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Abstract

Imaging energy "lters are becoming an essential part of high-quality electron microscopes. They enhance the contrast,
allow element speci"c imaging, and elemental decomposition by spectroscopy of inelastically scattered electrons. All
"lters which are commercially available are not completely corrected to second order; however, some use symmetric
arrangements for the cancellation of the most destructive second order e!ects. However, completely corrected symmetric
arrangements have been tested already. For the construction of these systems it is important to know what consequences
the symmetry of the optical arrangement has: which aberrations cancel due to symmetry, which aberrations are
interrelated and vanish simultaneously when implementing multipole correctors, which higher-order aberrations remain
after cancellation of the leading-order aberrations. These questions can in principle be answered by the Eikonal method
as well as by the transfer map method. Here we demonstrate that a combination of both methods answers these question
in a very simpli"ed fashion. This simplicity allows to draw some novel conclusions. ( 1999 Elsevier Science B.V.
All rights reserved.

1. Introduction

Inelastically scattered electrons blur the image in
an electron microscope. The reason for this disturb-
ing e!ect is not only the chromatic aberration
which causes the inelastically scattered electrons to
be focused in a di!erent fashion than electrons
which did not su!er an energy loss. Electrons which
scatter at the nuclei of the object do not su!er
energy loss and therefore the elastically scattered
electrons carry atomic information in the order of

an angstrom. Inelastically scattered electrons excite
phonons, band electrons, or plasmons, and these
electrons therefore carry information on a nano-
meter scale. This blurring of the image cannot be
corrected by eliminating the chromatic aberration
of the microscope but electrons which have been
scattered inelastically have to be "ltered out of the
electron beam. This mode of increasing the contrast
in an electron microscope is referred to as zero loss
imaging [1]. The "rst instruments that "ltered in-
elastically scattered electrons out of the beam were
high pass energy "lters. One simply applied a re-
tarding potential barrier which could only be over-
come by electrons that had not su!ered an
appreciable energy loss in the object [2,3]. These
early techniques have been replaced by energy
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"lters which select parts of the energy loss spectrum
by a narrow selection slit. For this purpose bending
magnets or electrostatic de#ectors have to be used
to produce dispersion. An energy selection slit is
then placed in a plane where the beam of electrons
with nominal energy is as narrow as possible. Since
the object size is magni"ed by the intermediate
magni"cation at the position of the "lter, whereas
the defraction image is demagni"ed by that num-
ber, the electron beam has a waist at an image of
the defractive plane. There is another more subtle
reason why the energy selection plane has to be an
image of the defraction plane. The energy which is
selected has to be the same for all electrons, no
matter at which spot of the object they originated.
This property is referred to as isochromaticity [1].
Therefore, the "eld ray has to intersect the optic
axis at the energy selection plane, which is then
equivalent to a defraction plane. After the energy
selection has been performed at that plane, a pro-
jector system has to transfer an achromatic image
of the object to the detector plane. The image has to
be achromatic in order not to be blurred by the
energy band which can pass the selection slit.

An energy "lter cannot only be used for increas-
ing the contrast of an electron microscopic picture
but also for element speci"c imaging. One simply
accelerates the electrons to an energy which is too
high by an amount *E so that only those electrons
which lose the energy *E by inelastic scattering pass
the energy selection slit and form the image. If one
takes a picture with *E just above a characteristic
energy level of an atomic element, predominantly
electrons scattered inelastically at such atoms form
the image. If one performs background subtraction
by taking into account an image with *E just below
that characteristic excitation energy, one obtains an
image of atoms which are all of one elemental type.

Finally a third important application of energy
"lters should be mentioned. If the projection system
after the "lter can image the energy selection plane
on the detector, then the energy loss spectrum of
the object or of a small object detail can be re-
corded and used to analyze elemental composition.
The requirements on an imaging energy "lter are
therefore the following:
(1) The dispersion at the image of the object

behind the "lter has to vanish.

(2) This achromatic image should be stigmatic
and round, so that a round projector system
can image it to the detector plane.

(3) The "lter should not introduce dominant ab-
errations at the object image.

(4) In the section of dispersion, the energy selec-
tion plane has to be an image of the defrac-
tion plane, or an image of the object if the
microscope is operated in defraction mode.

(5) The dispersion at the energy selection plane
should be large.

(6) The "lter should not introduce dominant ab-
errations at the energy selection plane.

The achromatic image of the object can be a vir-
tual image located inside the "lter [4], the image of
the defraction plane, however, has to be located in
a "eld free region, in order to position the energy
selection slit. It is advantageous if the object image
in front of the "lter is located in a "eld free region
since introducing grids at that position can be very
useful for aligning the energy "lter [5,1].

It was emphasized already in [6] that symmetric
"lter arrangements can lead to a cancellation of
some disturbing aberrations. Therefore, we want to
analyze systematically which implications various
symmetries will have for the electrons motion.
Some of the results have already been obtained by
the Eikonal method [1] or the map method [7].
Here we want to show how to combine both
methods to uncover implications of symmetry in
a very straightforward fashion.

2. The paraxial optics, fundamental rays,
and aberrations

The motion of charged particles through
particle optical systems can be described by a
transport function which takes initial phase space
coordinates zl

*
of particle in front of the system into

"nal coordinates zl
&
"Mo

5
(zl

*
) behind it. The Taylor

polynomial of Mo (zl ) to an order n is often referred
to as the nth order Taylor transport function. The
coe$cients of this polynomial are related to the
aberrations of various orders. The phase space co-
ordinates which we will consider in this article are
the transverse positions x and y, the corresponding
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normalized canonical momenta a"p
x
/p

0
and

b"p
y
/p

0
, where p

0
is the kinetic momentum of

a reference particle, and the relative deviation i from
the reference energy. Evaluating the transfer map to
"rst order de"nes the so-called paraxial optics.

In the Eikonal method, the paraxial optics is
used to de"ne four fundamental rays. They are
an arbitrary set of four linearly independent para-
xial trajectories and therefore all solve the lin-
earized equation of motion. In an electron
microscope it is useful to choose two fundamental
rays in the x and two in the y section with the
following properties: The so-called axial funda-
mental rays in these two sections are called wa and
wb and intersect the optical axis in the object plane
with slope 1. The other two fundamental rays
wc and wd are called "eld rays since they intersect
the optic axis at the source and have transverse
positions 1 at the object plane. An arbitrary particle
trajectory can then be described in terms of initial
transverse positions and momenta in the object plane
and its relative energy deviation i. Also other conven-
tions are possible, however, whichever convention is
taken, we take care that the Wronski determinants
wcw@a!w@cwa and wdw@b!w@dwb, which are invariant
along the optic axis, are equal to one and that all
other Wronski determinants are equal to zero.

Every trajectory is de"ned by its starting condi-
tions, and the phase space coordinates are therefore
functions of c

i
, a

i
, d

i
, b

i
, i, and the longitudinal

coordinate s along the optic axis. At every point
s along the optical axis one can then "nd four
constants c, a, d, b which de"ne the transverse posi-
tions and normalized momenta of a particle's tra-
jectory as a linear combination of the fundamental
rays and their derivatives

A
x(s)

y(s)B"c(c
i
, a

i
, d

i
, b

i
, i, s)wc(s)

#a(c
i
, a

i
, d

i
, b

i
, i, s)wa(s)

#d(c
i
, a

i
, d

i
, b

i
, i, s)wd(s)

#b(c
i
, a

i
, d

i
, b

i
, i, s)wb(s) (1)

A
a(s)

b(s)B"c(c
i
, a

i
, d

i
, b

i
, i, s)w@c(s)

#a(c
i
, a

i
, d

i
, b

i
, i, s)w@a(s)

#d(c
i
, a

i
, d

i
, b

i
, i, s)w@d(s)

#b(c
i
, a

i
, d

i
, b

i
, i, s)w@b(s). (2)

To include the energy deviation in our consider-
ations, we construct the "ve-dimensional vector
fo T"(c, a, d, b, i). These "ve coordinates are func-
tions of the initial conditions. Therefore, we have
constructed a map which transports the coe$cients
of Eqs. (1) and (2) from the initial plane into a "nal
plane by fo

&
"Mo (fo

*
). Dealing with this transfer

map is much simpler than dealing with the pre-
viously mentioned transfer function Mo

5
for the

phase space coordinates zl since the linear part of
the newly de"ned transfer map has the simple
matrix representation

L(d, dI )"A
1 0 0 0 d

0 1 0 0 dI
0 0 1 0 0

0 0 0 1 0

0 0 0 0 1B (3)

where dwc#dI wa describes the linear dispersion.
Furthermore, the transfer map Mo has the advan-
tage that it does not change in a "eld free region.
The transfer map is related to the phase space
transport function Mo

5
via the fundamental rays in

the initial and "nal plane, characterized by the
coordinate s

*
and s

&
, via

W(s)"A
wcx(s) wax(s) 0 0 0

w@cx(s) w@ax(s) 0 0 0

0 0 wdy(s) wby(s) 0

0 0 w@dy(s) w@by(s) 0

0 0 0 0 1B (4)

Mo
5
(zl )"W(s

&
)Mo (W(s

*
)~1zl ). (5)

The nonlinear Taylor coe$cients of the function
Mo (fo ) in the "nal plane are referred to as aberra-
tions of the system. We introduce a "ve-dimen-
sional vector of integers kl T"(kc, ka, kd, kb, ki) and
write monomials of the "ve initial coe$cients as fo ko

*
.

The Taylor coe$cient are indicated by a letter for
the coordinate and by the monomial, which we set
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Fig. 1. Schematic illustration of mirror- and point-symmetric
"lters. The image planes of the object and of the source are
indicated as well as the fundamental rays in the section of
dispersion.

in parentheses. The "rst component of the Taylor
transfer map is for example +ko fo kl (c, fo ko ).

3. Symmetric systems

3.1. Mid-section symmetry

To avoid confusion, we use the convention that
sections are surfaces that contain the optical axis
whereas planes are perpendicular to it. Usually all
optical elements which are used in "lters have a sec-
tion of symmetry. The x direction is taken to lie in
this symmetry section, whereas the y coordinate is
transverse to it, and one chooses the "rst pair of
fundamental rays in the x and the second pair in the
y section. Mid-section symmetry then implies that
a sign change of the initial d

*
and b

*
has to result

merely in a sign change of the "nal d
&

and b
&
,

whereas c
&
and a

&
do not change. This results in the

well-known condition

Mo (Rfo )"RMo (fo ), R"diag(1, 1, !1, !1, 1). (6)

This simple condition is only stated for complete-
ness and implies the following conditions for the
aberrations:

(c, fo ko )"0, (a, fo ko )"0 if k
y
#k

b
"odd (7)

(d, fo ko )"0, (b, fo ko )"0 if k
y
#k

b
"even. (8)

3.2. Mirror symmetry and point symmetry

Similar implications result from other symmet-
ries. Here we consider systems with one mirror
plane or one point of symmetry. Fig. 1 shows sche-
matically the two possibilities of arranging two
dispersive systems symmetrically.

In order to take advantage of the symmetry, the
image planes of the object in front of the "lter and
behind the "lter have to be arranged symmetrically
also. The same has to be true for the images of the
defraction plane. The object image is characterized
by the condition that the axial rays wa and wb are
zero. Similarly the defraction plane is characterized
by the fact that the "eld rays wc and wd are zero.
The symmetry then implies that in the x as well as
in the y section, one of the fundamental rays is
symmetric with respect to the image plane and the

other is antisymmetric with respect to that plane.
For this argument it is essential that the linear
approximation implies that the negative of a funda-
mental ray is also a paraxial trajectory.

There are now two possibilities in each section;
either one chooses the antisymmetric or the sym-
metric fundamental ray to de"ne the object image.
To describe these choices of symmetry, we intro-
duce the factors sa and sb. They are 1 if the corre-
sponding fundamental ray, wa or wb, is symmetric
and !1 if that ray is antisymmetric. Fig. 1 shows
schematically the fundamental rays and the image
planes. We let Mo (fo ) be the transfer map from in
front of the "lter to behind the "lter. As mentioned
previously one does not have to specify the exact
plane to which the transfer map refers since in our
formalism the transfer map does not change in
a "eld free region. Furthermore, we let Mo

1
be the

transfer map of the "rst half of the symmetric
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arrangement and Mo
2

that of the second half. Due
to the symmetry of the "elds and the fundamental
rays, Mo

2
can be used to determine Mo

1
. In case of

the mirror symmetric system

Mo
1
(fo )"SMo ~1

2
(Sfo ), S"diag(!sa, sa, !sb, sb, 1).

(9)

Similarly Mo
1
(fo ) of the point symmetric system is

given by

Mo
1
(fo )"PMo ~1

2
(Pfo ), P"diag(sa,!sa,!sb, sb, 1).

(10)

4. Implications of symmetry

To obtain the matrix representation of the linear
transfer map of the mirror symmetric system, we
use Eq. (3) and get

M"L(d, dI )SL(!d, !dI )S

"L(d, dI )L(sad, !sadI )

"L((1#sa)d, (1!sa)dI ) (11)

where sad and !sadI describe the dispersion in the
center of the "lter. The dispersion (c, i) at the image
of the object behind the "lter is only zero, which is
the "rst requirement mentioned in the introduc-
tion, if sa"!1 and therefore the fundamental ray
wa has to be antisymmetric in the case of mirror
symmetry. This result is well known and can easily
be obtained by considering that the integral over
the bending "eld times the sine like ray wa is pro-
portional to the dispersion. This formula is derived
from the equation of motion, however, as we see
here, the special form of the equation of motion is
not important for this conclusion. In any system
with mirror symmetry the dispersion would always
be zero for antisymmetric wa, independent of the
equation of motion, as long as this equation is
invariant under a change of the time direction.

The total point-symmetric system has a linear
transfer map represented by the matrix

M"L(d, dI )PL(!d, !dI )P

"L((1!sa)d, (1#sa)dI ). (12)

The ray wa has to be symmetric in this case in order
to make the objects image achromatic by sym-
metry. It follows that P"S is identical for all
imaging "lters. We do not have to consider mirror-
and point-symmetric systems separately any
longer. This simple analysis already reveals that all
implications of symmetry are identical for these two
types of symmetry, including cancellation of aber-
rations. For simplicity, we will continue to use the
matrix S and imply that sa"!1.

In order to analyze aberrations, we have to "nd
the Taylor polynomial of the inverse map Mo ~1

2
.

For this purpose one separates the transfer map of
the second system into a linear and a nonlinear part
Mo

2
(fo )"L(d, dI )fo #N(fo ). As "rst pointed out in

Ref. [8], the inverse to order n of the Taylor map is
then given by

L(!d, !dI )Cfo #
n
+
j/1

(!N(L(!d,!dI )fo ))j D.
(13)

Here the exponent j of a map indicates the jth
composition of the map with itself. The transfer
map of a symmetric "lter is therefore given by

ML(d, dI ) fo#No (fo )N " GSL(!d, !dI )

CSfo #
n
+
j/1

(!N(L(!d, !dI )Sfo ))jDH (14)

where the circle " indicates the composition of
functions.

5. Symmetry-induced cancellation of aberrations

When a system is found which satis"es the men-
tioned conditions for the paraxial rays, higher-
order e!ects limit the resolution and the energy
width of the system. Since dipoles have to be used
to create dispersion, second-order aberrations are
limiting. It has therefore been suggested to cancel as
many of the leading aberrations by employing sym-
metric magnetic arrangements. Other aberrations
can be canceled by symmetrically arranged multi-
poles. When all second-order aberrations are can-
celed, the third-order aberrations are dominant.
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Some of these aberrations, however, again cancel
by symmetry. Here we derive a formula for the
leading-order m of the transfer map of a symmetric
system. It therefore is assumed that all aberrations
up to order m are canceled by symmetry and multi-
poles. Writing the leading-order contribution of
No (fo ) as No

m
(fo ), we only have to consider

Mo
2
"L(d, dI )fo #No

m
(fo ) and its inverse up to order

m given by L(!d, !dI )[fo !No
m
(L(!d, !dI )fo )].

The transfer map of the symmetric system is there-
fore to leading order m equal to

Mo "
m
ML(d, dI )fo#No

m
(fo )N

" MSL(!d, !dI )(Sfo!No
m
(L(!d,!dI )Sfo )N

"
m
L(0, 2dI )fo#MNo

m
(fo )!L(0, 2dI )SNo

m
(Sfo )N

" ML(!d, dI )fo N. (15)

Since the relative energy deviation i does not
change in an electron microscopic "lter, the "fth
component of N

m
vanishes, and the mth-order part

of the "lter's transfer map is given by

Ko (L(!d, dI )fo ) with Ko (fo )"No
m
(fo )!SNo

m
(Sfo ).

(16)

Therefore the symmetry implies that the following
geometric aberrations vanish:

(c, fo ko )"0 if (!1)ka(!sb)k
d(sb)k

b"1

(a, fo ko )"0 if (!1)ka(!sb)kd(sb)kb"!1

(d, fo ko )"0 if !sb(!1)ka(!sb)k
d(sb)k

b"1

(b, fo ko )"0 if !sb(!1)ka(!sb)k
d(sb)k

b"!1. (17)

Cancellations of aberrations which include chro-
matic e!ects are somewhat harder to obtain since
a cancellation of these aberrations in Ko (fo ) does not
imply their cancellation in the transfer map of the
complete "lter. This is due to the fact that com-
posing Ko with L(!d, dI )fo can reintroduce these
aberrations.

In the "eld of electron microscopy the Eikonal
method has been used to show which aberrations
vanish identically due to symmetry conditions.
Also within this formalism this is especially simple
for geometric aberrations. In Refs. [9,10] it was
found numerically that the chromatic aberrations
of magni"cation (c, ci) and (d, di) are very small

when all geometric aberrations of second order
vanish due to symmetry or due to sextupole correc-
tion "eld. Only later [1] it was deduced from the
Eikonal method that these chromatic aberrations
are related to the geometric aberrations in the case
of symmetric systems and therefore have to vanish
when all geometric second-order aberrations are
corrected.

Similarly, Eq. (16) reveals that a correction of all
non-vanishing aberrations in Ko by means of multi-
poles automatically compensates all chromatic
aberrations which can be reintroduced by compo-
sition of Ko with L(d, dI ). These are the aberrations
(c, ci), (a, ai), (d, di), (b, bi), and (c, ii). In second
order, the leading order in uncorrected "lters, solely
symmetry considerations revile the following "ve
correlated aberrations:

(c, ci)"(c, ca)dI (18)

(a, ai)"2(a, aa)dI (19)

(d, di)"(d, da)dI (20)

(b, bi)"(b, ba)dI (21)

(c, ii)"2M(c, ai)
2
!(c, ca)

2
dNdI "(c, ai)dI (22)

where the index 2 indicates an aberration coe$c-
ient of Mo

2
. Except for the last relation, this was

already shown in a more complicated way by ana-
lyzing the third-order Eikonal [1].

6. The symplectic symmetry

The transfer function Mo
5
for phase space coordi-

nates zl is symplectic since particle motion in
electron microscopes can be described by a Hamil-
tonian [11]. This means that the Jacobian of Mo

5
is

a symplectic matrix. If we consider i as a para-
meter, we obtain the four-dimensional transfer map
Mo as in Eq. (5) by

W(s)"A
wcx(s) wax(s) 0 0

w@cx(s) w@ax(s) 0 0

0 0 wdx(s) wbx(s)
0 0 w@dx(s) w@bx(s)

B (23)

Mo
5
(zl , i)"W(s

&
)Mo (W(s

*
)~1zl , i). (24)
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Since we chose the fundamental ray to have
a Wronski determinant of 1 in the x and the y sec-
tion, and since the Wronski determinant does not
change from the initial position s

*
to the "nal posi-

tion s
&
, the matrices W(s

&
) and W(s

*
)~1 are both

symplectic. Therefore also the transfer map Mo is
symplectic

LfoMo TJ(LfoMo T)T"J,

J"diagAA
0 1

!1 0B , A
0 1

!1 0BB . (25)

Since the Jacobian of the "rst-order transfer map is
the identity matrix, the symplectic symmetry entails
for the leading order

LfoNo TmJ"(LfoNo TmJ)T. (26)

Therefore the potential problem No
m
"!JLfoE (fo )

has a unique solution E(fo ) which is a homogeneous
polynomial of order m#1. This function E(fo ) is the
leading order of the Eikonal used in the Eikonal
method. For the coordinates c, a, d, b the symplec-
tic symmetry has the surprisingly simple form to
leading order

!kc(c, fo (k
c, ka~1, kd, kb, ki)T)"ka(a, fo (kc~1, ka, kd, kb, ki)T)

(27)

!kd(d, fo (k
c, ka, kd, kb~1, ki)T)"kb(b, fo (kc, ka, kd~1, kb, ki)T).

(28)

These relations are much simpler than the corre-
sponding relations derived by the conventional
map method [12]. Due to this simplicity it is often
convenient to use solely the coe$cients of the
Eikonal indicated by Efo ko rather than the aberration
coe$cients. Then the symplectic condition is im-
plied in all conclusions automatically. For example,
the "ve correlated second-order aberrations reduce
to only three correlations,

Ecai"2EcaadI , Edbi"EadbdI , Eaii"2EaaidI . (29)

7. Conclusion

We have introduced the convention of funda-
mental rays to de"ne coordinates of motion and
have constructed a transfer map which transports
these coordinates. This mixture of the Eikonal and
the map method allowed us to draw conclusions
about the implications of symmetries in imaging
"lters in a very straight forward way. Some of these
conclusions had not been derived before since they
were not accessible in such a simple fashion. Fur-
thermore, we showed how the symplectic symmetry
leads to the simple relations between leading-order
aberrations of the Eikonal method.
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