$B_s \to \mu^+ \mu^-$

Walter Hopkins

Cornell University

February 25 2010

- $B_s \rightarrow \mu^+ \mu^-$ can only occur through higher order diagrams in Standard Model (SM)
- This decay is not only suppressed by the GIM Mechanism but also by helicity
- SM predicts very low rate with very little SM background $(\mathcal{BR}(B_s \rightarrow \mu^+ \mu^-) = 3.4 \times 10^{-9})$
- Super symmetry (SUSY) models predict enhancement of this decay by $\tan\beta^6$
- Relatively clean decay channel

$an\!eta^6$

- $\tan\beta = \text{ratio}$ of the two VEV's of the two Higgs in SUSY $(\tan\beta^6 = \frac{v_u}{v_d})$
- Yukawa couplings depend on masses and VEV's \longrightarrow

$$m_u = \sqrt{2} y_u v sin\beta \tag{1}$$

(2)

(3)

(4)

and

$$m_d = \sqrt{2} y_d v cos \beta$$

- For large $tan\beta$: $sin\beta \sim 1 \longrightarrow tan\beta \sim \frac{1}{cos\beta}$
- This gives us the following Yukawa coupling for the SUSY diagram:

$$y_b = \frac{m_b}{\sqrt{2}v} tan\beta$$

$$y_t = \frac{m_t}{\sqrt{2}y}$$

$$y_{\mu} = \frac{m_{\mu}}{\sqrt{2}v} \tan\beta \tag{5}$$

• Result: large $\tan\beta^6$ enhancement of cross section

24 1. 23

Ĥ.

îi

h, H, A

Цĸ

Leptonic B_s decays

$B_s ightarrow e^+ e^-$

- Electron channel will be suppressed by a factor of 200 compared to muon channel
- Electrons are more likely to emit bremsstrahlung complicating reconstruction
- Due to brems invariant mass resolution could suffer

$$B_s \to \tau^+ \tau^-$$

- Taus would have a stronger coupling to the Higgs thus have greater enhancement of rate
- Lifetime of muon is significantly longer than tau ($c au=87\mu$ m vs c au=659m)
- Taus reconstruction is much more complicated
 - Taus decay channels always have at least one neutrino
 - Taus decay into two neutrinos 40% of the time
 - This will cause worse invariant mass resolution

- LHC originally expected to run at $\sqrt{s} = 14$ TeV and 10^{34} cm $^{-2}$ s $^{-1}$
 - This would yield approx. 50 times more $b\bar{b}$ pairs per second than the Tevatron
- Luminosity has been lowered to $2 \times 10^{34} {\rm cm}^{-2} {\rm s}^{-1}$ as well as the COM energy to $\sqrt{s}=7$ until 2012
- Three experiments: ATLAS, CMS, and LHCb
 - ATLAS and CMS are general purpose experiments with a solenoidal geometry and a focus on high p_T physics
 - LHCb is a fixed target experiment that specializes in b physics

CDF Detector Capabilities

- Tevatron is high luminosity machine (3.5x10³²cm⁻²s⁻¹)
- Will remain at the luminosity frontier until 2012-2013
- A di-muon trigger with a p_T threshold of 1.5 GeV (2.0 GeV for more higher η muons)
- 700K channel pixel detector
 - $R\phi$ resolution of 35 micron
- Outer track is a drift chamber with hit resolution of 146 micron
- Muon system is a patchwork of detectors
 - CMU and CMX cover about $|\eta| < 1.2$
 - 250 micron resolution in drift direction

Current Limits

CDF has set the current limit for $B_s \to \mu^+ \mu^-$ at $\mathcal{BR}(B_s \to \mu^+ \mu^-) = 3.6 \times 10^{-8}$ for 3.7 fb⁻¹ at 90% CL. Improvements are expected with 6-8 fb⁻¹.

ATLAS

ATLAS Detector Capabilities

Weigh

FRN AC - ATLAS V199

 A di-muon trigger will be used with a p_T threshold between 3-6 GeV

- 80 million channel pixel detector
 - 3 barrel layers and 6 forward layers
 - *R* ϕ resolution of 12 micron and *z* resolution of 60 micron
 - $|\eta| < 2.5$ coverage
- Outer silicon strip tracker has *Rφ* resolution of 16 micron while having a *z* resolution of 580 micron
- Muon system is meant to be stand alone tracking system
 - $|\eta| < 2.7$ coverage
 - Uses different types of sub detectors for different purposes
 - Momentum resolution of 2-5 % at 10 GeV

ner Detector

ATLAS Potential for Setting Limits

- ATLAS could see SM events with 30 fb⁻¹
- 30 fb⁻¹ could have been collected in a year under LHC design luminosity and energy
- Will collect approx 1 fb⁻¹ by 2012 with new luminosity and energy (CDF could have between 12-15 fb⁻¹)
- Due to ATLAS' greater acceptance it could set limits at 100 pb⁻¹ that CDF set with 2 fb⁻¹ (this again assumes $\sqrt{s} = 14$)

Shielding

CMS

CMS Detector Capabilities

- Di-muon trigger at 3 GeV
- 66 million channel pixel detector
 - 3 barrel layers and 4 forward layers
 - $R\phi$ resolution of similar to ATLAS but z resolution of 17 micron
 - $|\eta| < 2.2$ coverage
- Outer silicon strip tracker is similar to ATLAS's
- Muon system is meant to be stand alone tracking system
 - $|\eta| < 2.4$ coverage
 - Uses different types of sub detectors for different purposes
 - Momentum resolution of 8-15% at 10 GeV

LHCb

LHCb Detector Capabilities

- Forward geometry unlike the CMS and ATLAS \longrightarrow allows for highly boosted B_s ($c\tau = 10$ mm)
- Will run at lower luminosity $(2 \times 10^{32} \text{ cm}^{-2} \text{s}^{-1})$
- Trigger output is 10 times higher than CMS and ATLAS
- Uses silicon vertex locator (VELO) for secondary vertex reconstruction ($R\phi$ Resolution of 12 micron and z resolution of 135 micron)
- Tracker has 4 stations
 - 1 station before the dipole magnet, 3 after the dipole magnet
 - 50 micron spacial resolution
 - Momentum resolution of 0.4% at 200 GeV
- Muon system consists of 5 station, one of which is before the calorimeter
- Unlike the solenoidal experiments rates are still high in the muon system
- All muon stations must have two tracks for the LHCb dimuon trigger

LHCb Potential for Setting Limits

