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There is some ambiguity in the definitions of spin tune and spin-orbit resonance on
synchro-betatron orbits. We clarify these issues and provide a numerical illustra-
tion of the internal consistency of our definitions using the computer code SPRINT
for HERA with a standard Siberian Snake arrangement.

1 Introduction

The motion of the unit spin vector S in the rest frame of a relativistic charged
particle traveling in electric and magnetic fields is governed by the Thomas-
BMT precession equation, which takes the form dS/dQ =Q(y,7,0) x S where
6 is the azimuthal position in the ring, Z is the position in phase space and
v = E/m is the Lorentz factor.

In a purely vertical magnetic field, the spin precesses around the vertical
direction. But particles on synchro—betatron trajectories experience additional
f and 7 dependent fields. Then if the spin precession frequency is in resonance
with the orbital frequencies the attainable polarization can become very small.
We now investigate this in detail for protons at very high energy.

2 The Invariant Spin Field

In the following we will assume the equations of orbital motion to be integrable:
7= z(J \I!) J = const. \11(9) = U, + QG An arbitrary initial spin S; is
mapped to a final spin Sf by means of an orthogonal spin transport map R

Si = Ry(f,0:;9;) S; . (1)

We define a general spin field on a torus J = const. as a function f : [0, 2m)3 x
[R +— 53 that maps the “angle space” x azimuthal domain onto the unit sphere
and 1is, if evaluated along each orbital trajectory ¥y 4+ @ 6, a solution of the
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T-BMT equation
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The invariant spin field (= n—axis ) %3 is defined to be the special spin field

that is periodic w.r.t. 6, ﬁj(ll_;, ) = ﬁj(\I_;, 6 + 2m) and it describes the equi-
librium polarization distribution of the beam. # The evolution equation of #
under Ry reads as

’ﬁf(\f’f,gf) R (Hf,gl,‘ll) (\I’Z,Q) ng,ei,\i;f :\I_}Z'—‘r(gf —62)6 . (3)

Since the spin action I = 5'(6; Z;, 5'2) . ﬁj(\ﬁ(ﬁ), 6) is conserved along a trajec-
tory, the time averaged polarization on some torus cannot be greater than the
static polarization limit defined by the directional spread of the n—axis on that

o Pim(J,0) = H< (T a)> (4)

Note that the unit eigenvector éR(J,\I!,H) = Rj(0 + 271',9;@) éR(f,\f’,H)
of the one turn spin map approaches 7n; only in the limit J — 0. Then
ng(f) = ﬁa(\fl 0) = ér(0, 7 ,6). A spin parallel to éR(f ¥, 6) at ¥ is parallel
to éR(f, \f’, f) after one turn but the orbital phase has become V7 271'Q and
generally éR(f,\f’,H) + eR(J,\II—|—27rQ,9) so that S(Q,zl,gl) (j ,0) is not

conserved.
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3 The Amplitude Dependent Spin Tune

In order to obtain a complete action—angle representation of spin motion ® we

must assign to each point in phase space an orthonormal coordinate system
(ny, u}, uJ) which is periodic in ¥ and 6 and in which the spin precession rate
around n 1s constant along each trajectory and independent of starting azimuth
and orbital phases. The spin phase advance per turn in this frame divided by 27
is called the spin tune V(J ’y) For each arbitrary initial spin S; at (\I_;Z, 6, = 0)
we can compute [ = S; - (1112, 0) and ® = arctan(S; - @ (\IIZ, 0)/S; - Al(\I’Z, 0)).

Then the spin motion can be written in the form

V1P %{(a1+z‘a2)e—i<”"+%)}+m (5)

which simply describes a rotation around n with constant rate. To compute
the spin tune on a trajectory, we begin with some unit vectors @', %2, periodic

in ¥ and # and in the plane perpendicular to n. The spin precession frequency
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Figure 1: The amplitude dependent spin tune v and the static polarization limit Fj,, vs.
vertical orbital action J, as calculated with SPRINT for the HERA—p. Left: vertical tune
Q, = 32.2725, right: Q, = 32.2825.

(J R ] ,0) in the @', 4%-system is periodic in ¥ and 6. One easily shows 23
that V(J ) is given by the average of ¥ along a trajectory \I!(Q)
| A
(J ) = lim = v(J,y; ¥ (0),0)do" . (6)

8 — 0o 0

Having obtained the spin tune we next construct ﬂl(\I_;(H), ) by starting with
ﬂl(\I_}(O),O) = ﬂl(\I_}(O),O) and subsequently rotating the vector ﬂl(\I_;(H),H)
around 7 by the angle fog ﬁ(lfl(é"),ﬁ’)dﬁl — v#. Then finally 42 = 7 x @' so
that the complete periodic (7, @', 4?)-system has been found. The spin tune
on the closed orbit vo(y) is just v(0,v). In the purely vertical field on the
closed orbit of a perfectly flat ring vy = Gy where G = g/2 — 1 =~ 1.7928 is the
gyromagnetic anomaly of the proton.

The vectors @', 4? as well as the amplitude dependent spin tune are not
unique. We can use another periodic system u}, 47 which differs from @', 4* by
some uniform rotation of 2 (ko + k- Cj) per turn around 7. The corresponding
spin tune will be v+ kg +k- Cj But there is normally only one branch for which
hmJ (f y) = 1/0( ). If the spin tune is in resonance with the orbital tunes:

(J 'y) =mg+m- Q, we can find a coordinate system in which an arbitrary
spin does not precess. Then the n—axis is not unique. Moreover near to strong
resonances 7 is a strongly varying function of ¥ and Pjim can be small.

Fig. 1 shows the amplitude dependent spin tune v and the static polariza-
tion limit P, plotted vs. vertical orbital action J, as calculated with SPRINT
for the HERA—p ’96-luminosity optics with 4 Siberian Snakes (1 long. and 3
rad.) and flattening snakes around the East- North- and South-TP. The ref-
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erence momentum is 805 GeV and the radial and longitudinal orbital degrees
of freedom are not excited (J, = J, = 0). Fig. 1 (left) corresponds to a frac-
tional vertical tune of [Q,] = .2725, whereas fig. 1 (right) has [@,] = .2825.
Starting at J, = 0 on the design orbit with Py, = 1 and v(0,7) = vp = %,
Pim smoothly decreases and v increases with increasing J, <20 mm mrad. In
fig. 1 (left) the spin tune levels off near the resonance condition v = 2Q,, before
it makes a symmetrical jump across the resonance line exactly at the orbital
amplitude (& 27 mm mrad) where Py has a pronounced minimum. Then
after reversing its slope v jumps over the resonance line in the other direction
at Jy, ~ 56 mm mrad where Py, has a second sharp minimum. Finally, Pin,
decays asymptotically as expected. In fig. 1 (right) @, is too large to allow the
line v = 2Q)y to be crossed but as v gets close to 2(), the static polarization
limit has a rather wide but moderate minimum. With this @, the 9-th order (!)
resonance v = —2+4+9Q, =~ % is crossed at J, ~ 26 and 56 mm mrad where P
has two sharp minima. Thus, as expected, P, 1s small in the neighborhood of
spin orbit resonances. Note that owing to the step size in our simulations we
see no symmetric spin tune jumps in fig. 1 (right) but preliminary indications
are that the spin orbit resonance condition is never ezxactly fulfilled and that
the size of the jumps decreases with increasing resonance order.

The spin tune v as in egs. (5,6) cannot be obtained from the phase pp of
the two complex eigenvalues of the one turn map R(6 + 27, 0; \fl) That fake
spin tune would not describe a rotation at constant rate around ﬁf(\f’(ﬁ), 6).
It represents an rotation in a fired coordinate system defined by éR(f, \I_}i, 6;)
and two vectors in the plane perpendicular to ég at \I_;Z * We have analysed
the phase average of the fake spin tune also and not observed any correlation
between the behavior of Py, and (ur)w, 4

The proper definition of the amplitude dependent spin tune I/(f, ) in-
volves the invariant spin field 7 ; and spin action-angle variables. V(f, ) can
be computed by means of stroboscopic averaging®* and also by Fourier anal-
ysis of the one turn spin map ®. Both methods are implemented in SPRINT
and give the same result. The concepts of the invariant spin field and the
amplitude dependent spin tune allow depolarizing resonances to be identified
and classified in a rigorous way.

References

1. Ya.S. Derbenev and A. M. Kondratenko, Sov.Phys. JETP 37 968 (1973).

2. D. P. Barber, K. Heinemann and G. Ripken, DESY report M-92-04
(1992).

3. K. Heinemann and G. H. Hoffstatter, Phys.Rev., E 54 N°4, 4240 (1996).

4



D O

. D.
. K.
. K.

P. Barber, G. H. Hoffstatter and M. Vogt, EPAC-98.
Yokoya, DESY report 86-57 (1986).
Yokoya, DESY report in preparation (1998).



