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Abstract

There is some ambiguity in the definitions and use of the
concepts of spin tune and spin-orbit resonance on synchro-
betatron orbits. We clarify these issues and provide a nu-
merical illustration of the internal consistency of our defi-
nitions using the computer code SPRINT for HERA with
a standard Siberian Snake arrangement. Furthermore, we
demonstrate the calculation of the invariant spin field using
adiabatic anti-damping of the orbital motion and compare
with the spin field obtained by stroboscopic averaging. In
addition we study polarization loss on accelerating through
resonances.

1 INTRODUCTION

To caste further light on the spin structure of nucleons, it
would be very useful to run the HERA e � ��� –p collider in
Hamburg with spin polarized protons to complement the
spin polarized e � ��� beam. This requires that the existing
unpolarized � � source is replaced by a polarized source
and that the protons are accelerated up to 820 GeV without
loss of polarization.

The motion of the centre-of-mass unit spin vector
��

of a
relativistic charged particle travelling in electric and mag-
netic fields is governed by the Thomas-BMT equation. In a
purely magnetic field with components

��
	
and

��
�
parallel

and perpendicular to the orbit this is

� ������ � ��������� ���������! �� 	 �����"��� �  �� �  $# (1)

The quantity
� � �&%!'�() �*+(

is the gyromagnetic anomaly,
for protons

�-,.�+#0/)1+(+2
. The other symbols have their

usual meanings. Eq. (1) shows that for motion perpendicu-
lar to the field, the spin precesses around the field at a rate�3��� � faster than the corresponding rate of orbit deflec-
tion. At 820 GeV,

�4�5� � ,
1568 so that a 1 mrad or-

bit deflection leads to about 90 degrees of spin precession!
Thus at these high energies spins are very easily disturbed.
The measure of the sensitivity is the quantity

� � which we
call the spin enhancement factor. At these high energies it
is clearly essential for preservation of polarization that spin
motion be very well understood. That in turn requires that
clearly defined mathematical concepts and tools are avail-
able.

2 THE DEFINITION OF SPIN TUNE

The stable, i.e. equilibrium, direction for spins travelling
along the design orbit of a perfectly aligned flat storage
ring with no solenoids, is the vertical axis. For rings with
vertical bends and/or solenoids and misalignments the cor-
responding direction is

�687 �:9; , the 1–turn periodic real unit
eigenvector of the orthogonal 1–turn spin transfer matrix
for spin motion along the closed orbit. In general this is a
function of the azimuth

9
, and it is not vertical everywhere.

To describe equilibrium spin distributions of particles
executing synchrobetatron motion in the quadrupole and
other fields we introduce the invariant spin field of special
solutions to the T–BMT equation

�6 � �<>= 9; , with the property
that �6 � �<?= 9@�A(+BC � �6 � �<>= 9; (2)

where
�< is the 6–D orbital phase space vector [1, 2].

For one turn around the ring the field vector at the final
point

�<ED is related to the field at the initial point
�<GF by the

relation H � �< F = 9; �6 � �< F = 9; � �6 � �< D = 9; (3)

where
H

is the one turn spin map.
A distribution of spins set up so that each spin is paral-

lel to the
�6 � �<I= 9; vector at its position in phase space does

not change from turn to turn although after each turn the
particles find themselves at new positions in phase space.
Such a distribution is in equilibrium when viewed from a
fixed azimuth. On the closed orbit

�6 � �<I= 9; reduces to
�6J7 �K9; .

By Eq. (1) the disturbance relative to
�687 increases with�:� � �5�G 

and the orbital amplitude so that at high energy
and/or high amplitude the angle between

�6 � �<>= 9; and
�6 7 �K9; 

can be large. Indeed, for HERA at high energy for pro-
tons on the 1–sigma vertical phase space ellipse , angles of
60 degrees or more, between

�6 � �<I= 9; and
�6 7 �:9; are com-

mon. The angle can be particularly large and spin motion,
in general, can be particularly disturbed if there is coher-
ence between the spin motion and the oscillatory motion in
the beam.

A convenient measure of the angle is LNM O P � �Q = 9; �RRR+S �6 � �Q = �T = 9 ��U  �V4WX RRR . This is the polarization averaged

over the surface of a 3–torus in phase space when the po-
larization in direction of

�6 � �<I= 9; is 100 % at each point on
the surface. When the angle is large, LNM O P � �Q = 9; is small.

The degree of coherence is expressed in terms of the spin
tune. To obtain this, one attaches unit vectors

�Y[Z � �<I= 9; and



�Y � � �<I= 9; to each phase space point
�< in such a way that

the set
� �Y Z � �<I= 9; = �Y � � �<?= 9; = �6 � �<I= 9; � forms an orthonormal

coordinate system in which a spin that is not parallel to�6 � �<I= 9; precesses uniformly around
�6 � �<>= 9; [3, 4, 2]. The

vectors
�Y Z and

�Y � obey periodicity conditions of the kind
in Eq. (2) but do not obey the T-BMT equation. The spin
tune � is then the number of spin precessions around

�6 in
the (

�YCZ;= �Y � = �6 ) system for one turn of a particle around the
ring and the coherence is characterized by the spin–orbit
resonance condition

� � � � ������� � �����	� � ��
��

(4)

where the
�

's are integers and the
�

's are respectively the
horizontal, vertical and longitudinal tunes of the orbital os-
cillations. The sum � ��� � � � ��� � � � ��
 � is called the order of
the resonance.

On the closed orbit the spin tune is just the number of
spin precessions around

�6 7 for one turn around the ring
and the fractional part can be extracted from the complex
eigenvalues of the spin transport matrix on the closed orbit.
It should be clear from the above, however, that for parti-
cles not on the closed orbit,

�6 and � cannot be extracted
from a 1–turn eigenproblem since

�6 changes when tracked
for one turn. In general the spin tune depends on the or-
bital amplitudes

�Q
and is independent of the orbital phases�T

and starting azimuth so that we denote it by � � �Q  . For a
perfectly aligned flat storage ring with no solenoids the de-
sign orbit spin tune � 7 is just the spin enhancement factor� � .

Thus acceleration to 820 GeV implies that the beam
must traverse several thousand first order spin–orbit depo-
larizing resonances and that therefore the polarization will
be lost. The occurence of the large number of such reso-
nances is confirmed by plotting the dependence of L M O P on
energy for a normal HERA lattice. The standard response
to this is to insert magnet systems called Siberian Snakes
into the lattice [5]. These are designed to rotate spins byB

around an axis in the horizontal plane independently of
the reference energy and their synchrobetatron motion and
when installed in the correct combinations the fractional
part of the spin tune on the design orbit is 0.5 at all ener-
gies. It is thereby intended that by correct choice of orbital
tunes, first order resonances can be avoided during acceler-
ation so that the polarization is preserved. However, since
spin tune depends on

�Q
there is no guarentee that this al-

ways works.
We now illustrate this for a perfectly aligned HERA pro-

ton lattice with a standard arrangement of Siberian Snakes.
On the design orbit � 7 � U # � and the fractional part of

���
is 0.273. The field

�6 is calculated using stroboscopic av-
eraging with the computer code SPRINT [2]. To obtain
the spin tune � , we register the spin phase advance in the
(
�Y Z = �Y � ) plane for each turn starting from a fixed azimuth9 � U and average the phase advance over 1000 turns. In

Fig. 1 (upper) we plot L[M O P � Q � = U  versus emittance
Q �

for
purely vertical betatron motion at 805 GeV (so that the sur-
face of the 3–torus reduces to an ellipse). There is a clear

minimum at about
Q � � 27

B
mm mrad. In the lower figure

we plot the corresponding � versus the emittance. At zero
emittance � is 0.5 as required but it rises to 0.56 at

Q � �
40

B
mm mrad which corresponds to about 3–sigma. AtQ � � 27
B

mm mrad this shows a clear jump straddling the
line marking a spin tune of

( ��
. Thus we conclude that

the dip in L M O P corresponds to the second order spin–orbit
resonance � � ( � � ���������������

. Then, although particles at
small amplitudes are not on resonance, particles near 27

B
mm mrad are close to resonance. So snakes remove the en-
ergy variation of � 7 but they do not sufficiently reduce the
dependence of � on

�Q
. In spite of the comment above on
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Figure 1: Upper: L M O P vs. vertical emittance. Lower: � and� � �  WX vs. emittance

one turn eigensolutions, one often finds reference in the lit-
erature to the

�Q
and

�T
dependent quantity ��� obtained from

the complex eigenvalues of
H � �Q = �T = 9; . The lower curve in

Fig. 1 (lower) is the average over
T �

of � � � Q � = T � = 9; plot-
ted versus emittance. This average takes the value

( �"�
at

about
Q � � 40

B
mm mrad, i.e. where L M O P is approach-

ing a maximum. From this it is clear that the value of this
“fake spin tune” gives no information about the expectation
for LJM O P � �Q = 9; or the stability of spin motion in general.

The locus of
�6 on the unit sphere obtained by tracking

and sampling at a fixed azimuth is a closed curve as re-
quired by Eq. (2) in the case of 2–D motion (see e.g. Fig.
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Figure 2: Upper: locus of
�6 for 20

B
mm mrad vertical

emittance. Lower: locus of
�6 for 40

B
mm mrad and of the

anti–damped spin after resonance crossing.

2). However, although the locus of
�Y � � Q � = T � = 9; , the unit

eigenvector with
�Y � � �Q = �T = 9; � H � �Q = �T = 9; �Y � � �Q = �T = 9; as

a function of
T �

is also a closed curve, it differs from that
for

�6 and if a
�Y � � Q � = T � = 9; for some initial

T �
is subse-

quently tracked, it does not form a closed curve. In sum-
mary,

�Y � � �Q = �T = 9; and ��� � �Q = �T = 9; seem to have little rele-
vance.

3 ADIABATIC ANTI–DAMPING

For integrable orbital motion the spin action
��

�
�6 for an

arbitrary spin
��

is an adiabatic invariant away from res-
onances. Thus by setting the spin

�� F of a particle which
is almost on the closed orbit parallel to

�6 7 and tracking it
around the ring while adiabatically increasing the orbital
amplitude, the final spin

�� D , should be parallel to
�6 at the

final phase space position. This then provides an alternative
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Figure 3: Spin action

�6 �

��
during acceleration for 4 repre-

sentative spins on the 3–torus described in the text.

to stroboscopic averaging for constructing
�6 . Fig. 2 (up-

per), shows the locus on the unit sphere of the
�6 reached

at
Q � � 20

B
mm mrad. This is indistinguishable from the

locus of the
�6 obtained by stroboscopic averaging. With

a further adiabatic increase through the resonance at 27
B

mm mrad out to
Q � � 40

B
mm mrad the method fails: Fig.

2 (lower) shows the locus of
�6 and the curve for

�� D at 40
B

mm mrad.

4 ACCELERATION

When accelerating through energy regions with strong res-
onances, the spin action

��
�
�6 , is no longer adiabatically in-

variant and although below and above the resonances L M O P
is large, the spins do not necessarily follow

�6 so that po-
larization is lost. This is illustrated in Fig 3 which shows
the behaviour of the

��
�
�6 for each of 4 particles during an

energy ramp from 785 GeV to 812 GeV in which the parti-
cles are distributed on the invariant 3–torus with each spin
initially parallel to its

�6 . The emittances are 1.5 times the
r.m.s. values of the beam width/energy spread. At various
points in the resonance region around 804 GeV [6] the spin
actions begin to oscillate wildly so that the polarization of
the set finally vanishes.
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