

2001 Georg H. Hoffstaetter and Ferdinand Willeke (DESY, Hamburg)

> 6336 m long PETRA 920 GeV protons 27.5 GeV electrons/positrons

Future HERA High Luminosity Performance

HERA: Improvements 1999/2000

Superconducting Magnet GO

Georg.Hoffstaetter@DESY.de

Potential Problems

Focusing: • Dynamic Aperture OK?

- Polarization OK?, Luminosity OK?
- Can HERA be handled well?

fre increase: • Polarization OK?, Luminosity OK?

- Too strong beam-beam force on p?
- Too strong beam-beam force on e?

Bunch has no product distribution: $r(x)r(y) \Rightarrow$ coupling

 Luminosity with 72° is large as expected

The kick where half the current is lost leads to a satisfactory dynamic aperture.

- Polarization was in the spin matched 72° optic quickly brought to 63% (one day).
- Harmonic bumps were immediately effective

Decoupling bumps worked well

Luminosity for fre Increase

- 6 more measurements indicate $f_{Zentrum} \approx 175 Hz$
- For the center frequency $f_{Zentrum} = 175Hz$, the luminosity is increased as expected

Too Strong Beam-Beam Force on p?

Too Strong Beam-Beam Force on e?

No reduction of L_s by a larger b-funktionen

Lumi Reduction by Hourglass Effect

Tune Shift with Bunch Length Effect

How will the tune shift parameters change and have these been analyzed by accelerator experiments ?

	$\Delta \nu_{x0}$	$\Delta \nu_x(5)$	Δu_{y0}	$\Delta \nu_y(5)$
initial p	0.0016	0.00081	0.00044	0.00011
ultimate p	0.0022	0.00060	0.00059	0.00147
studies p	0.0022	0.0017	0.00061	0.00080
initial e	0.024	0.024	0.045	0.044
ultimate e	0.034	0.036	0.069	0.070
studies e	0.041	0.041	0.085	0.083

Resonances with Bunch Length Effect

	initial	ultimat	e sti	studies	
$\delta(4Q_{ex} + 2Q_{ey})$	0.00020	0.0003	1 0.0	0.00045	
$\delta(2Q_{ex} + 8Q_{ey})$	0.000012	0.0000	18 0.	3 0.000036	
(10 ⁻⁸)	δ_0^i	δ^i_{max}	δ^u_{max}	δ^s_{max}	
$\delta(10Q_{px})$	175	175	230	220	
$\delta(8Q_{px} + 2Q_{py})$	73	73	97	99	
$\delta(6Q_{px} + 4Q_{py})$	43	55	65	60	
$\delta(4Q_{px} + 6Q_{py})$	24	55	60	44	
$\delta(2Q_{px} + 8Q_{py})$	14	65	68	32	
$\delta(10Q_{py})$	22	251	300	68	
$\delta(14Q_{px})$	3.1	3.1	4.1	4.1	
$\delta(12Q_{px} + 2Q_{py})$	2.9	2.9	3.8	3.7	
$\delta(10Q_{px} + 4Q_{py})$	4.4	4.4	5.8	5.8	
$\delta(8Q_{px} + 6Q_{py})$	5.9	5.5	5.8	5.3	
$\delta(6Q_{px} + 8Q_{py})$	2.6	7.0	6.0	4.3	
$\delta(4Q_{px} + 10Q_{py})$	1.2	8.8	8.0	3.2	
$\delta(2Q_{px} + 12Q_{py})$	0.37	8.5	6.6	1.4	
$\delta(Q_{py})$	0.33	22	22	1.7	

How will the resonance strength change and have these been analyzed by accelerator experiments ?

All large resonance strength are due to the proton bunch length

Nominal and Ultimate Parameters

	р	e	р	e
Energy-p/e	920 GeV	27.5 GeV		
Emit. hor/vert	$5/5\pi$ mm mrad	20/3.4 nm	$3.5/3.5\pi$ mm mrad	20/2.7 nm
β^* at IP hor/vert	2.45/0.18 m	0.63/0.26 m	1.7/0.125 m	0.42/0.17 m
Aperture hor/vert	$12/12 \sigma$	$20/20 \sigma$	10/10 σ	$12/12 \sigma$
p per bunch and e-cur.	$1.03 \cdot 10^{11}$	58 mA		
Tune shift hor/vert	0.0016/0.0004	0.034/0.051	0.0017/0.0005	0.047/0.069
Bunch Length	191 mm	10.3 mm		
Luminosity	$0.74 \cdot 10^{32} \mathrm{cm}^{-2} \mathrm{s}^{-1}$		$1.3 \cdot 10^{32} \mathrm{cm}^{-2} \mathrm{s}^{-1}$	

- The performance goal of HERA is not unrealistic and should not be too hard to achieve.
- A shortfall of beam intensity in the short term can be compensated.

