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Abstract. The expansion of complicated functions of many variables in Taylor polynomials is an
important problem for many applications, and in practice can be performed rather conveniently
(even to high orders) using polynomial algebras. An important application of these methods is the
field of beam physics, where often expansions in about six variables to orders between five and ten
are used.

However, often it is necessary to also know bounds for the remainder term of the Taylor formula
if the arguments lie within certain intervals. In principle such bounds can be obtained by interval
bounding of the (n+1)-st derivative, which in turn can be obtained with polynomial algebra; but in
practice the method is rather inefficient and susceptible to blow-up because of the need of repeated
interval evaluations of the derivative. Here we present a new method that allows the computation
of sharp remainder intervals in parallel with the accumulation derivatives up to order n.

The method is useful for a variety of numerical problems, including the interval inclusion of
very complicated functions prone to blow-up. To this end, the function is represented by a Taylor
polynomial with remainder using the above method. Since at least for high orders, the remain-
der terms have a tendency to be very small, the problem is reduced to an interval evaluation of
the Taylor polynomial. The method is used for guaranteed global optimization of blow-up prone
functions and compared with some interval-based global optimization schemes.

1. Introduction

The idea of verified computation is based on the rigorous estimation of the influ-
ences of uncertainties on the calculation. Such uncertainties arise mainly from two
sources.

e On one hand, there are computational inaccuracies based on the finite accuracy
of computational environments.

e On the other hand, there are uncertainties in the variables of the model to be
analyzed.

These two sources of uncertainty differ in that:

e in the first case, at least initially, the inaccuracies are small and comparable to
the machine accuracy;

e in the second case, however, inaccuracies can be large even from the beginning.
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The most extreme case is perhaps the problem of verified global optimization where
often large areas of variable space have to be covered by intervals.

Interval methods allow a rigorous estimation of the influence of either form of
uncertainty; however, it is well known that this is often at the expense of possibly
significant overestimation of the actual ranges of the functions considered. This
phenomenon of blow-up is usually particularly noticeable in the case of numerical
algorithms of extended size as well as situations where the initial uncertainties are
large to begin with. To control blow-up in its various forms is one of the interesting
problems in the theory of interval algorithms, and a large variety of methods are
employed for this purpose.

e On one hand, one can try to control blow-up for certain sub-algorithms; examples
are the case of the exact scalar product, and also the evaluation of intrinsic
functions by carefully using knowledge about local monotonicity and maxima,
instead of direct application of conventional numerical algorithms.

e On the other hand, there are various methods of retroactive error correction,
typically based on iterative contraction methods using fixed point arguments.

If these approaches fail because of complexity or size of the initial intervals, as in
the case of global optimization problems, frequently the starting intervals are split
into smaller pieces and the algorithm is executed repeatedly. In the simplest form,
the intervals are split evenly into m pieces, which however if the number v of input
variables is large can quickly exhaust computational resources that scale with m?Y.
So in all but the most trivial cases, it is usually beneficial to develop strategies for
uneven splits based on knowledge gained in previous evaluations; these methods are
highly developed in the field of guaranteed global optimization [14], [17]-[19], [23],
[25].

Early in the history of scientific computation it was realized that a given compu-
tational algorithm contains not only the information necessary to compute interval
bounds, but also the information necessary to compute partial derivatives or Taylor
expansions [12], [15]. In the forward mode of automatic differentiation, this only
requires matrix methods for first order, and Taylor series methods [8] for higher
orders. In a mathematical generalization of analysis on nonarchimedean fields [1],
[3], [26], it allows the rigorous formulation of the intuitive concept of derivatives
as differential quotients, and in practice can compute derivatives at points where
Taylor methods may fail because of the lack of roots or inverses of Taylor series.

Besides the forward mode of automatic differentiation based on converting code
to perform Taylor arithmetic, the main thrust of current algorithmic research prob-
ably lies in the so-called reverse mode which can even outperform numerical differ-
entiation in speed if the number of initial variables is large, albeit at the expense of
an often enormous growth of code size. In practice, these methods are used almost
exclusively for the computation of first order derivatives.

e On one hand, this readily allows conventional sensitivity analysis describing the
linearized relationship between output and input variables;
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Figure 1. Left: enclosing a function by a Taylor polynomial of order eight with remainder
bound; right: Interval bounding of the same function.

e on the other hand, it can be used for conventional numerical algorithms that are
usually designed to try to avoid higher derivatives as much as possible because
of the well-known instabilities arising in their numerical calculation.

Recently, efficient algorithms for high order multivariate Taylor methods were devel-
oped [8] and used in a differential algebraic framework [2] in the fields of optics and
weakly nonlinear systems [10]. Different from other computational disciplines, they
play a unique role because they represent the only known method to compute so-
called high-order aberrations. Knowing these aberrations is of great importance for
the understanding of high-precision optics or for the long term behavior of the
dynamics in large storage rings.

The derivatives computed with Taylor methods are accurate up to machine
errors, which can in turn be controlled by interval methods if necessary. This fact
leads to the observation that even complicated functional evaluations can be done
with limited blow-up by first computing the Taylor polynomial of the function, and
then evaluating the polynomial on the interval of interest using interval methods. To
be rigorous, this method critically depends on the ability to bound the remainder
term of the Taylor expansion. This remainder could be estimated by bounding of
the (n + 1)-st derivatives, which in turn could be obtained by Taylor arithmetic.
This, however, would require to generate code for the calculation of interval eval-
uations of derivatives and to repeatedly evaluate them using interval methods of
global optimization. Here we present a new method that determines a bound for
the Taylor remainder in an efficient way in parallel to the determination of the
Taylor expansion.

As the result, the function under consideration can be enclosed in a bound around
the Taylor polynomial over a wide range of arguments, as shown in the left part
of Figure 1. On the other hand, obtaining a similarly tight inclusion using inter-
val evaluations requires a large number of interval evaluations. As we will show
later, the method will be particularly useful if in the interval case, the number of
required intervals becomes large, which can happen in the case of many variables
or of functions producing significant blow-up.
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In the following section, after a quick review of calculus relating to extrema
and Taylor formulas subsequently needed, we will introduce the concept of Tay-
lor models. In Section 3, we show how Taylor expansions with remainder bounds
for complicated functions can be obtained computationally. Section 4 gives various
applications of the method, including very challenging global optimization problems
related to predictions of long term stability in dynamical systems.

2. Taylor Models of Functions

The method of bounding of functions by Taylor polynomials with remainder, which
is discussed in this paper, rather directly exploits very fundamental facts of cal-
culus. In order to provide the proper background and introduction of the proper
terminology, we begin with a brief summary of the required calculus tools.

2.1. EXTREMA AND TAYLOR FORMULAS

Let D C R, and f : D — R be a continuous function, and let [a,b] C D, a #b.
Then f assumes a maximum and a minimum on [a, b], i.e., there are &,&, € [a, b
such that f(z) > f(&) and f(z) < f(&,) for all z € [a,b], which is known as the
Eztremum Theorem. Moreover, if f(a) = f(b), at least one of & and £, can be found
in the interior of the interval. If f is differentiable in (a, b) and satisfies f(a) = f(b),
such interior point ¢ (yielding an extremum) satisfies f/(£) = 0, and thus there is a
zero of the derivative in (a,b), which is known as Rolle’s Theorem.

Let now f and g be differentiable on D, and let ¢'(z) #0 on (a,b). Then
g(a) # g(b), and the function h defined by

hu)=f@)—fw%—@@0_gm»'§%{%%g

satisfies h(a) = h(b) = 0, is differentiable on D, and its derivative has the value

h(z) = f'(z) — ¢'(z) - (f(b) — f(a))/(g(b) — g(a)). Application of Rolle’s theorem
yields the existence of £ € (a,b) with h/(£) = 0, entailing

f(b) = fla) _ f'(§)

g(b) —gla)  ¢'(§)’

which is known as the Mean Value Theorem.

2.2. TAYLOR FORMULAS

By pure arithmetic, the mean value theorem entails Taylor’s Theorem. Indeed,
assume that the function f is (n + 1) times differentiable on D, and let z,z € D,
z # xo. Consider the function F defined by the formula

o)
re =y =

v

z)

Nz —T)".
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Apparently we have F(z) = f(z), and

Plao) = Y [0/t (2 — )"
v=0

Furthermore F' is differentiable, with

F'(z) = f7|() (z—7T)"
n!
Applying the mean value theorem to F' and an arbitrary function g with nonvan-
ishing derivative strictly between zy and x then yields

_ P(g) = Pz + 9@ —9(z0) o and thus
f@) = Fz) = Flao) + === F(&), d th
V60 (o 9e) —gla) SO (o
f(.’,E) - = ] ("E 0) + g,(g) ’I’L' ( 5) ’

which is Taylor’s formula with remainder.

Specific choices for the function g yield various forms of the remainder term. For
example, choosing g(Z) = (z — 7)Y, observing that ¢'(Z) = —(n + 1) - (x — T)"
is nonzero strictly between x¢ and z, yields Lagrange’s Remainder

1)

Ln =051,

) (.’L‘ - xO)n+la

where ¢ lies strictly between zy and z. If f is C("*D on D, then, according to

the maximum theorem, the derivatives are bounded on any interval in D, and thus
SO i(s th)e remainder. Furthermore, as x — 1z, the remainder decreases like (z —
-’170) n+1 .

It is easily possible to generalize the result to Taylor’s Formula for Multivariate
Functions by introducing a suitable one dimensional function. Let D C R% be a
convex domain, let f : D — R be (n+1) times continuously partially differentiable,
and let 77, zo be two different points from D. Then introduce a function fg on
[0,1] by the formula fr(s) = f(zo + s- (1 — =)), and note that according to the
chain rule f5(s) = ([(z1 — o) - 6)](”) f{zo+ s- (z1 — xo)}. Apply the Taylor
formula for fr and evaluate at s = 1 to obtain

f(zh) =

([@ ~70)- 9] )@ ([@ ~70)- 9] 1) (@o+¢- (@ 7))
V! (n+1)!

M- B

<
I
=)
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where £ € [0,1]. Note that each term in the remainder term contains (n + 1) factors
(4) (J'))

of the form (z;"/ — z5'’) and so all of its derivatives up to order n at z vanish.

This also entails that the n-th order Taylor polynomial Tf+ _ of f at the expansion
point :vo can be written more conveniently as

70, (z) = Z 311—|—-...+de(?:0) . (w(1)_m(()1))i1 X eee X (a:(d)_aj(()d))id'
%o 0<it+tig<n oz ...0x, il X - X!

Using the sum and product rules of differentiation, this representation of the
Taylor polynomial also rather directly reveals that the Taylor polynomial of the
sum of two functions is the sum of the Taylor polynomials, and that the one of
the product of two functions can be obtained by multiplying the respective Taylor
polynomials and ignoring all terms of order higher than n.

2.3. TAYLOR MODELS

Let f be C®*Y on Dy C RY, and B = la1,b1] X --+ X [ay,by] C Dy be an interval
box containing the point 7. Let T be the Taylor polynomlal of f argund the point
zo. We call the interval I an n-th order Remainder Bound of f on B if

f(@)-T(F) el for all 7 €B.

We call the pair (7,1I) an n-th order Taylor Model of f. The set of all remain-
der bounds is called the Remainier Family. Since all partial derivatives of f are
continuous on the compact set B, they are bounded there, and hence so is the
(n+ 1) st application of the dlrectlonal derivative (2 — )- V. This entails that for
allz’ € B the Lagrange remalnder is bounded, and hence a finite remainder bound
exists. Furthermore, since f(z') —T(z) is continuous, it assumes extrema at ;, .
So I = [f(z)) — T(z}), f(z%) — T(x)] is a remainder bound; all other remainder
bounds must contain I, and thus I is called the Optimal Remainder Bound.

Since every polynomial of order not exceeding n agrees with its n-th order Taylor
polynomial, the optimal remainder bound in this case is the interval [0, 0].
. For practical purposes, it is important to remark that if the original interval box
B decreases in size, then, according to the Lagrange remainder formula, the optlmal
remainder bound will decrease in size as (n + 1)-st power of the size of the box B
and hence will become small quickly. In particular, this e_r)ltalls that the knowledge
of a good Taylor model of a function on an interval box B allows a rather accurate
estimate of the range of the function. We also note that for the case of n = 0,
the method reduces to the conventional interval arithmetic; for the case n = 1, the
method is somewhat similar to the the generalized interval arithmetic introduced
by Hansen [16], except that in this case, the coefficients of the (linear) polynomials
are also intervals.

As we will show in the next section, it is actually possible to compute remainder
bounds to any order in a convenient way in parallel with a Taylor expansion of the
function. Section 4 will then illustrate the practical use of the method.



COMPUTATION AND APPLICATION OF TAYLOR POLYNOMIALS... 89

3. Operations with Taylor Models

In this section we will show how from the knowledge of Taylor models of functions
f and g, we can infer Taylor models of the sums and products as well as of ele-
mentary functions applied to one of the functions. This will allow the systematic
computation of Taylor models for any function that can be represented in a com-
puter environment. Throughout, we will employ standard notation for operations
on sets, for example A+ B ={a+b|la€cA, beBlorz+A={zx+a|acA}or
f(A) ={f(a) | a € A}, as well as standard rules like A- (B+C) C A-B+ A-C.

3.1. ADDITION OF TAYLOR MODELS

Let (Ty,Iy) and (g, 1y) be n-th order Taylor models of the functions f and g on
the interval box B. As pointed out above, the TayloL polynomial of (f+g) is
s1mp1y Ty —|— Ty; on the other hand, we know that on B, f(z') € Ty(z’) + Iy and
g(z’) €T, (") + I,. Thus obviously,

(f+9)(Z) €Ty +T) () + (I; +1,) for all T €B

and so (Tt + Ty, Iy + 1) is a Taylor model for (f + g) on B. Furthermore, the
interval Iy, = Iy + I is the sharpest remainder bound that can be inferred from
the knowledge of the Taylor models for f and g. For practical purposes, it is also
important to note that if 1 f, I, are “fine of order B n+l 7 je., their size scales with

the size of B to the (n + 1)-st power, so is Iy 4. In the same way we see that
(Ty — Ty, Iy — 1) is a Taylor model for (f — g).

3.2. MULTIPLICATION OF TAYLOR MODELS

Let (T, Iy) a1_1>d (Tg, I4) be n-th order Taylor models of the functions f and g on the
interval box B. As pointed out before, the Taylor polynomial T%., of f - g can then
be obtained by multiplication of T and T, and subtracting th_e> polynomial 7.,
consisting of the terms whose order exceeds n. For any :1: € B, there are values
er €Ip and e, € I, such that f(z) = Tf(z') + e; and g(z") = Tg(f) + e4. So we
obtain

(F-9)(@) = (Tp(a") +ef) - (Ty(a )+6g)
= Ty(@) - Ty(@) + Ty(2') - g + Ty() -ef Feg e
= Tp.o(2") +{Ts.4(z )—I—Tf( )-eg—}—Tg(:?)-ef—%—ef-eg}.

The first term is the Taylor polynomial of f-g. The term in curly brackets describes
the behavior of the error; it is a polynomial in the v + 2 variables (ac ef,eq) €
BxI 7 *x 1, and is denoted by £ (x ef, €g)- Since no knowledge about the correlation
between z” and ey, e4 is contained in the Taylor models of f and g besides the fact
that ey € 1 Is € € I, the sharpest p0531ble remainder bound of f - gt that can be
inferred is given by the extrema of E(z e f,€g) on the interval box B xI 7 x 1.
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Thus the determination of If., is a polynomial bounding problem, and the quality
of the polynomial bounds translates directly into the sharpness of I;.,.

For practical purposes, the necessary polynomial bounding can be performed in
various ways. The most accurate but probably also most expensive way is the direct
bounding of E using dedicated polynomial bounding techniques, like those based
on evaluation at Tschebycheff points. R

The, effort can be decreased somewhat by first bounding Tf(B) T¢(B') and
Tf.4(B) as v dimensional polynomials and then computing a remainder bound as
If., =Ty, g(ﬁ) + Tf(B_)) I, + T, (]§>) Iy + Iy - 1,. In this case the three interval
additions can cause some shght blow—up due to cancellatlon but thls bounding
method still has the property that if Iy and I, are “fine of order B (”+1) 7 80 is
Iy.4. The actual polynomial bounding can again be performed using a dedlcated
polynomial technique.

At the expense of loss of sharpness, the polynomial evaluations can also be per-
formed by evaluations of Horner factorizations; even in this case the blow-up will
not be substantial because of the multiplications with the very narrow intervals Iy
and I, and the fact that T., is of order (n+ 1) and higher and hence consists only
of small intervals raised to high powers.

3.3. ELEMENTARY FUNCTIONS OF TAYLOR MODELS

In this subsection we will show how it is possible to determine Taylor models of
elementary functions composed with functions with known Taylor models. We will
reduce the problem to the computation of interval evaluations of elementary func-
tions (as well as the addition and multiplication of Taylor models). Let (T, Iy) be
an n-th order Taylor model for f on B, and let g be an elementary function appear-
ing in a computer environment, e.g., exp or log. The goal is to find a Taylor model
for go f. While there appears to be no fully universal strategy that is applicable for
any function g, in most cases it is possible to adhere to the following approach:

1. Introduce ¢ = Tf(z,), Tf(z') = Tf(z') — ¢; then T does not have a constant
part, and when evaluated on B, it is “fine of order B

2. Use an addition theorem for g (or a similar method) to separate the total com-
putation into:
e computations for ¢ and
e computations for Tf(z") + I, denoted by h;(T;(z") + I;).

3. Perform the computations for ¢ ezactly (or with verified methods yielding a
tight inclusion).

4. Perform the computations for T_(a? ) using an n-th order Taylor polynomial
with remainder for h. Because T(z') does not have a constant part, powers
of (Ty(z ), I 7) of order higher than n generate a vanishing contribution to the
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Taylor polynomial, and it is sufficient to find the Taylor polynomial of the
composition g o f.

5. The remainder term of the n-th order Taylor expansion for A which is deter_r)nined
by differentiation of i and has to be evaluated with & and (z —z¢) in T¢(B) +1,
is computed using standard interval arithmetic, Since it contains an (n + 1)-st
power of T¢(B') + I, which is “small of order B,” this yields an interval “small
of order B +1.7

Because of the generality of the description and the associated element of vagueness,

we want to illustrate the method on two examples:

e First, consider the case g(z) = exp(z). Writing Tf(z') = ¢+ Tf(z"), we obtain
exp (Ty(2") + Iy) = exp(c) - exp (Ty(z) + I})-

For the second exponential, we use the Taylor formula of exp around the origin
with Lagrange remainder, i.e.
n v
exp(z) = Y x_| + 2" exp(€)/(n + 1),
= V!
where £ is between 0 and z. In our case, £ € Tf(B_>) + I, and so we obtain the
following inclusion:
— " (Te(z)+1;)"
exp (Tf(:L—‘))_i_If) C Z M

v=0

=

(n+1) ©€Xp (Tf (B )+If)
(n+1)!

The polynomial in the resulting Taylor model on the right is the Taylor polyno-

mial of exp(f). Apparently, sharper inclusions are possible if there are dedicated
methods for the computation of polynomials of Taylor models.

+ (Ty(B)+1I)

v!

e In a very similar way, we can proceed for the cases g = sin and g = cos (using
the respective addition theorems).

e As another example, consider the determination of a Taylor model for log(f)
from a Taylor model for f. Let (T},Iy) be an n-th order Taylor model for f

—

on B_>, and let there be an evaluation of Tf(E)) such that 0 < Tf(B) + Ij.
This implies in particular that the constant part c of Ty does not vanish. Write
Ti(z')+1; = c-[1+(T(z')+1;)/c] and use log(ab) = log(a)+log(b) to separate the
constant part from the rest. Consider h(z) = log(1+ z); then for |z| < 1, we have
n
log(l1+x) = Y (=1)*'z¥/v + L,, where the n-th order Lagrange remainder
v=1
can be written as L, = (=1)"z" T /{(n + 1)(1 + £)" 1}, with 0 < ¢ < z. So we
obtain

log (Ty () +I) = log(c) +log (M)
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Again, if the original interval Iy is “fine of order B n+l” 50 are the intervals
that are accumulated in the evaluation of the Taylor polynomial, and so is the
interval generated by the Lagrange remainder.

3.4. DI1VISION OF TAYLOR MODELS

The division of Taylor models will be achieved by application of the elementary
function 1/z. So let (T, I5) be an n-th order Taylor model for f on B and let there
be an evaluation of Tf(l? ) such that 0 ¢ Ty (B _)) +1 I This implies in partlcular that
the constant part c of T does not vanish. Write Ty (z) + 1 = c-[1+(T(2") + 1) /]
and use 1/(ab) = (1/a)(1/b) to separate the constant part from the rest. Consider
h(z) = 1/(1 + z); then for |z| < 1, we have

e
v=0

where the n-th order Lagrange remainder can be written as L, = (—1)"*lz"+1/
(14 &)™ 2. So we obtain

1
TH(@)+1I; ¢ 1+ (T(x)+1)/c
s (1 (T + IV, (DM @B 1)
X ( )+ (T(B) + I;)" "

%
And as before, if the original interval Iy is “fine of order B n+l» 50 are the interval
remainders that are accumulated in the evaluation in the Taylor polynomial, and
so is the interval remainder generated by the Lagrange remainder.

3.5. CALCULATION OF TAYLOR MODELS OF COMPLICATED FUNCTIONS

In the previous subsections we showed how Taylor models for sums, products, and
elementary functions can be computed as soon as the Taylor model of the original
function is known. Using these rules repeatedly, it is thus possible to determine Tay-
lor models of any function that can be expressed in terms of repeated applications
of these elementary operations; in particular, this includes all functions that can be
represented in a computer environment.

Apparently it is necessary to begin the calculation with one known Taylor model,
and_)this is most readily achieved by writing the function f under consideration as
fol,where I is the identity in_) R". In this case, all that is needed are Taylor models
for the components I,,. Since I agrees with its first order Taylor polynomial, these
are readily given as (zy, [0, 0]).
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4. Applications
4.1. IMPLEMENTATION

In the last sections it became apparent that the computation of remainder bounds
for Taylor series can be performed in parallel to the computation of Taylor expan-
sions of functions and thus represents a generalization of Taylor methods. In case
the order of the Taylor calculations is chosen to be zero, it reduces to conventional
interval arithmetic, and hence also generalizes interval methods.

The computational expense needed to determine remainder bounds while com-
puting Taylor expansions is limited. For the use of interval chains, it is usually
almost negligible, while for the use of very sharp polynomial methods to estimate
the bound for the product, the expense depends on the sophistication of the meth-
ods.

The practical use of the Taylor models method benefits from object oriented
language environments like those offered in C++ or Object Oriented Pascal, or in
many of the more dedicated packages used in scientific computation like Pascal XSC,
or the various codes used for the automatic differentiation of FORTRAN or C. The
actual implementation requires the availability of libraries for interval operations as
well as Taylor multiplications and benefits from the existence of fast algorithms to
bound the range of polynomials.

We implemented [21], [22] the method in the object oriented Pascal-like language
environment of COSY INFINITY [4], [5], [13], [20]. The code is a large scale design
and analysis tool with extensive macros to study the dynamics in weakly nonlinear
systems; it has about 200 registered users in the accelerator community.

4.2. BOUNDING OF FUNCTIONS

A Taylor model defines an approximation of a multivariate function as well as a
“band’ around this approximation containing the values of the actual function.
Figure 2 shows examples for a function of two variables. The band is obtained by
arithmetic with Taylor models as implemented in COSY, where B described the
region of the displayed coordinate space. With increasing order, the width of the
band decreases quickly. Bounding the function with conventional interval arithmetic
requires its evaluation at many different intervals, because the width of the bound
is largely determined by the size of the interval to which the function is applied.
The graphs in Figure 3 show the improved bound for a finer interval covering of the
relevant region.

The potential of the Taylor model arithmetic becomes apparent when one con-
siders that:

e the algorithm describing the function had to be evaluated at only one Taylor
model to get the tightest bound shown, whereas
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Figure 2. Interval bounding of a function by a Taylor model; orders 7 (left) and 10 (right).
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Figure 3.

Conventional interval bounding of a function; from top left to bottom right the
number of interval evaluations is 100, 400, 1600, and 6400.

e 6400 interval evaluations were needed to achieve the tightest bound computed
by conventional interval arithmetic.
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4.3. APPLICATIONS FOR.  GUARANTEED STABILITY ESTIMATES

Estimating the time of stable motion for planetary systems has first started the
interest in the stability of weakly nonlinear mechanical systems.

In accelerator physics, this question became important with the introduction of
storage rings. In large storage rings particles often have to be kept in the accelerator
for up to a billion turns.

In the past, the question of long term stability in storage rings has been ana-
lyzed by various methods [7], [9], [27], [28], [33]. Although some of the established
methods are useful analysis tools, they all fail to give mathematically rigorous lower
bounds on the time during which particles stay inside the accelerator (the motion
is described by a nonlinear map).

The principle underlying the proof of the Nekhoroshev estimate [24] was used
numerically to obtain lower bounds for the time which particles can orbit the accel-
erator [30]. For this approach, one first finds a function f which defines surfaces
by f = ¢ with ¢ € IR that enclose a volume around the origin and additionally do
not change much during one applicgtion of the transfer map M of the accelerator.
The deviation function dy = f o M — f is therefore very small and f is called a
pseudo invariant of M . The pseudo invariant needed for this method is computed
via nonlinear normal form theory [6], [10].

If a rigorous upper bound § on d; can be found in the volume with f < ¢, then
particles starting in the region f < ¢ — N¢ will certainly not leave the region f < ¢
for at least N turns. To make refined rigorous estimates of the survival time, several
tricks are needed, but these few lines already contain the basic thoughts behind rig-
orous lower bounds on the survival time in weakly nonlinear dynamics. The method
was first used in [29], [31], [32], where the maximum of d; was approximated by
evaluating the function on a grid. First rigorous bounds based on interval methods
were reported in [11].

A typical example of the deviation function is shown in Figure 4, where a non-
linear transfer map of order 6 was used.

e The rigorous maximization of the deviation function calls for interval arithmetic.
However, since the displayed deviation function is a polynomial of order 72 in
four variables, which in expanded form has 1,282,975 coefficients, enormous blow-
up builds up during their evaluation. To bound the maximum by conventional
interval arithmetic, in the order of 1024 interval evaluations would be needed.
Evaluating such a complicated function in interval arithmetic 10?* times is cer-
tainly out of the question with today’s (and probably tomorrow’s) computer
speeds.

e For this problem, Taylor model arithmetic can be applied very beneficially, result-
ing in a speed up of about 10'® as compared to conventional interval arithmetic.
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Figure 4. Two-dimensional projection of a typical deviation function for a six dimensional
transfer map.

Acknowledgement

We would like to thank Kyoko Makino for performing the calculations in this paper,
for valuable comments, and a careful reading of the manuscript.

References

1.

10.

11.

12.

Berz, M.: Analyis on a Nonarchimedean Eztension of the Real Numbers, Technical Report
MSUCL-753, National Superconducting Cyclotron Laboratory, Michigan State University, East
Lansing, MI 48824, 1990.

Berz, M.: Arbitrary Order Description of Arbitrary Particle Optical Systems, Nuclear Instru-
ments and Methods A298 (1990), p. 426.

Berz, M.: Automatic Differentiation as Nonarchimedean Analysis, in: Computer Arithmetic
and Enclosure Methods, Elsevier Science Publishers, Amsterdam, 1992, p. 439.

. Berz, M.: COSY INFINITY Version 7 Reference Manual, Technical Report MSUCL-977,

National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI
48824, 1996.

Berz, M.: COSY INFINITY Version 6, in: Berz, M., Martin, S., and Ziegler, K. (eds), Proc.
Nonlinear Effects in Accelerators, IOP Publishing, 1992, p. 125.

Berz, M.: Differential Algebraic Formulation of Normal Form Theory, in: Berz, M., Martin, S.,
and Ziegler, K. (eds), Proc. Nonlinear Effects in Accelerators, IOP Publishing, 1992, p. 77.
Berz, M.: Differential Algebraic Treatment of Beam Dynamics to Very High Orders Including
Applications to Spacecharge, AIP Conference Proceedings 177 (1988), p. 275.

Berz, M.: Forward Algorithms for High Orders and Many Variables, Automatic Differentiation
of Algorithms: Theory, Implementation and Application, STAM, 1991.

Berz, M.: High-Order Description of Accelerators Using Differential Algebra and First Appli-
cations to the SSC, in: Proceedings, Snmowmass Summer Meeting, Snowmass, Co, 1988.

Berz, M.: High-Order Computation and Normal Form Analysis of Repetitive Systems, in:
Month, M. (ed.), Physics of Particle Accelerators, volume AIP 249, American Institute of
Physics, 1991, p. 456.

Berz, M. and Hoffstétter, G.: Exact Bounds of the Long Term Stability of Weakly Nonlinear
Systems Applied to the Design of Large Storage Rings, Interval Computations 2 (1994), pp. 68—
89.

Berz, M., Bischof, C., Griewank, A., and Corliss, G. (eds), Computational Differentiation:
Techniques, Applications, and Tools, STAM, Philadelphia, 1996.



COMPUTATION AND APPLICATION OF TAYLOR POLYNOMIALS... 97

13.

14.

15.

16.

17.

18.

19.

20.

21.
22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

Berz, M., Hoffstitter, G., Wan, W., Shamseddine, K., and Makino, K.: COSY INFINITY
and Its Applications to Nonlinear Dynamics, in: Computational Differentiation: Techniques,
Applications, and Tools, STAM, 1996.

Csenes, T.: Test Results of Interval Methods for Global Optimization, Computer Arithmetic,
Scientific Computation and Mathematical Modelling 12 (1991).

Griewank, A. and Corliss, G. F. (eds), Automatic Differentiation of Algorithms, SIAM,
Philadelphia, 1991.

Hansen, E. R. A Generalized Interval Arithmetic, in: Nickel, K. (ed.), Interval Mathematics,
1975.

Hansen, E. R.: Global Optimization Using Interval Analysis—the One-Dimensional Case, J.
Optim. Theor. and Appl. 29 (1979), pp. 331-334.

Hansen, E. R.: Global Optimization Using Interval Analysis—the Multidimensional Case,
Numerische Mathematik 34 (1980), pp. 247-270.

Jansson, C.: A Global Optimization Method Using Interval Arithmetic, in: Computer Arith-
metic and Scientific Computation, Proceedings of the SCAN 91, Amsterdam, North-Holland,
Elsevier, 1992.

Makino, K. and Berz, M.: COSY INFINITY Version 7, in: Fourth Computational Accelerator
Physics Conference, AIP Conference Proceedings, 1996.

Makino, K. and Berz, M.: Implementation and Applications of Taylor Model Methods.
Makino, K. and Berz, M.: Remainder Differential Algebras and Their Applications, in: Com-
putational Differentiation: Techniques, Applications, and Tools, STAM, 1996.

Moore, R. E. and Ratschek, H.: Inclusion Functions and Global Optimization II. Mathematical
Programming 41 (1988), pp. 341-356.

Nekhoroschev, N. N.: An Exponential Estimate of the Time of Stability of Nearly Integrable
Hamiltonian Systems, Uspekhi Mat. Nauk, English translation Russ. Math. Surv. 32 (6) (1977).
Rokne, J. and Ratschek, H.: New Computer Methods for Global Optimization, Ellis Horwood
Limited, Chichester, England, 1988.

Shamseddine, K. and Berz, M.: Exception Handling in Derivative Computation with Nonar-
chimedean Calculus, in: Computational Differentiation: Techniques, Applications, and Tools,
SIAM, 1996.

Talman, R.: Long Term Prediction and the SSC, in: Nonlinear Problems in Future Accelerators,
World Scientific, New York, 1991, pp. 215-231.

Turchetti, G.: Nekhoroshev Stability Estimates for Symplectic Maps and Physical Applications,
in: Number Theory and Physics, Springer Proceedings in Physics 47, Springer-Verlag, Berlin,
Heidelberg, 1990.

Warnock, R. L.: Close Approximation to Invariant Tori in Nonlinear Mechanics, Physical
Review Letters 66 (14) (1991), pp. 1803-1806.

Warnock, R. L. and Ruth, R. D.: Long-Term Bounds on Nonlinear Hamiltonian Motion, Physica
D 56 (14) (1992), pp. 188-215, also SLAC-PUB-5267.

Warnock, R. L. and Ruth, R. D.: Stability of Orbits in Nonlinear Mechanics for Finite but
Very Long Times, in: Nonlinear Problems in Future Accelerators, World Scientific, New York,
1991, pp. 67-76, also SLAC-PUB-5304.

Warnock, R. L., Ruth, R. D., Gabella, W., and Ecklund, K.: Methods of Stability Analysis in
Nonlinear Mechanics, in: 1987 Accelerator Physics Summer School AIP Conference Proceed-
ings, 1988, also SLAC Pub 4846, 1989.

Yan, Y.: Applications of Differential Algebra to Single-Particle Dynamics in Storage Rings,
Technical Report SSCL-500, Superconducting Super Collider Laboratory, 1991.



