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Polarized proton beams at HERA can currently only be produced by extracting a beam 
from a polarized source and then accelerating it in the three synchrotrons at DESY. In 
this paper, the processes which can depolarize a proton beam in circular accelerators 
are explained, devices which could avoid this depolarization in the DESY accelerator 
chain are described, and specific problems which become important at the high energies 
of HERA are mentioned. At HERA's  high energies, spin motion cannot be accurately 
described with the isolated resonance model which has been successfully used for lower 
energy rings. To illustrate the principles of more accurate simulations, the invariant 
spin field is introduced to describe the equilibrium polarization state of a beam and tile 
changes during acceleration. It will be shown how linearized spin motion leads to a 
computationally quick approximation for the invariant spin field and how to amend this 
with more time consuming but accurate non-perturbative computations. Analysis with 
these techniques has allowed us to establish optimal Siberian Snake schemes for HERA. 

1. I N T R O D U C T I O N  

In contrast to polarized high energy electron beams which can become polarized by 
the emission of spin flip synchrotron radiation, proton beams do not become polarized 
after acceleration. High energy polarized protons can only be produced by accelerating 
a beam from a polarized ion source. The highest energy reached so far was 25GeV in 
the AGS and a lot of care had to be taken during acceleration to preserve this injected 
polarization [1,3]. To explain depolarization in circular accelerators, some concepts fi'om 
spin dynamics have to be introduced. When a particle with charge q moves through a 
magnetic field, the motion of the classical spin vector in the instantaneous rest frame is 
described by the Lorentz force equation and the Thomas-BMT equation [4,5], 

dg' q 
d ~ _  q {/3±}xjff ,  - { ( G 7 + I ) / ? ± + ( G + I ) / 3 1 1 } x ~ ' ,  (1) 
dt m 7  dt rn 7 

where /~l and /~j_ are the magnetic field components perpendicular and parallel to the 
particle's momentum ff . At high energy where (G7 + 1)/7 ~ G, the spin motion is 
independent of energy and a fixed field integral of 5.48Tm leads to a spin rotation of 
180 ° , in contrast to the orbit deflection which varies with 1/7. For fixed orbit deflections 
and thus fixed ratio o f /3± /7 ,  the spin precession rate increases with energy as we now 
describe. 
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In purely transverse magnetic fields, the Thomas-BMT equation has the same structure 
as the Lorentz force equation up to a factor G7 + 1 . The spin therefore rotates like the 
momentum but with a magnified rate. At the HERA energy of 920GeV, the magnification 
factor is G'r = 1756 so that the spin is rotated by 100 ° when a proton's direction is 
altered by lmrad  in a transverse magnetic field and the spin rotates 1756 times around the 
vertical while a particle makes one turn on the design orbit of a flat circular accelerator, 
where the fields are vertical. The number of spin rotations which a particle performs while 
it travels along the closed orbit once is called the spin tune u0 • 

When the spin tune is integer, the spin comes back to a field imperfection with the same 
direction after one turn and the effect of the field error can add up coherently from turn 
to turn. This resonant depolarization at integer spin tunes u0 is called an imperfection 
r ~ s o n a n c e  [6]. 

When viewed at a fixed azimuth 0 of the accelerator, the particles appear to perform 
harmonic oscillations around the closed orbit with the frequencies u,, uy, and u, for 
horizontal, vertical, and longitudinal motion. These are called the orbital tunes. Some 
of the fields through which a particle propagates will therefore oscillate with the orbital 
tunes. Whenever the non-integer part of the spin tune is equal to plus or minus one of 
these frequencies, the resulting coherent perturbation can lead to depolarization. The 
coherent depolarization at the first order resonance condition u0 = m + uk is called an 
intrinsic resonance [6]. Here the notation ul=ux, ue=-u~, u3=uy, gt4=-lJy, I]5=I/T, 1]6=-I."T 
is used. Since the spin tune changes with energy (in a flat ring u0 = GT) resonances will 
have to be crossed at some energies during acceleration. 

After one turn around the accelerator, all spins of particles on the closed orbit have 
been rotated by 2Ira0 around a unit rotation vector fro • This vector is determined by 
the accelerator's main guide fields and small field imperfections only perturb go weakly 
except at energies where the guide fields would produce an integer spin tune. Then, when 
viewed from a fixed azimuth, spins would come back after one turn apparently without 
a rotation. Close to imperfection resonances the remaining rotation and therefore the 
direction of g0 will be dominated by the influence of field errors. While the energy changes 
during acceleration, g0 changes its direction strongly at these resonances. Whenever this 
change is sufficiently slow, spins which are initially parallel to g0 will follow the change of 
tT0 adiabatically. Imperfection resonances can therefore be crossed either by making the 
field imperfections small enough or by making them so strong that n0 already starts to 
get influenced by the field errors sufficiently long before the resonance and then changes 
slowly enough to let all spins follow adiabatically while the resonance is crossed. Special 
magnets for enhancing this effect without disturbing the orbit are referred to as partial 
snakes. So far solenoid magnets have been used [7] but for the AGS a helical dipole partial 
snake is under construction [3]. 

The motion of spins along phase space trajectories is dominated by the main guide fields 
on the closed orbit except close to an intrinsic resonance, where the coherent perturbations 
described above can dominate over the main guide fields. When the emittance of the beam 
and therefore the amplitude of the perturbations is sufficiently small, intrinsic resonances 
can be crossed without loss of polarization. Polarization in the core of the beam will 
therefore be only weakly influenced when crossing intrinsic resonances. If a strong coherent 
perturbation is slowly switched on and off, an effect similar to adiabatically following g0 
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occurs and polarization is conserved. Therefore, while an intrinsic resonance is crossed, 
perturbations influencing particles in the tails of a beam will slowly increase already before 
the resonance and this adiabatic conservation of polarization can occur. In intermediate 
parts of the beam, however, the polarization is lost. This type of depolarization can be 
overcome by slowly exciting the whole beam coherently at a frequency close to the orbital 
tune which causes the perturbation. All spins then follow the adiabatic change of the 
polarization direction and the resonance can be crossed with little loss of polarization. 
The excitation amplitude is then reduced slowly so that the beam emittance does not 
change noticeably during the whole process• This mechanism has recently been tested 
successfully at the AGS [1]. An older technique of avoiding depolarization at strong 
intrinsic resonances utilizes pulsed quadrupoles to move the orbital tune within a few 
microseconds just before a resonance so that the resonance is crossed so quickly that the 
spin motion is hardly disturbed [8]. 

So far no polarized beam has been accelerated to more than 25GeV [3]• But the pos- 
sibility of polarized proton acceleration has been analyzed for RHIC (250GeV), for the 
TEVATRON (900GeV), and for HERA (920GeV). When accelerating through approx- 
imately 5000 resonances in the case of HERA, even very small depolarization in every 
resonance crossing would add up to a detrimental effect. 

It was mentioned below equation (1) that in a fixed transverse magnetic field the deflec- 
tion angle of high energy particles depends on energy, whereas the spin rotation does not 
depend on energy. It is therefore possible to devise a fixed field magnetic device which ro- 
tates spins by 7r whenever a high energy particle travels through it at the different energies 
of an acceleration cycle• Such field arrangements which rotate spins by 7r while perturbing 
the orbit only moderately are called Siberian Snakes [9]. The rotation axis is called the 
snake axis and the angle of this axis to the beam direction is referred to as the snake angle 
~/, . Let us consider a Siberian Snake with snake angle ¢1 at one point in a flat ring and 
a second Siberian Snake with snake angle ¢2 at the opposite side of the ring where the 
spin has rotated by G7/2. The spin rotation around the vertical between the Siberian 
Snakes is described with Pauli matrices by the quaternion cos(~vGT/2) + i sin(TrGT/2)a2. 
The rotation by the first Siberian Snake is described by i[sin(¢l)Cr~ + cos(¢l)a3] . The 
total rotation for one turn around the ring is then described by 

i[sin(~/,1)a, + cos(~l)a3]. [cos(rrGT/2 ) + i sin(rrGT/2)o2] 

• i[sin(~,2)a~ + cos(¢2)o31. [cos(71-G'~/2) -~- i sin(TrG"//2)a2] 
= i[sin(~, -4- 7rG7/2)o1 A- cos(¢1 + :nG7/2)o3] 

• i[sin(+2 + ~G'~/2)~ + cos(¢2 + ~C~/2)~z] 

= - cos(~/,1 - ¢2) + i sin(C1 - ¢2)a2 . (2) 

For ¢1 - ¢2 = ¢r/2 the spins rotate in total 1/2 times around the vertical if0 during 
a complete turn around the ring, giving u0 = 1/2. All imperfection resonances and, 
since the orbital tunes cannot be 1/2, also all first order intrinsic resonances are avoided 
by the insertion of these two Siberian Snakes, and polarized beam acceleration to very 
high energy could become possible. Siberian Snakes can only be used at sufficiently 
high energies since their fields are not changed during acceleration of the beam and they 
produce orbit distortions which are too big for energies below approximately 8GeV [10]. 
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2. T H E  D E S Y  A C C E L E R A T O R  C H A I N  F O R  P O L A R I Z E D  P R O T O N S  

For HERA a polarized proton beam would be produced by a polarized H- source. Then 
it would be accelerated to 750keV in an RFQ and then to 50MeV in the LINAC III from 
where it would be accelerated in the synchrotron DESY III to 7.5GeV/c. In the next 
ring, PETRA, 40GeV/c are reached, and HERA finally accelerates to 920GeV/c. The 
four main challenges for obtaining highly polarized beams in HERA are: (1) Production 
of a 20mA pulsed H- beam. (2) Polarimetry at various stages in the acceleration chain. 
(3) Acceleration through the complete accelerator chain with little depolarization. (4) 
Storage of a polarized beam at the top energy over many hours with little depolarization. 

Polarized protons are produced either by a polarized atomic beam source (ABS), where 
a pulsed beam with 87% polarization for lmA beam current has been achieved, or by an 
optically pumped polarized ion source (OPPIS), where pulsed beams with 60% for 5mA 
have been achieved. Experts claim that 80% polarization and 20mA could be achievable 
with the second type of source. The current source at DESY produces 60mA but the 
maximal current of 205mA in DESY III can already be achieved with a 20mA source. 

Polarimeters will have to be installed at several crucial places in the accelerator chain. 
The source would contain a Lyman-a polarimeter [11]. Another polarimeter could be 
installed after the RFQ [12]. This could not be operated continuously since it disturbs 
the beam. The transfer of polarized particles through the LINAC III could be optimized 
with a polarimeter similar to that in the AGS LINAC; and like the AGS, DESY III could 
contain an internal polarimeter [8]. Polarization at DESY III energies has been achieved 
and measured at several labs already. It is different with PETRA and HERA energies; 
for these high energies there is no established polarimeter. Here one has to wait and see 
how the novel techniques envisaged and developed for RHIC will work [13]. 

Since DESY III has a super period of eight, only 4 strong intrinsic first order resonances 
have to be crossed. They are at values for the spin tune G 7 of 8 - u y ,  0 + uy, 1 6 -  uu, and 
8 + u u. Depolarization can be avoided by jumping the tune with pulsed quadrupoles in a 
few microseconds or by excitation of a resonance with an RF dipole. A solenoid partial 
snake would be used to cross the one strong imperfection resonance at G7 = 8. All these 
methods have been tested successfully at the AGS and it is likely that a highly polarized 
proton beam could be extracted from the DESY III synchrotron at 7.5GeV/c. 

In PETRA it would be very cumbersome to cross all resonances which can be seen 
in figure 1 (middle). Since Siberian Snakes can be constructed for the injection energy 
of PETRA [14] it will be best to avoid all first order resonances with two such devices. 
There is space for Siberian Snakes in the east and the west section of PETRA. 

3. S P E C I F I C  P R O B L E M S  F O R  T H E  H E R A  R I N G  

HERA is a very complex accelerator and a brief look already indicates four reasons why 
producing a polarized beam in HERA is more difficult than in an ideal ring. (1) HERA has 
a super periodicity of one and only an approximate mirror symmetry between the North 
and South halves of the ring. Therefore more resonances appear than in a ring with some 
higher super periodicity and special schemes for canceling resonances in symmetric lattices 
[15] cannot be used in such a ring. (2) The proton ring of HERA is on top of the electron 
ring in the arcs, and the proton beam is bent down to the level of the electron ring on 
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both sides of the three experiments HI, HERMES, and ZEUS in the North, East, and 
South straight sections. The HERA proton accelerator is therefore not a flat ring. The 
destructive effect of the vertical bends can, however, be eliminated by so called flattening 
snakes [16,17] which let the spin motion in pairs of vertical bends cancel and makes 
n0 vertical outside the non-flat sections of HERA. (3) There is space for spin rotators 
which make the polarization parallel to the beam direction inside the collider experiments 
while keeping it vertical in the arcs, and there is also space for four Siberian Snakes. 
But installing more than four Siberian Snakes would involve a lot of costly construction 
work. Simulations have shown that 8 snakes with properly chosen snake angles would be 
desirable. However, if one does not choose optimal snake angles, then four-snake-schemes 
can be better than eight snake schemes [18]. (4) The energy is very high and therefore 
the spin rotates rapidly. If HERA had been designed for polarized proton acceleration, 
several parts of the ring would probably have been constructed differently. 

4. A P P L I C A B L E  T H E O R Y  A N D  S I M U L A T I O N  T O O L S  

4.1. T h e  iso la ted  re sonance  m o d e l  
In the isolated resonance model, the field components which perturb the spin of a 

particle that oscillates around the closed orbit are Fourier expanded. The perturbation of 
spin motion is then approximated by dropping all except one of the Fourier components. 
When 27 describes the phase space coordinates relative to the closed orbit and 0 describes 
the accelerator's azimuth, the Thomas-BMT equation (1) has the form dg/dO = (~(27, O) x ~. 
The precession vector f~ can be written as ~0(0) + 03(27,0) with a part on the closed 
orbit and a part which is linear in the phase space coordinates 27. For spins parallel to 
the rotation vector on the closed orbit fr0(0) only the components of a-J(27,0) which are 
perpendicular to f0 ~perturb the polarization. We now choose two mutually orthogonal 
unit vectors rfi0 and l0 which are perpendicular to fro and precess around ~0 according to 
the Thomas-BMT equation on the closed orbit. The frequency of their rotation is given 
by the spin tune u0. 

In this model a depolarizing resonance occures when a Fourier component of o](27(0), O) 
rotates with the same frequency as r~0 and l0 so that there is a coherent perturbation of 
the spins away from fo. The Fourier component e.0 for this frequency is obtained from 
the Fourier integral along a trajectory 27(0), 

1 f2~rN 
e-o = lim o](27(0), 0). (rfi0 + i~o)dO (3) 

N--+oo 2~N J0 

These resonance strengths are shown in the figure 1 (top), (middle), and (bottom) for the 
three proton synchrotrons at DESY. They were all computed for an oscillation amplitude 
of 27(0) corresponding to the one sigma vertical emittance of 41rmm mrad. 

4.2. T h e  invar ian t  spin field 
Already at extraction from PETRA the polarized beam would have somewhat more 

energy than any other polarized proton beam so far obtained and one has to ask whether 
the isolated resonance model successfully used so far for describing depolarization is still 
applicable. To understand whether the isolated resonance model describes spin motion 
at HERA accurately, we introduce the invariant spin field of a circular accelerator. It has 
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been mentioned that  a particle on the closed orbit has to be polarized parallel to ~0 in 
order to have the same polarization after every turn. Similarly, one can ask if the whole 
field of spin directions for particles at different phase space points can be invariant from 
turn to turn. 

Each particle can have a different spin direction at its phase space point ~' and each 
of these spins propagates with a different precession vector ~(Y(0),0) in the Thomas-  
BMT equation. A spin field g(E) which is invariant after one turn around the ring is 
called an invariant spin field or a Derbenev-Kontra tenko if-axis [9]. A beam which is 
polarized parallel to this invariant spin field at every phase space point does not change 
its polarization state from turn to turn. Particles change their location in phase space 
from some initial phase space coordinate ~ in the Poincar@ section at azimuth 0 to some 
final coordinate after one turn Z] = M ( ~ )  according to the one turn map. And spins 
change their directions according to the one turn spin transport  matr ix  _R(~), but the 
invariant field of spin directions ff(Zi) does not change after one turn. This requirement 
is encompassed by the periodicity condition 

= ( 4 )  

Note that  the polarization state of a particle beam is in general not invariant from turn to 
turn when all particles are initially completely polarized parallel to each other, but rather 
when each particle is polarized parallel to g(5) at its phase space point Z. In this case 
the polarization of a particle will be parallel to ~(~71) whenever it comes close to its initial 
phase space point Zi during later turns around the ring, as long as if(Z) is sufficiently 
continuous. When two particles travel Mong the same trajectory, the angle between their 
two spins does not change. When a particle is initially polarized with an angle ¢ to ~ ( ~ ,  
it will therefore be rotated around ~(~') every t ime it comes close to ~'~, but it will still have 
the angle ¢ to the invariant spin field. The t ime averaged polarization at ~7~ will therefore 
be parallel to g(Y/), but it can only have the magnitude 1 if the spin was initially parallel 
to the invariant spin field. However, even if all particles are initially polarized parallel to 
~(~'), the beam polarization is not 1 but < ~ > where < . . .  > denotes an average over the 
beam. The max imum average polarization that  can be stored in an accelerator at a given 
fixed energy is therefore I < ~ > I. It was first pointed out in [19] that  this max imum 
polarization can be small in HERA. 

Since the spin dynamics depends on energy, the invariant spin field ~(~') will change 
during the acceleration process. If this change is slow enough, spins which are parallel 
to g(~') will follow adiabatically. However, if the change is too rapid, polarization will be 
lost. It is therefore good to have < ~7 > close to 1 not only at the collider energy but 
during the complete acceleration cycle. Four problems occur when the different directions 
of 7~(~') are not close to parallel for all particles in the beam. (1) Sudden changes of if(Z) 
reduces the polarization. (2) The average polarization available to the collider experiment 
is reduced. (3) The polarization involved in each collision process depends on the phase 
space position of the interacting particles. (4) Measuring the polarization in the tail of 
the beam will not give accurate information on the average polarization of the beam. 
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4.2.1. Linearized spin orbit motion 
At azimuth 0, a spin can be described by a usually small complex coordinate c~ with 

g = N{c~}r~0(0)+~{c~}10(0)+ ~/1 - I~l~n0(0). When the spin coordinates c~ and the phase 
space coordinates are linearized, one approximates an initial spin by ~'i ~ N{c~i}r50(0) + 
~{c~}~0(0) + no(0) at azimuth 0 and the final spin after one turn around the accelerator 
by ~y = N{c~y}N0(0) + -~{c~:}10(0) + n0(0) where ~1 is determined by the 7 x 7 one turn 
transport matrix M_M_77, 

whereby M___ is the 6 x 6 dimensional one turn transport matrix for the phase space variables, 
the exponential describes the rotation of the spin components c~ by the spin tune ~0 around 
50, the row vector ~ r  describes the dependence of spin motion on phase space motion 
to first order, and the 6 dimensional zero vector () shows that the effect of Stern Gerlach 
forces on the orbit motion is not considered. 

We now write the components perpendicular to n0 of the invariant spin field as a com- 
plex function no(Z) and use a 7 dimensional vector ~1 tO obtain the first order expansion 
of n(z). The linearized periodicity condition for the invariant spin field is 

( ~ ) nl(M~) =M77nl (~)  . (6) 

This equation can be solved for 771 after the matrices are diagonalized. Let A -1 be the 
column matrix of eigenvectors of the one turn matrix M___. The diagonalized matrix of 
orbit motion A = A M A -1 has the diagonal elements exp(i27ruk) given by the orbital 
tunes t,1 = u~, L'2 = -u~,  etc. We now need the 7 x 6 dimensional matrix T which is the 
column matrix of the first 6 eigenvectors of Mr7 and has the form (Ail) 
T =  V ' T A = M ~ T T _ ,  (7) 

where the 7th components of the eigenvectors form a vector/~. If a linear function nl (Z) = 
KZ of the phase space coordinates can be found, which satisfies the periodicity condition 
(6), then an invariant spin field has been determined. Inserting the form 5'1 = I (Z  into 
equation (6) and multiplying the resulting condition K M = MTTI( by A -1 from the 
right leads to K A-1A = M r r K A  -1 . Therefore K A -1 is the 7 x 6 dimensional matrix of 
eigenvectors _T satisfying equation (7) and we conclude that there exists a unique linear 
invariant spin field given by 

hi(Z) -- T AZ.  (8) 

In the linear approximation of spin motion, the invariant spin field is simply computed 
via the eigenvectors of the 7 x 7 spin orbit transport matrix. This matrix M77 can 
be computed in various ways, for example by multiplying the individual spin transport 
matrixes of all elements [20] or by concatenating spin transport quaternions of individual 
elements as done in the program SPRINT [21]. In the normal form space belonging to 
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the diagonal matr ix  A the coordinates are given by the actions Jj and the angle variables 
~j  with 

\/,/-~le~l ) 
A Z =  { 4J7~-''~' . (9) 

o . .  

The average over all angle variables of a phase space torus then leads to the average 
opening angle of 

3 

< ¢(n, n0) > ~  a tan(~/< [n~] ~ >)  = atan(,  ~-~([B~k_l] 2 + [B2kl2)Jk), (10) 
k = l  

where the Bk are the 7th components of the eigenvectors in equation (7). 
These opening angles are shown for DESY III  in figure 2 (top) and it is apparent that  at 

the places where resonant spin perturbations are described by a large resonance strength, 
the invariant spin field has a large opening angle. It is obvious when comparing with 
the resonance strength of figure 1 (top) that  the influence of different resonances does 
not overlap in the linearized spin approximation.  At P E T R A  energies of up to 40GeV, 
the resonances already come very close to each other as seen when comparing figure 
2 (middle) with figure 1 (middle) and one can only barely expect an isolated resonance 
approximation to lead to accurate results. For high energies between 780 and 820GeV/c 
in HERA, figure 2 (bot tom) clearly shows that  one cannot speak of isolated resonances. 
Often the influences of 4 resonances overlap. 

The approximation of linearized spin motion contains all first order orbital frequencies, 
since it linearized the precession vector f~ with respect to Z. However, in contrast to the 
isolated resonance model, none of these resonances is ignored and the effect of overlapping 
resonances can be seen. 

It is possible to recover the first order isolated resonance strength from the one turn 
spin orbit t ransport  matrix.  In analogy to the complex notation for the spin component  
perpendicular to go, the perturbin~ precession vector ~ is expressed by a complex function 
w(Z, 0) as a~ = N{w}r~0 + -~{w}/0 + (a~. g0)g0. Inserting this into the Whomas-BMT 
equation, one obtains 

a' = -ix~1 - ~2w + ia(g  . go) • (11) 

In the case of spins which are nearly parallel to go, one can linearize in a and ~7. For a 
spin which was initially parallel to g0 one obtains a(O) ,.~ - i  f°  o wdO . Comparing with 
equation (3) one can express the resonance strength as % = i limN-~oo 2--~Na(2rrN) • The 
resonance strength can therefore be computed from M____N/N for large N. The computat ion 
becomes very efficient if one uses M ~  N = (MN) 2 iteratively. 

The coordinate vectors r~0(2rr) and ~0(2rr) to which a(2~r) refers have rotated by the spin 
tune Uo, whereas the final spin coordinate a f  computed by MT~ refers to the coordinate 
vectors r~0(0) and lo(0). Therefore a(2zrN) = a j  exp(-i27rN~,0), and e~ o can be computed 
from powers of the one turn matr ix,  which can most efficiently be evaluated in diagonal 
form, 

• 1 M 0_ 
e~ o = i Nbrnoo ~ a ( 2 ~ r N ) =  i lim (O,e_iN2,~,o)( ~N (12) 
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N-1 
= i lim ~-,N~ofi_L_ ~ [~,(N-j-m~od~_A-1Aj]AZ (13) 

N ~  2rcN j=o 

= ie-~2""°GlA~lAk~z~ lira 1 N-1S.. ei21rj(uk-uo) (14) 

where one has to sum over equal indices k, l, and m. This formula shows that the 
resonance strength is always zero, except at a resonance condition u0 = m + uk. At such 
a spin tune, the resonance strength is given by 

2¢r1%=,,[= [dTA-ldiag(0...1...0)_A~'[----I~TA-'(0,..v~ke~...0)TI = Id" ~kl~/~ • (15) 

The 1 in the diagonal matrix is in position k. Here A-l(O...v/~e~¢k.. .O) T is the initial 
value for a phase space trajectory which has only Fourier components with frequencies ~k 
plus integers and the kth eigenvector 6k of M has been used. The infinite Fourier integral 
in equation (3) has been reduced to the scalar product between the bottom vector of M___77 
and an eigenvector of M. This very simple formula is used in the program SPRINT. 

4.3.  N o n - p e r t u r b a t i v e  m e t h o d s  
While one does not drop Fourier coefficients in the approximation of linearized spin 

motion, there are other limitations. The approximation is no longer justified when [n~[ 
becomes large, which happens close to resonances in the figures 2. Therefore the validity 
of linearized spin motion had to be be checked by computing the invariant spin field non- 
perturbatively. In the last few years two iterative higher order and three non-perturbative 
methods of computing the invariant spin field have been developed [22]. All of these meth- 
ods agree within their ranges of mutual applicability. The invariant spin field obtained 
from a non-perturbative method contains the effect of all Fourier coefficients in ~. When 
comparing this spin field with ~71, it was found that linearized orbit motion describes the 
opening angle and thus the maximum storeable polarization well in domains where the 
opening angle is small. At the critical energies, where the maximum polarization is low 
during the acceleration process, non-perturbative methods become essential for simulation 
and results obtained with the computationally quick linearization of spin motion should 
always be checked with more time consuming non-perturbative methods if possible. 

One application of this strategy is the filtering method [23]. Four or eight Siberian 
Snakes are inserted into HERA to fix the spin tune to 1/2 for all energies and to let 770 be 
vertical in the flat arcs. These conditions do not fix all snake angles. Currently there is, 
however, no established formula to determine good snake angles. Since the opening angle 
of g(5") is such a critical quantity for high energy polarized proton acceleration, we have 
decided to maximize < g > by choosing snake angles. A computer code was written which 
tested approximately 106 snake schemes and computational speed was therefore essential. 
Linearized spin motion was used to find the 8-snake-schemes with smallest average value 
of Insl over the acceleration cycle. These filtered snake schemes then also had relatively 
small opening angles when computed non-perturbatively with stroboscopic averaging [21]. 

Two other indications showed that this filtering leads to good snake schemes. (1) Track- 
ing sinmlations of the complete ramp process showed that the snake schemes found by 
filtering leads to less depolarization [24] than other schemes which were initially proposed. 
(2) Computation of the amplitude dependent spin tune, which can only be performed when 
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~(F) has been found non-perturbatively, shows that snakes schemes found by filtering have 
significantly less spin tune spread over orbital amplitudes than other proposed schemes 
[25]. With the optimal scheme for four Siberian Snakes in HERA it turned out to be 
possible to accelerate in computer simulations approximately 65% of the beam to high 
energy with little loss of polarization as long as no closed orbit distortions were present 
[18]. In simulations, the current lmm rms closed orbit distortions lead to depolarization 
[26]. Therefore either the closed orbit will have to be controlled more accurately or tech- 
niques which make the spin motion less sensitive to closed orbit distortion [27] will have 
to be utilized. 
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