B), we can compute the specific map
for any different size A of the element. For that, let us consider two similar magneto-
static elements that differ only by a scaling factor a. If the bending radii also differ
by a factor of «, the maps are similar. Equation (5.18) shows that this is the case
whenever the increase in size by a factor « is accompanied by a decrease in the field

strength by the same factor. After scaling the coordinates x,y, [, we obtain

Mz AB(z) M (7, Bat)
— * —
M4 (2) M7 (2, Bak)
M9 4B (Z)) = | M4 (F, B4 (5.20)
— * — L *
M;f*’q ’A’B(Eg) M;;"* q* A (%,B%)
mo, 7A7B 5 A Vil ’ 7A = A
L C Ol A MR BEE) ) g a gty
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Figure 5.5: The coordinates of the particle trajectories in two elements scale with the
factor « if the elements scale with the factor a and the fields scale with the factor

1/a.

Geometric scaling (5.20) and scaling with magnetic rigidity (5.19) together allow
one to compute any specific map A_jm’q’A’B(Zg). Since this holds for any parameter
vector D = (m,q, A, B), the general map ]\?(Eg, m,q, A, B) can be computed from a
0t At B (2 )

specific map M™" Zy).

To conclude, we state that the knowledge of the transfer map A_jm*’Q*’A*(Eg, B) as
a function of the field strength at the pole tip for particles with a specific magnetic
rigidity and for an element with a specific aperture is sufficient to know all transfer
maps of similar elements for all energies, masses, and charges. In fact the map does
not even have to be known as a function of the field because the dependence on the
field can be obtained by equation (5.19) from the dependence of the map on the

momentum.

In accelerator physics, the phase space coordinates are often chosen to be z, =

(z,2',y,y',61,6,). 6 is the difference between the length of the particle’s trajectory
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and the reference particle’s trajectory. ¢, is the relative deviation from the momen-
tum p of the reference particle. It should be noted that in the literature the reference
momentum is often denoted by pg; this would lead to confusing notations in the for-
mulas which are to follow and therefore p is used to describe the reference momentum.
The particles momentum, which was called p in the geometric notation, is given by

P(l + 519)-

The coordinates 2z, are introduced to ensure that particles which move close to
the reference particle have small phase space coordinates. Then a Taylor expansion
of the map is usable to describe the weakly nonlinear motion. Often this notation

is called TRANSPORT notation [BRCI77], it can be transformed to the geometric

notation and the scaling properties can be applied.

In general it is useful and customary to work with the canonical coordinates
[Ber90a] zg = (z,a,y,b,7,6g), which are described in detail in subsection (5.8); 0 is
the relative deviation from the reference energy E. These coordinates are also small
when the particle is close to the reference particle and Taylor expansions can be used.
Maps in canonical notation have to be transformed to TRANSPORT notation before

the two scaling laws can be applied.

If D is a parameter and the Taylor expansion around the reference parameter
D* is needed, we use épx = (D — D*)/D* as parameter. Given a reference pole-tip
field B*, then ég« can be used to expand the field dependence of a map around B*.
COSY INFINITY readily computes the Taylor expansion of a field dependent map

M™ 9" A (75 §p+) at reference values indicated by “x”.

This Taylor map has to be stored to a file in order to compute maps of similar fields
and all kind of beams by the previously mentioned scaling method. The accuracy

with which the Taylor expansion approximates the field dependent map depends on



144

the chosen order of the expansion and on the difference between the reference field

B* and the field B, to which one has to scale.

Unfortunately, the symplectic structure of the map would not be conserved in this

process. While Mm* et AT (Zg+, 6p«) is symplectic for all 5+ and the corresponding Tay-

lor map is order n symplectic, this is not the case for the Taylor map Mm*at At (ZE+, 0B%) |55,
which is IR?? — IR?? and is obtained when ég € IR is inserted in the field depen-
dence. Order n symplecticity, however, is an intrinsic symmetry of canonical motion

that arises from the special structure of Hamilton’s equations and should not be

violated as mentioned in subsection (5.3.1).

This drawback can be eliminated by transforming the field dependent Taylor map
]ﬁm*’q*’A*(ZE*, 0p+) to a symplectic representation, either in the form of a generating

function, or in the form of a Lie exponent
A_jm~7q*7A* (EE*, 5B*) _ L(&B*)G:P(EE*’SB*):I_) (521)

with the identity map I. In higher orders the representation via generating functions is

slow, because a map inversion is required. The Lie representation has the disadvantage

that the matrix L(6p«)|s, is not exactly symplectic. A combination of both methods

Sp

is most efficient. We represent the nonlinear part by P(Zg«,dp«) and the linear part

by the generating function F(ép«) that is most accurate for the given matrix L(6p«).

The left of figure (5.6) describes the procedure of computing the symplectic ref-
erence representation, which is stored in a reference file. First the Taylor map
A_jm*’q*’A*’B*(ZE*) for a certain size of the optical element and for a certain parti-
cle is computed in canonical variables. In our implementation this is done with the
code COSY INFINITY. Scaling with magnetic rigidity yields the field dependent
map Z\_jm*’q*’A*(ZE*, 0p+). From this map the symplectic representations F(ég+) and

P(Zg+, 6p+) are computed and stored in a file [see subsections (5.6) and (5.7)].



145

The Taylor expansion of the general parameter dependent map A?(ZE, m,q, A, B)
around (m,q, A, B) € IR* is written as ]\_j(Z_’E,(Sm,(Sq,éA,(SB). The goal is to compute
this Taylor map from the reference representation. The right side of figure (5.6) il-
lustrates the procedure which will achieve this goal. After reading the reference file,
the first step is to insert a value ég« into the field dependence of the symplectic rep-
resentation. g« is chosen in such a way that the symplectic representation describes
particle motion which differs only by a scale in geometrical size from the trajecto-
ries of the desired map ]\_jm’q’A’B(ZE). If A = A", then equation (5.19) yields that
B, = B22. Then scaling with magnetic rigidity will create the map of a particle

pq

with p and ¢ for the field B. If the desired element is bigger by a factor %, then the

field B; has to be chosen bigger by the same factor, due to equation (5.20). Then

. Therefore

p*g
pg*

geometric scaling to size A will bring the field back to B

550 = (BLIA _ gy p- (5.22)

has to be inserted.

From the so scaled symplectic representation one computes the order n symplectic
Taylor map [see subsection (5.6) and (5.7)] which is then transformed to TRANS-
PORT coordinates [see subsection (5.8)]. The transformation map T(E,m) from
canonical to transport coordinates depends on the properties of the particle which’s

motion the map describes:

M(Z,,8) = T(E,m)o M(Zg,8) o T (E,m) . (5.23)

The map in TRANSPORT coordinates z, can then be scaled to the desired field
by scaling with magnetic rigidity and to the correct size of the element by geometric
scaling. As mentioned before, we can obtain the general parameter dependent map
from the specific map by scaling. With DA this procedure automatically leads to the

Taylor expansion with respect to all the parameters.
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Finally one obtains the required general parameter dependent order n symplectic
Taylor map A?(EE,(Sm, 0,4,04,08) by transforming back to canonical coordinates [see

subsection (5.8)].

Symplectic scaling can be applied to any map, but it is especially useful for fringe—
field maps. The following examples show the accuracy and speed of obtaining fringe—

field maps by symplectic scaling of a stored symplectic reference representation.
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M(zEvémvé(béAvéB)
(5.23) at E, m

M(Zp, 6m, 8¢, 64, 6B)

Mm*7q*7A*7B* (ZE*)

MrmaAB(z)
(5.19) with p(E*,m") I (5.20)
Mm*at A (2., §5e) M7aABEE (7))
(5.21) [ (5.19)
P A (), P A (2. 6 A?m*7q*7Ax7Bs(5p*)
[ (5.23) at B, m®
‘reference ﬁle‘ A2m*7q*7A*7BS(—)E*)
I (5.21)
Fm*’Q*’A*’BS, Pm*,z*,A*,BS(gE*)
B* = BE14

‘ reference file ‘

Figure 5.6: Schematic outline of the procedures leading to the reference representation
and from the reference representation to the general transfer map.
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5.5 Examples

In this section, we will illustrate the profitable use of the method with several ex-
amples. In order to evaluate speed and accuracy of the proposed approximation, we
study a certain aberration coefficient of a quadrupole. Figure (5.7) shows the depen-
dence of the expansion coefficient (z|zza) as a function of the field B at the pole tip.
Because functions like this can be closely approximated by polynomials, symplectic

scaling (SYSCA) is very accurate.

0 107%/m _ 3 _10g10(A)
3
~-8 L —10 |
4
16 | —12 L 5
—94 14 \ A S/,
0 1 2 3 4 B/T 0 1 2 3 4 B/T

Figure 5.7: left: (z|xxza) for a quadrupole as a function of the field at the pole tip.
right: Error A of the approximation of (z|zza) with different expansion orders for
the reference representation at B=2T.

Even at the border of the range in figure (5.7) the presented method is more
accurate than the COSY standard integrator. Close to the value with which the
reference file was produced, the accuracy increases drastically. The results in figure
(5.7) were obtained by evaluating the symplectic reference representation to third,

fourth, and fifth order. The accuracy can be further improved by increasing this
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order which of course increases the computation time that has to be invested for
creating the reference map in advance. This investment can be very much rewarding,
especially when beamlines or spectrometers are being fitted or when system errors
are analyzed so that maps of similar fringe fields are needed over and over again with

only slightly different parameters.

The SYSCA approximation is especially helpful in the design of a realistic system
after approximate parameters of the elements have been obtained by neglecting fringe
fields. These values can be used to create a reference file for symplectic scaling. In this
way, a very high accuracy almost equivalent to accurate but time intensive numerical
integration can be obtained. The time advantage of this method is illustrated in

figure (5.8).

Fringe fields do have noticeable effects already in first order. In the example of
the A1200 [She92] isotope separator at the NSCL, the effect of the fringe fields on the
calculated setting of the field strength is shown in figure (5.9). The fringe fields were
described by Enge functions, and the Enge coefficients had been fitted to measured
field data. Here the time advantage of the proposed approximation in the fit is three
minutes versus two hours. As a measure of accuracy, we study the tilt angle © of
the dispersive image plane and the opening aberration Cp for various approximation
methods. In the discussed device the coefficient (z|aa) vanishes because of symmetry
of the axial ray and anti symmetry of the dipole fields; therefore (z|aaa) is the relevant

opening aberration,

Co = (z]aaa) . (5.24)

Table (5.1) shows © and Cy for various fringe-field models. The values of © with
and without fringe fields differ by 0.5% for the first dispersive image plane in the

A1200; the third order aberration, however, is completely wrong if fringe fields are
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Figure 5.8: Factor of time advantage of SYSCA to numerical integration with accu-
racy of 10" as a function of the expansion order. From top left to bottom right:
dipole, quadrupole, hexapole, octupole.
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Figure 5.9: Relative deviation of predicted field settings with SCOFF and SYSCA
from the correct settings for five quadrupoles. The standard fringe—field approxi-
mation of TRANSPORT is given as a reference; the deviation is mainly due to the
neglect of quadrupole fringe fields.

O and Cp with SCOFF approximation 80.8840° —65.96m
O and Cp with dipole fringe fields only 81.1696°  —65.96m
O and Cp with quad fringe fields only ~ 81.2694° —682.68m
O and Cp with SYSCA approximation 81.2701° —687.10m
0O and Cp with actual fringe fields 81.2702° —687.10m

Table 5.1: Tilt angle and opening aberration for various fringe—field models.

disregarded. This comparison also shows that quadrupole fringe fields, although often
disregarded, can have effects which dominate over dipole fringe fields. Nonlinear
effects can be seen by sending a cone of particles through the 7% order A1200 map.
The images with SCOFF and SYSCA approximation are shown in figure (5.10). The
maximum angle used is 15mrad. Note that due to the difference in scale, the beam
spot computed with SCOFF is only one tenth as big. Trusting SCOFF would lead to

a loss of most of the beam.
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Figure 5.10: Beam spots with SYSCA (left) and SCOFF (right) approximation. The
plot produced with the exact fringe fields can not be distinguished from the plot
produced with SYSCA. Note the difference in scale.

Also for long term tracking in storage rings, fringe fields are influential. In figure
5.11 typical tracking pictures are displayed. An example storage ring for 1GeV pro-
tons was optimized for a big dynamical aperture. Eight particles were tracked with
phase space coordinates which had # and y components in order not to avoid z-y
coupling. The left picture was computed without fringe—field maps, whereas the right
picture was computed with fringe—field maps. When fringe fields are neglected, one

can often not trust the computed dynamical aperture.

Figure 5.11: 500 turn tracking without (left) and with (right) fringe fields trough an
1Gev proton storage ring.

The effort involved in generating a symplectic approximation is rewarded when
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repetitive tracking is being performed. The example lattice of choice is the proposed

PSR II Ring. The 9" order 5000 turn tracking pictures are displayed in figure (5.12).
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Figure 5.12: 5000 turn tracking with fringe fields obtained by numerical integration
(left), SYSCA (middle), and a non-symplectic fringe—field approximation (right). The

initial position of the particle is (z,y) = (3cm, 3cm) with no initial inclinations " and
!

y'.

The tracking was performed with the described standard numerical integration,
SYSCA, and a non—symplectic fringe—field approximation obtained by low accuracy
numerical integration. Non—-symplectic tracking strongly violates the conservation of
phase—space volumes. SYSCA yields more stable results than the numerical integra-
tion since the limited accuracy of the numerical integrator slightly violates symplec-
ticity. The corresponding 9% order maps were produced with the SYSCA mode in
COSY INFINITY in 30 minutes, whereas the standard numerical integration took
15 hours, and the non—symplectic approximation took 44 minutes on a VAX 4000 90

computer.

It is worthwhile mentioning that only maps of entrance fringe fields have to be
saved. The exit fringe field of an element is described by the reversed map. A reversed

map is computed by inverting a map and changing the signs of the incoming and the
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outgoing momenta:

M1
— Mt
M
—M;!
— M1
M !

M = (5.25)

(z7_a7y7_b7_775E)

Computing the inverse map M~! from the SYSCA reference file is just as direct as
computing the transfer map M itself. The generating function is a mixed function
of initial and final variables. To compute the transfer map, it has to be partial
inverted with respect to the initial variables. Partial inversion with respect to the
final variables is a very similar process and leads to the inverse map. For the Lie
exponent, exp(— : P :) acting on the identity I leads to the inverse of exp(: P )f If
a representation approximates maps with pole-tip fields close to B then fields close
to —B can be approximated, also. The reason for this advantage is that the change
of the sign in a multipole of symmetry €', corresponds to a rotation of that element

by l;ﬂ degrees.
5.6 The Lie Exponent

We search for a representation of the order n symplectic Taylor map M : R* — [R*

of a Hamiltonian system in the form

—

M=, Lo(e""":z) (5.26)

where again “=,” indicates that the right and left side agree up to order n. Also here

we use the previously advocated notation of the identity map Z, not to be confused
with a real vector. L is the linear map and the Lie exponent PtV is a polynomial

of orders from three to n + 1. With the following induction, we will proof that the
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Lie exponent always exists and the induction proof itself will reveal a methode to

compute this exponent.

Since the Jacobi matrix L of L is symplectic, it has an inverse. As in chapter (1),

we write N for the Jacobian of a map N. The exponential has to satisfy

- —

P iz= I 'oM=2+N (5.27)

with the nonlinear map N. The right—hand side has a symplectic Jacobian I + N,

where [ symbolizes the identity matrix. Symplecticity requires

(] + N)TJZd(] + N) =n-1 J2d ) (528)

JoaN + NTJoy + NTJyN =, 0. (5.29)

The first order of this equation shows that Jyy Ny is symmetric. The parts of exact
order m of N and P are denoted by N,. and P, respectively. This implies that

the potential problem given by the second order of equation (5.27)
: Py Z= —Jy0P; = N, (5.30)

has a solution Ps. The next order yields the equation

- 1
Py 7= Ny — 5( Ps )7 (5.31)

If this potential problem for P; has a solution the next step to obtain an equation for
Ps is obvious. To show that all the appearing potential problems have a solution, we
start with the assumption that P, was previously found as a solution of the potential

problem

P Z=p 74+ N — P iz (5.32)

The potential problem for Pyyq is

Py i 2= 2+ N — Pz (5.33)
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We call the right hand side F, and note that it has no orders lower than k. This

problem has a solution Pjyq if JoqF} is symmetric to order k£ — 1.

Let the symplectic matrix 1 + E®) be the Jacobian of e:P(k):Z, then the symplectic

condition requires similar to equation (5.29) that

JoBE® + EWT 1,y 4 EOT 1, BH) =0 (5.34)

To ensure the symmetry of Jy4F}), one needs to show that
Jog(N — E®Y 4 (NT — EBT) Joy =11 0 . (5.35)
The equations (5.29) and (5.34) show that this condition is equivalent to
NTJyN =4y EWT 1, EH) (5.36)

Since we have kept in mind that N is nonlinear and therefore the Jacobian N has no
constant part and furthermore that N =,_, E®*) we realize that the right and left

side of equation (5.36) agree up to order k£ — 1.

5.7 The Generating Function for the Linear Map

For the task of representing fringe—field maps which are to be stored as Taylor expan-
sions of the magnetic field, it is important that all the manipulations can be done with
parameter dependent maps and parameter dependent Lie exponents. The linear map
L then corresponds to a matrix whose elements are Taylor expansions with respect
of the parameters. In the specific case of SYSCA, the parameter is é6p, the relative
deviation of the pole-tip field from a reference value. The corresponding matrix L is
symplectic to the expansion order of 65. However, if a specific value for ég is inserted
the resulting matrix is in general not symplectic. Therefore a symplectic represen-

tation has to be found that agrees with L to the expansion order of the parameter
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0p. The generating functions are a suitable approach. We are concerned with the six
dimensional space of transverse momentum, energy, and the corresponding canonical
variables. We will keep the arguments general, however, because the procedure is
the same for any symplectic 2d dimensional space. The following matrices will all be

either d or 2d dimensional. The symplectic matrix L will be written in terms of d

L:(é g). (5.37)

The first d dimensions describe coordinates ¢ and the second d dimensions describe

dimensional submatrices:

the corresponding momenta p. Jy4 therefore has the structure

bw:(_?é). (5.38)

Because of symplecticity

_ DT BT
L7 = —JyyltJy = ( 0T a7 ) (5.39)
and therefore
ADT — BCT BAT — ABT
-1 _ _

The four commonly used generating functions depend on the initial and final po-
sitions ¢j/y and momenta p;/;. The relationship between final and initial coordinates

is established by the equations

(7:,q5) = ( 95,—0z)F1(pi, py) , (5.41)
(7:,97) = ( On, Og)F2(pisdy) (5.42)
(Pi,qr) = (=0, —05)F5(qi,py) (5.43)
(i, p7) = (=0, 0g,)Fu(qi,qy) - (5.44)

How those generating functions can be computed and when they exist will be shown

for the case of F;. The symplectic matrix L and its inverse establish relations between



initial and final coordinates:

7\ _
Py
G -
pi

A qf

ATpy

In case the determinant of A does not vanish we get the potential problem

() = (% )

8@. Fo— —A7'B A7!
- 2 = A—T A_TCT
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)l

which yield equations for ¢; and py as functions of p; and p;:

= _Bﬁ\l—{_ q_’fa
= p+C7g.

A_T)(—]B I

)

5
Pr

CT

5
Pi
-

af

)

)
)

5
Pi
-

af

(5.45)

(5.46)

(5.47)

(5.48)

(5.49)

(5.50)

which has a solution if the involved matrix is symmetric. The symplectic condition

in equation (5.40) implies that A™'B is symmetric. Since the transposed of L is

also symplectic we can conclude that A=7C7 is symmetric, too. Therefore F), exists

whenever det|A| # 0. Similar relations can be obtained for the other generating

functions:

Fy
Fy
Fs

Fy

[

det|C] ,
det|Al ,
det|D| ,

det|B| .

(5.51)
(5.52)
(5.53)

(5.54)

This implies that there are linear maps without corresponding generating functions of

the discussed types. According to figure (5.3), the SCOFF approximation yields good
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results in first order. Therefore the linear part of a fringe—field map is closed to the
identity. The determinants of A and D will therefore not vanish. In SYSCA we chose

the generating function according to the submatrix with the greatest determinant.

5.8 Transformation between Cartesian and Canon-
ical Coordinates

The motion of ions is governed by a Hamiltonian F that describes the energy:

i = 0,E , po=—-0,FE,
i = 0,,E , p,=—0,E, (5.55)

§ = 0,F , p.=—0,F.

With the new independent variable s, measured along the central trajectory, we
get new equations of motion which include the time ¢ and the energy as dependent

variables:

(22
5 0, B ap.

(5.56)

Tr =

/ z_ame_
S

Similar manipulations for the other coordinates yield a set of Hamiltonian equations

with the new Hamiltonian K = —p,:
¢ = 0,,K , p.=-0.K,
y = 0K , p,=-0,K, (5.57)
—t' = 0gK , E'=-0_K.

This canonical transformation has already been discussed in [CS58]. A scaling with
the initial momentum pg of the reference particle yields the new Hamiltonian —p;/po

with the set of canonical variables

Py EO E_EO
—y,b=—171=—(ty —1),0p, =
Poy Po po(o ) K Ey

- Pz
Zr, = (x,a =

) (5.58)
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which can easily be verified by performing the scaling in the equations (5.57). This
set is used in COSY INFINITY. In TRANSPORT the inclination 2’ and y’ are used
instead of the transverse momenta. Instead of the difference in time of flight 7 and
energy deviation ég,, the difference in path length [ and the momentum deviation o,
are used. The TRANSPORT notation is more transparent and can be used for the
presented scaling purpose. The canonical COSY INFINITY notation has to be used

for the symplectic representations. The two notations are related by the following

equalities:
/ a ! b
xr = , Yy = , (5.59)
\/(;;0)2 — a2 — )2 \/(p%)z —a? — )2
v 24 v
[ = [, —— -7 — —1)s, )
U01-|-770(T 7')—|—(v0 )s (5.60)
Eo(1+6g,))? + 2Eomc?(1 + og,
5 V(Bo(1 +65,))* + 2Bmei(1 +65) (5.60)
PocC

“” indicates quantities corresponding to the initial plane and

where the subscript
subscripts “0” denote values for the reference particle, v is the velocity and 7 is the

ratio of energy to rest energy % The inverse transformation is

! !

p x p Y
a = (_) 2 3’ b = (_) ’ (562)
Po /(1_|_$/ _I_y/ Po /1+x/2+y/2
vol + 1o v
= 75— —-—(——1 , .
T T, 7T 770( (Uo )s) (5.63)
c(1+6,))*+ me2)2 — me?
65, = V (poct p))E me?) 1. (5.64)
0

The length of the reference trajectory s is usually the length of the element for which

the maps are transformed. For fringe—field maps this length is zero.

It is important to realize that the transformation depends on the properties of the

reference particle and on the length of the element. This information is not contained
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in the map and have to be specified additionally.
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