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The equations governing the guiding center mot,ion of a charged particle in 
an electromagnetic field are obtained simultaneously and deductively, without 

considering individually the special geometric situations in which one effect 01 
another occurs alone. The general expression is derived for the guiding cent,er 

velocity at. right a.nglcs to t,he magnetic held B. This expression cont,ains five 
terms arising in the presence of an electric field. They are in addition to the 

usual “E X B” drift. Because these terms arc unfamiliar objects in the litera- 
ture on plasmas, they are illustrated by simple examples. Three of the five 

drifts occur in rotating plasma machines of the Ision type. One of t,hese t,hree 
is also shown to be responsible for the Helmholtz instability of a plasma. ,4 

fourth one gives t.he (10~ frequency) dielectric constant., while the fifth arises 
if the direction of B is time dependent. -4 dctailed geometric pict,ure of the 

fifth drift is given. 

The equation governing the guiding center motion parallel to B is also de- 
rived for the general time-dependent field. The conditions are discussed under 
which it can be integrated into t.he form of an energy integral. 

Finally the component of current, density perpendicular to B in a collisionless 
plasma is shown to be the current due to t’he guiding center drift plus the per- 

pendicular component of the curl of the magnetic moment per unit volume. 
Proofs of this have been given in the past for special cases. such as static 
fields, V X B = 0, etc. This proof holds in general, provided conditions for 

ndiabaticity are met. It. is also true, but not. proven in this paper, t.hat t.he 
component of the current, density parallel to B is the current due t)o the guiding 

center velocity parallel to B plus the parallel component of the curl of the 
magnet.ic moment, per unit volume. A proper proof of the parallel component 

is quite lengthy. 

I. INTRODUCTION 

The approsimak motion of a charged particle in a slowly varying ektro- 
magnetic field has been extensively studied by means of the guiding center ap- 
proximation, i I-6) in which the motion is considered as a pertjurbation of t#he 

* Work was performed under auspices of the U. R. Atomic Energy Commission. 
i Present address: Lawrence Badiation Laboratory, University of California, Berkeley, 

California. 
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helical motion in a uniform statir magnetic field. The guiding cenkr motion is 
useful, for example, in plasma physics research and in st,udying the terrestrial 
(\:,nn Allen) radiation. The purpose of t,he present paper is twofold. l:irst, by 
use of t#hr intuitirc picture of the particle gyrating about a small ciwle whose 
writer ( “guiding center” ) is slowly drifting, a brief and convenient deriyat,ion 
of i hr guiding crut,er motion is given. This is done without considering separately 
special casts in which the various guiding-center drifts appear alone. Second, the 
difl’rrent8ial equation for the guiding center motion is applied to several situations 
which arise in plasma physics and in machiucs used for controlled thermonuclear 
rcwarch. 

II. THE DIMEKSIONLESS EQI;ATION OF MOTIOK 

The smaller the radius of gyration of a particle compared to t,he size of the 
system and the shorter the gyration period compared to the variat,ion time of 
t,he fields, t,he more correct becomes the picture of a slowly drifting circle. One 
wa,y of making t)hese two ratios smaller is to reduce m/e, where m is the rest, mass 
and P the charge of the particle, while holding unchanged the fields and the 
inii ial vtlocity and position of t’he particle. Thr idea of varying the unchsngeahlc 
v/c of a given particle, like an electron, may he disturbing at first. One can of 
(*ourse imagine a srrics of tspcriments with a variety of particles. However, it is 
instruct8ire t,o show that regarding the ,rn/e of a given particle as variable is 
mathematically identical with physically possiblr cspcrimcnts on tht particle. 
To show this, it, is only necessary to scale the equation of motion of a charged 
particle, and t,his will bc done before proceeding to the guiding wntjrr motion. 
The ecluation of motion of a charged particle is 

(mc~‘c) (d~df)[v(l - p’)-‘“‘I = v X B(r) + cE(r) + imcle)g(r) (1) 

n-hcrc r is the particle position at, time t, v equals i, is’ equals ?,/c’, E and B are 
t,hc electric and magnetic fields and g is t’he total nonelectromagnetic force per 
unit mass. Let the initial wuditions be that at t = 0, r = r. and v = vn~‘O , whcrc 
vu is n unit, vector in thr direction of the initial vclwity. To write Ti:q. ( 1 ) in 
dimensionless form, iut,rodtlcc the dimcnsionlcss q1lantitirs 23 = B( r, t )/‘R,,( t ), 
G = imc.‘P&)E(r, t), J = PothL, ‘$3 = r,/L, and 0 = (m2Ll’Pl)g, lvhcrc 
PO equals the initial momentum rnj*,,( 1 - /3,,‘)--“‘, H,,(t) is the magnetic field at. a 
typical point at, t,ime t, and L is a charact’cristic dimension of the syskm. In 
terms of the dimensionless quant,ities 14kl. ( 1 ) becomes 

with the init’ial condit’ions that, at 3 = 0, $3 = rolL and d%ii& = 
vo[l + (Po/n*c~‘]-“’ = v0 X rest energy/initial total energy. For a given ro,‘L 
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and vg , the equation of mot’ion (2) and associat,ed initial conditions contain the 
two dimensionless parameters Poc/eB,J and Po/mc = (~~o,lc j ( 1 - po2 )-I.‘?. 111 
this paper only partic*les of nonrelativistic energies1 will he considered. In the 
Iwnrclativistji~ limit ( Po.,‘mc)’ << I and Eq. (2 ) becomes 

1 
with the init’ial conditions that’ at’ 3 = 0, 3 = ro/L and dcN/d3 = i, 

The sol&on %( 3) of the differential Eq. (3) depends only on the magnitude 
of mcuo/cBoL for given dimensionless initial condit’ions ro/L and tu , and for given 
dimensionless fields !3(%, 3), cF( ‘Ji, s), and @(!H, 3). Therefore if mwo/eBoL 
can bc dccrcased by decreasing ~I~.~B~L instead of m/e, and at the same t,ime 
mailltuining %, CF, 65, r,.‘L, and vu unchanged, one has a physically possible rx- 
prrimrnt. Three basic ways of doing t,his w-ill now be deskbed, along with the 
newssary changes in the quantit’ies in B, E, g, r. , and vg . It, is assumed that 
the expcrimrnter has these quantit,ies, the time scale, and dimensions of the 
system under his control. 

l;irst*ly, suppose that from one experiment, to the next B,(t) is increased by a 
f&or ,f > I at all t, while ~‘0 and L remain unchanged. Since % = B/R” , and 
since 24 is t,o be mwhanged, the magnet’ic field B(r, t) must he multiplied by ,f 
at all places and times. Similarly, since CF = cE/voBo, the clcctric field E(r, t) 
must, be increased by ,f. Since (V does not contain Bo , the g field is unchanged, as 

. . . 
arc thr nntlal posltwn r. and duwtlon v[, . 

Sccwrdly, suppose ~~~~ is dcwastd by a factor f < 1, while keeping R, and L 
mwhanged. This is not so simple as the first case, since the dimensionless time 3 
cont,ains ~~~~ Thr rcquircmcnt that, ‘%( %, 3) be unchanged in t’he new experiment 
for a given 3 means the time in mhirh B varies must, he increased hy the factor 
l/J. Explicitly, B’(r, t) = B(r, .ff), where the prime means the field in the new 
experiment. For then %‘( 3) = B’( Ls!:Y~‘)/B~‘( L3/tto’) = B(L3/;c~,,),~Bo( Ln,il~,) = 
D(S), so that ‘J’(W, 3) = %(W, 3) as required. The condition that cF(c%, 3) 
bc unchanged means that CF must hc reduced hy .f and the t,imc in which it 
varies increased hy l:.f-that is, E’(r, t) = .fE(r, ,jt). The g field must, be re- 
dwrd by j2 and the time scale increased, so t,hat’ g’(r, t) = j’g( r, .ft). Again r. 
and vo are left unchanged. 

Finally, suppose the size L of the system is increased by a factor j > 1, while 

1 In the absrnce of electric fields, /3 is constnnt and a relativistic particle follows the same 
trajectory as a nonrelat.ivistic particle of the same velocity and same total mass. The work 
of the present paper therefore is applicable. Equations for the guiding center motion of a 
palticle with relativistic energy in the presence of a small electric field have heen given in 

Ref. 6. Chandrasekhsr and Vandervoort have studied the relativistic case in detail (privsk 
comnlrmicntion). 
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keeping K, and P” lmrhangd. 111 this case r. must hr incrrnsrd by .f so as to keep 
the initial ‘32 lmchangrd. In addition, both thr timr and distnnw in whkh E 
and B chungc mlwt hr ilwrrased, so that’ B’(r, t) = B(r j, t..f) ~LMI E’(r, t) = 

E(r .f, t,;f,. 1“or then %‘(!H, 3) = B’(L’&, 1,‘3’/t,i) H,,‘(L’!H,, L’%I’,,) = B(L!H, 
1,~ rl,,)!‘R,,( I,\&, L3 r’,,) = a( !H, 3) whrre ?IIH1 = r,) I, = rJ, I,‘. Kimilnrly, 

($‘( $3, 3) = @( !H, 3). Thr g field must hr rhangcd both in magnitndr :UI~ timr 
SCYLIC, SO that q’( r, t i = ( 1 :f)g( r,,f, t :f). The initial dirwtiol~ v,, is nnc*htnqq~l. 

It is apparent that in all thrrr ra:r h s the sralillg of thr vnriolw (ln:Llititirs 
tlcrr~a~r~ both the ratio of gymt.ion radials to L, and thr ratio of gylatioll prriod 
to t hc timr swlr in which the fields rhangr, just as drcwasillg uz :P dors. Hr~irr 
ally onr of thr frmr pwxnrtrrr 117 .‘c, 1 G,, 1 ~~~~ , 1, I, (WI I)(~ rwrd as thv p:nxmrtrl 
whirh is to Iv2 madr smallrr ill order to malw thr grlidiiig wiitrr rciw~tioiis 
drrivrtl twlow mow rlosrly rrprrsrnt thr :wt~wl partirk motioll. III this paper 

t77 (7 = t \vill tw usrd, 3s IG11ska1 has donr (-3). I’hr atlvalltngr of ~7 (’ ovrr any 
OII~ of thr other thrrc pnrnmrters ( or n wmhination of thorn J is that t hr small 
cirlantity t appears rspliritly in thr rqtl:ltioli of motioli of :L partirk withorlt. 
\\-ritilig it ill dimcnsionlrss form, whrrras H,, , I’,) , and I, do Ilot. 

III. THE EQI’ATION OF MOTIOK OF THE GTIDIXG CEXTEli 

7’0 derive the ccluation of motion of the guiding rrntrr, lrt r = R + e, n-here 

r is thr instantnnrons position of thr pnrtirlr, R is thr position of thr guiding 
wntcr , and e is a vrctor from the guiding writer to thr pzrtirle (, Fig. 1 ). ‘I’hc 

vrctor e can be givrii 3 precise definition as is done in Iirf. ( 5) by t’hr equnt~ion 
e =z (~nc,~eH” )B x (v - cE x B,lB”), whrrr E :uld B arc r\xluntrd at, r. l’his 
combined with r = R + e gives a precise drfinition of R. To lowrst8 ordrr in t 
thr fields can of wnrsc br rx~luated atI &her r or R, thr diffrrrnw bring of order 
t2 ill thr eqnation for e. Sow s~lhstitute r = R + e into the Ilonrelntirist,ics form 

of lkl. ( 1 ). Sinw the radius of gyration is proportional to t, term:: ront~ailling 
p’ ran be nrglwted compartd t#o those in p. 

GUIDING CENTER 

I+(:. 1. The rhnrged part,icle ant1 its ruidiur ceutrr 



The rcsrllt of huhstitutillg r = R + e illt,o the uonrek~tivktic form of bkl. ( 1 1 
and cspanding the fields in a Taylor scrics about R is 

ii + e = g + (e’u~)iE(R) + e.CE(R) 

+ (l/c)@ + b) X [B(R) + ~.YBIRI]} + o(t). 
(4) 

The krm (b/c i X e. VB( R) must he ret,:kled in Eq. (4 ) ; as will becwmr ap- 
parent short,ly, t,his term is not of order C’ but is of order C. Son- define three 
orthogonal unit vectors: lrt, el equal B,/B, let e2 he a unit \-cctor dirwtcd towards 
the wntrr of cwrvatluc of the line of force, and let e:$ hc el X e2 , :L lmit vwtor 
along the l~inormal. In order to correspond t’o t’he pict’urc of the partkle moving 
ahollt, a circale of radilw p, let e = p( e2 sin 6 + ea ws O), whrrc o = Jti clt, w twing 
the gyro frc(~uu1cy FB( R) INC. Then b = wp(es cos 0 - ea sin 8) + ( peZ)‘sin 0 + 
(pe,)‘cws 8. The first trrm cwntains wp :md is of zero order ill E, siwc w - 1; 6 
and p - t. The swond :wd third t.crms twntain p or b aid arc of order t. The 
rc:woll for rct~aining b X ( 0. r )B in l:q. (4 1 is nom formally apparent, sinw it is 
of ordrr t, whcrcus :L term such as ( e. C )‘E in the Taylor espansioll is of order 
t’. 11 scc~md difkreiitiatioli gives e = -[m4p(e2 silk 0 + ea ~0s O)] + cjp[e2 ~0s e - 
e:{ siii e] + 2w[(pe2 )‘WR e - (pea)‘sin e] + [(pe2)“sin e + (pe:3)“c~JS e], the 
four terms twing of order 1 t, 1, 1, and t, respwtivcly. Thrsc csprtwiolls for p, 
b, e :uld arc 110~ sutwtitlitcd int’o I*&. (4) rind the resulting quation timc- 
nvcr:rgcd ovtr a gyratioii period, by t~akiiig J”:” ( ) de niid cwiisiderii~g cwff- 
c?ctrts, swh as ( pe2 )‘, to hc cwnst.atlts. Then (e) = (b> = (G) = 0, where the 
a,ngnlar hr:wkcts drllotc the al-crags>. The resultj of time-avcrqing Ii:q. (4) iu 

i? = g(R) + ; E(R) + 9 X B(R) 1 
+ cc f$ [e,, X (e,.V)B - e, X (e,.Y)Bl + O(E), 

‘ill<‘(’ I> 

(b X (p.T)B) = (P”u/“J)[e? X (ea.C)B - e3 X C,en.Y)B]. (6) 

Thr cocfficklt p’w “I! is a11 approximate invariant of the motion and is J~c,~c, 
whcrc J1 is the wll-kllow1 magnetic moment. That 31 is an adiahntic inr-arinnt 
of the particle rnnt ion has hcell dcmonstratrd in Ref. 3 and in n1mwo1w other 
plaws. E:quutjioll ( .J ) has essentially been derived by Kruskal. 

2 Thr derivation of lhr guiding center equfit.ion in t.he prrsent. paper is int uitivr mt he1 
th:tn mtthemal ically rigorous. TIP work of Iiruskal (3) and of Bcdx~~\ itz :~rld (;ttrtlrrcr ($I 
constitute the rigoro\w justific:~tion for the nveraging process r~sccl to get IiJq. (5). Iiruslc~l 
&rives eqlmtions for the R,, :rppearing in a series of the form 
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The right-hand side of Ey. (6) wn he simplified as follows: 

ez :< (ea.V)B = (ea X el) X (ea.V)B = el[es.(e3.V)B] - e3[el.(e3.V)B]. (7) 

NOW 

eI.(ea.C)B = el.(ea.V)(elH) = (R,/2)(es.Vje12 + ezl.‘?Ij = ea.V’R, (8) 

sinc,e eI’ = 1. Therefore Eq. (7) becomes 

e2 x (e:<.V)B = el[ea.ie3.VjB] - en(es.V)iII. (9j 

Similarly 

ea X (e?.V)B = -eI[ez.(e2.V)B] + er(er.V)B. (10) 

The fact that, C.B = 0 must IWW be used. The oper:rt,or V ca11 be expressed as 

eI(eI.Vj + es(e2,C) + eaCea.T), 

so that 

V.B = el.(el.V)B + ez.(el.V’IB + ea.(ea.V)B = 0. 

eI.(el.V)B = el.dB/& = an/&s, 

where s is distance along t,hc linr of force. Therefore by saht~rxct~ing ( 10) from 
(‘3 ) and using V.B = 0, one obtains 

e2 :< (ea.V)B - ea X (e,.V)B 
(11) 

= -eI(dRj&) - e2(e2.V)B - en(en.G)H = -VoR. 

The t,ime average of Eq. (4) then is 

~a = g(R) + (~irn)[E(R~ + (~/c) X B(RjI - (J(,:‘m)~B(R) + o(t),1 (12) 

by the formal process of equating coefficients of equal powers of esp (i J” w tEt ). The equn- 
tion forRois just Eq.(5). It, is not immediately obvious that, Kruskal’s procrdurc of equat- 
ing coefficients is justified,for the coefficients R,L are functions of time so t,hat this is not sim- 

ply a Fourier series. However, Berkowitz and Gardner provide the justification by proving 
that this series is indeed the asymptot,ic expansion of r for small e. The series is actually a 
generalization of a WKB series to t,he case of a nonlinear differential equation. The guiding 

center R, as defined at the start of Sect,ion III, differs from Ra by o(t*). R = R,) + o(G). 
Thi:; difference is of no consequence here, since we consider only efl’erts t,hat are first order 

in the radius of gyration. 

The general asymptotic theory of systems of ordinary differential equations with nearly 

periodic solutions has been studied b,v Bogoliuhov and Zubnrrv (7) and by Iirusknl (7) 
in a book which is a collect,ion of lectures given at the summer school of theoretical physics 

at Les Houches in the summer of 1959. In each work the general theory has been illustrated 
hy the equation of motion of a charged particle. Bogoliuhov obtains the longitudinal eqw- 
tion of motion (20) and the drift velocity (17) for the case whrrr uL: is o(t) Kruskal’s enlpha- 
sis is on the adiabatic invariants. 
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with an initial vtlocity l%(O) equal to [elel.v + (cE X BJ I? )]L=,, + o( c). li;qun- 
tion (12) is the basic diffrrential cquat,ion for the guiding ccntcr motioll. Hellwig 
(2) has given a similar but more lengt8hy dtrivation of it,. It is the same as the 
cquat,ion of motion of a part,iclc in a magnetic field B and an equivalent, elcct,ric 
field E - (N/e) OB, and therefore for numerical integration is more complicated 
than was t,he original equation of mot,ion (1). If a numerical solut,ion of (1%) 
were performed, it would he found that t,he guiding cent,er R trawls in roughly a 
helix about the firld line, just as the part,icle does. However, it can be shown t,hat 
t.he radius of this heiis is one order of c smaller t,han the radius of gyrat.ion of the 
part,icle, as would be expected for the guiding ccnt,er. This small amplitude oscil- 
lation of t)hc guiding ccnt’er is to be ignored, since it, is of order t’ and of no sig- 
nificance in a first-order theory. l~urthermorc in the preceding analysis other 
terms of this order have been neglected. In t,he next, s&ion Eq. (12) will be 
eolvrd by ikration to obtain t,ht equations for the guiding center mot)ion parallel 
and perpcndiculnr to B. These couplrd equations do not show the rapid guiding 
cent.cr spiralling that II:q. (12) dots. 

IV. THE DRIFT VELOCITY AND THE LONGITUDINAL MOTION 

The differential equatjion for the guiding renter nlOti(Jl1 can be separated int,o 
component,s parallrl and perpendicular to B. Crossing Eq. ( 12 ) on the right with 
el( R) gives the pcrprndicular component of the vect,or equation as 

where R, is the component’ of ii perpendicular to el( R). It is called the drift’ 
velocity. The first term is the usual “E X B” drift. The second term is the 
“gradient, R” drift, and the third is t,he “acceleration drift”. By dotting Ey. ( 12) 
with e,(R) one obtains the scalar parallel component, as 

‘! R.e, = F g.e, + E.el - F g + o(t?). 
c 

In $31. (13) t,hc guiding ccut,cr wcelcration li is ueeded to calculate the drift 
velocity ; hut bccausc the term in which it, occurs already contains c as a coeffi- 
cirnt, R is nccdcd ouly to zero order in t. It’ is assllmcd that, ii is not of negative 
order, such as -1,‘~ If it, were of negative order, the fields would change by a 
large amount in a gyration period when t is small, and the guiding center picture 
would not, bc valid. Teit.hcr would ~11 bc an adiabatic invariant. (see Ref. 3). 

The acrclcrat~ion fi = dl?/& = (d/dt) (ii, + e&.e,), and d&i& can be 
obtained to zero order in t from Eq. (13 j as 

&~‘dt = (cl/&)(cE X cl/B) + o(t). 

Only t.hc first term ~II the drift. is nwded, since t.hr third term is -6 and t.he 
second km coutains J/:e = m( pw)‘/2eB -’ t. If the perpendicular elrct~ric 
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+ 
[ 

dufi + (elv, + uB).CuE 1 (IO) 



(18) 

Ii.15, = (elrsll + ue + o( t) 1 .& = uB.kl + O(E) 

= u,.[(f3e,lat) + (elll,; + uE) .ce,] + o(r). 
(19) 

In Eqs. ( 18 ) and (I!) ) WC consider only the contrihntion of tht zwo order motion 
t,o d/t/f. This is all t,hnt, is rcquircd, since ii.e, htls 6 for :t cwcfic~ient~ in Eq. ( 14). 
The lnngitndinal TCq. ( I4 ) t,hcn hecomcs 

Equat~ions ( 17 I and (20) arc cclnivnlellt to the original diffcrcntinl Eq. ( 12).” 
Let US now introdwc a true clwvilinear wordinatr system (a, p, s) such that 

a( r, t) :md ~(r, t) are two p;tr‘amctcrs specifying :L line of forw and therefore 
vonstnnt. on it ; s is dist:uwc along the line ~1s previously. For :L divergence-fire 
field such as B, a, and /3 call hr chowu so that, tht vwtor potential is A = (~r’p. 
ThUl 

ls,, =el. 
I aA 

--VP 
-c at 

= -; (fi + cp), 

whcro $ = (a/c) (apfat) . Kow t’ht rate of change of q + # dlw to ztro o&r 
mot~ion and time-dependent, fields is 

3 The esperin~entnl physicist, may at this point ask how he is to know whether the clertric 
firld tlrift ux is o(1) or o(c) in 3 gioe7L piece of experimental equipment. Or differently asked, 
at, how ~~nng volts per meter el&ric field does his uE become o(l) instead of u(t), thus re- 

qllirinp him to retain trrms with ug in I-:qs. (17) and (20). The answer is that it never in 

principle is wrong to keep these terms. For the given experiment they may be much less 
than the other trrmn, in which case they could have been omitt.ed. The glCding center cqtu- 
tiona arc merely glides to what the particle may I)e expected to do. The equations are 

derived from an asympt,otic series, and therefore become bett)er predictions of the actual 
particle motion as t,he expansion paratrnet,er e is decreased. How good predictions they are 
in an?; particular experiment could he determined by comparison wit<h :L detailed nunlcricnl 
solution of the particle orhit. or less accIw:ttely by looking at the magnitude of nest higher 
or&r terms. 
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so that 

Hinlilarly 

KOKTHItOP 

dB dB 
u ‘L’B-% qYg=dt- E” af (Z-1) 

When E ‘, and aB,‘ds arc eliminated from Eq. ( 20) by use of Eqs. (23) and (24)) 
the result is 

(25) 

a form which will be useful in the applications of the nest section. If the g field 
can he derived from a potent,ial, t,his pokntial will appear added t,o 

(Jl/‘e)B + J/ + cp 

and t#hr (m/e)g t,erm will be absent, in T;q. (25). 

V. APPLICATIOKS 

-1. DIELECTRIC CONSTANT OF A PLASM-~ 

Suppose t)here is a uniform magneGc field out, of the page (Fig. 2) and a 

e-3 A $1 

t 

GUIDING CENTER 
TRAJECTORY 

c- -w 
I- 

FIG. 2. Polarization of a plasma is caused hy the component of guiding center drift pnr- 

nllel to the electric field. 
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spatially uniform but time-dependent, electric field at’ right augles. From Eq. 
(17), if a/at - 1 and E, ,- 1, 

(26) 

Because the average position of a particle is its guiding cacnter, the polarization 
of the medium can be obt’ained from the displacement, of the guiding center in 
t,he direction of the E field--that is, 

(27) 

where Al!: ix t’he change in t’he magnit’ude of t,he field from t’ime zero to i. The 
polarizability is then, x = nmc2/B2, where n is t)he ion densit#y. The electrons 
have a negligible polarizability, since the electron mass is much less than the 
ion mass. The dielectric constant K is 

K = 1 + &rx = 1 + (hnmc”/B’). (28) 

hnot,hcr way to derive x is from energy considerations. The kinet#ic energy for 
the increase in the first, term of Eq. (26), t’he E X B drift’, must he supplied by 
motion in t’he direction of t,he E field. Then 

(m/2)A(cE/B)” = e& I’& I?;e3, or l’dt kL.ea = (mc2/eB2)A6 

as in eq. (27). 

B. MAGNETIC MIRROR REFLECTION WHEN ELECTRIC FIELDS ARE SMALL 

Consider a magnetic mirror geometry (Fig. 3) in which the fields are static 
or slowly varying (a/at N t) and in which E, is of order E, so that, uE - t. The 
guiding center velocit#y R then is t’o lowest order elv II along a line of force. In 

t- 
MEDIAN PLANE 

FIG. 3. Magnetic mirror machine 
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Eq. (25), the entire right,-hand side t#hen is of o( 6’). I;or cp must be -E if both 
E, and I!:,, - E. Also 1c, = (“,,‘C) (ap;!at) - d,~‘dt - E. Thus Eg. (25) becomes 
( whet#hcr there is rotational symmetry or not) 

(m,.‘2)rii’ + dlB + ?I,+ + cp) c~luals a constant of the zero-order 
motion along the lint of forw.4 

(,,~) 

The part.icle reflects when P i = 0, which occurs at, a field B, defined by J/B, + 
e(fiT + (~~1 = t,hc constant of thr motion. 

If t’he magwtic field is static, + = 0, and TCq. (a!,) is merely the conservat,ion 
of total entrgy H = (~tl’, ‘2 ) + ccp. If there arc no clcctric fields so t,hat # = ‘p = 
0, the familiar rcsrllt for a mirror machine is obtaiwd: BT = H.‘J/ = B,/sin” 6, 
where 6 is the angle bctwerlt the velocity vector and the field lint at t,ht mtdisn 
plane, and R,, is the field thtv. 

c. LIMITIXG TIME: OF ~SCVLLATIOS BETTVEEX h~lRROR POIKTS 

For small amplitude oscillations about, thr median plant of P’ig. ii, 
B 1: B,, + (s? ‘Z)B,“, whrw s = 0 at the median plaw aud B,” is (d’B/d?).s = 0. 

IGluation (20) is d”~, c/t’ = - ( AII/nl )H,“s, which is the rcllutioll of motion of 
a harmonic osc*illat,or with period %( VI Jf B,” )I” = (2~ ‘(3 ) ( ZR,IB,.“)“‘. 

111 this scvtiou thv rcflcction propertics of a mngnctic mirror \vill bc dt~termilwcl 
for the ~~asc where E, is of wro order. If E, is of zero order ill t, the right-hand 
sidrl of Eq. (2.5 ) stands, Cth 110 npparcnt simplifiutioii possihlc ill geiicral. 
Howvvw, ilr at least olw spwial case the ccluatioll ran bc writ’tcn in the form of 
311 cncrgq’ intcgrul. This is the ws:c of a static magnetic* tic>ld with rotational 
symmetry ( swh as a mirror mac*hinc ), aud a static. E, \vhwcl E, has 110 azimuthal 
wnipoiient :ui(l E J = 0 ( Fig. 4 ). Swh a mirror mwhillr has bw11 llumcd Txion, 
and is discwsscd by I.ongnlirc CJ~ nl. (8). Wilwx ( 9) has wvirwd csprrinwntal 
rtsulte obtain4 u+h Ision aud similar machilm. Thc~ zero-ordt>r drift, us is in 
the azirnrlthal dirwtion; thca c~cunpollcl~t paralltl to B of thr wsulting radial 
wlltrifugal fowc mu,‘- I’ ha-; thr dtsirablc property of’ makilrg it tnmc difimlt 
for thr part~ivlc to cswpr at the ends. ‘l’hr c#wt is just that which w~~~ld bc oh- 
wr\-cd if a bmd mw pl:wd on a smooth wire hcllt ill the shape of t’hc line of 
forw, and the wire then lotutcd abont the x axis. This ni~logp n-ill bc~onie 
apparmt ill the following analysis, which is qnitr difft~rcwt ill nwthod from that 
of Rd. 8, but lcads to the sanw rcwllt s. 

IT~lchr the spccificd rcstric.tioll 011 the E and B ficxlds, all tcrnw 011 t,hc right 
side of F:q. (23 ) mlrish rsc*cspt the 011c umtainil~g ufi;. ( ux. ‘i )el , whirl1 in this 
spec*ial cas;c cqlmls (cl? !R )“e:i. ( ecr. C )el Rc~xiw eti.el = 0, tlic fnc~tor en. (e:,. G)el 

1 The relativistic form of Eq. (20) is shown in Ref. 6 to he (PP + H,,%?)~~~ + e($ + y) = 
constant of the zrro-order nrotion. 
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FIG. 4. Mirror machine \vith large electric field 

ccluals -el. (ea. r)ea . Hut1 (ea. c: je, = - e,,/r, whew e, is a unit, vector in the 
radial direction. Thercforc - el. (ea. G ) e3 = el. e,/‘r. 

In order to integrate (cE/R)‘(e,.e,/r) over the zero-order motion on a flus 
surfaw (defined as the surface formed by rerolving a lint of forw about x), 
$he variation of cE/B and el.e,/, with longitudinal poskion must hc known. 
The following is a proof t’hat cE/rB is independent of position on a flus surface. 
I,&, 9(r, a) be the stlrnm function (10) for t.hc magnetic field; the stream func- 
tion has the propert,y that Q = wnstnnt is tht: equat,ion of ~1 line of force and 
that, BZ = (l/r)S4?~;dr and B, = --(l,!r)N/dz. Sinw E is perpendicular to B, 
flux surfaces arc also equipotentials and (D is thcrefow a function of q. The 
components of electric field arc 

Thus& = [(@Pi’&)’ + (d\k/&?]“” clq;:d\k = rB (dp/dq) and cl<l:rB = cdp/d!P, 
which is constant on a flus surface. The quant.it,y clg/rB is the angular velocity 
of the uE drift, about 2 and will he denokd by R. Therefore the term cwntaiuing 
uE. (uE. rje, in Eq. (2.5) is (WL/C)P l$rel.er , whkh equals (m/r) (d/dt) (&‘4), 

heraust: 

The &o/dt term on the left’ side of Eq. (25 ) vanishes, since the zero-order motion 
is on an eyuipotentinl surface. The int,egral of Eq. (25) is theu 

wzt, ,, ‘/‘2 + JIB - n&‘/3 equals a constant’ of the zero-order 
motion on t,hc flus surfwe. (31 1 

Eqllation (31) has bctw derived in a dif%‘ertnt~ fashion by Chandrasekhar Pt al. 
(11)) and in yet a third way in Rtf. C.8). 
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If t#he subscript c designates quantities at t,he median plane of Fig. 4 and e 
at, the mirror (i.e., at t#he location of maximum magnet’ic field on the flux sur- 
face), Eq. (31) becomes 

z$ = I& + (2MB,/m) ( 1 - B,/B,) - Q”T,‘( 1 - 7$TC2 ) . (32) 

In Ref. 3 Bruskal shows that, if uE # 0, XB equals n~,~/‘2B, where U, is the 
perpendicular velocity in t’he frame of reference moving at’ velocity uE . Also 
H,/B, equals t’he mirror ratio on t,he flux surface. ll:quat)ion (32) therefore says 
t,hnt l!ie 5 0-i.e., the part iclc is contlained, if 

21;~ 5 *Q(H,!B,) - I] + ~3,,(1 - r:?/rc2). (33) 

If in addition the magnetic field is assumed to be approximat8ely independent, 
of radius both in the median plane and at the mirror, then by conservation of 
flus r?‘!‘.y,’ = B,/R, in Iikl. (X). However t,his assumption is not necessary for 
t,he validity of t)hc adiabatic theory and ICq. (X5 ) . 

If in Eq. (XL>) M is set equal to zero, the change in parallel kinetic energy 
hctwccn the medial1 plant3 and the mirror is (vL/Y)Q’(,~~’ - rz), which is just, 
the work done against the c*entrifllgnl force. Thus when -II = 0, the problem is 
that of the bead sliding on the wire dcwribecl previously. 

Terms containing uE ill the drift, lj:q. t.17) giw a small (order t) mot,ion in 
or normal to a flux surfaw, the zero-ordtr v&city being I? = elzl , + uB in the 
surface. Whcu ~rosscd with el,iB, the third t#erm in the square bracket,s is the 
w11a1 drift dur to line curvnturt and is in the azimuthal direction. If E is outward 
as in Fig. -k, the fourth term is 

cl;: de1 -vi, - ea.Vel = -qQ-- = 
I? a0 

-v,Q i (e,e;el + eie,.el) = -21,Qea(e,.el), 

where 8 is the azimuthal anglr in cylindrical coordinat’es and e, is a unit, veot,or 
in the z direction. When crossed wit,h el , t#his fourth t’erm gives a drift normal 
to the flux surface. The sisth term in brackets is 

1' 1 ( auE,,sas'j = --z1~~(a,/as)(,!27e~) = --@ la2e:3(ar/as) = -rrlQea(e,.el), 

hence is the samt in this geometry as the fourth term. The last term in the 
scluarc brackets is 

S2rea.V(Qren) = Q2r2(e3.G)ea = -he,. 

When crossed wit)h el this lust, term gives another ordrr t drift in the surface, 
in addition to the CR and line curvature drifk 

BCC:UW of thr t,wo order t drift, trrms ptrpendicular to the flux surface, there 
is an order t change ill cp (and therefore of kinetic energy) as the pa,rticle traverses 
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the surface. This change in cp can be calculated directly from the product of the 
drift velocity normal to the surface and the electric field 

*=$?Q( 
dt B 

-y v,, Qea(er.el) - (-E) 1 
= ~vbL~el-(e, X E) (34) 

Or inkgrating 

A(ecp) = -mQ*A(?) = --?nA(uE’). (35) 

The c,hange in ecp rauscd by i,he first-order drift off the surface equals t,wice 
t,he change in (m /Z).U~’ as the particle moves in zero order on the surface. This 
reslllt can also be obtained by energy conservnt,ion. The total average energy 
associated with the perpendicular motion is MB + muE2/2. Therefore 
(,mo ,,?;!:2) + MB + (,mn,?,‘2 ) + qc is a constant of the zero plus first-order 
motion. But from Eq. (31) (vL/:! 1~” + JIB - jv~j2)t~~~~ is a constant of the 
zero-order motion. By subt~raction A( PP) = -?A( mrlE’/2:). 

This drift. lwrmnl to the flus surfaw is not, cumulut~ive, since the sign of ZJ ,; 
revcrscs when the part i& reflects near tht mirror. 

E. THE CURREST IS A ~OLLISIONL~SS PL.4SMA 

It, will bc proven in this section t,hat the currcntI density perpendicular to the 
magnet,ic field in a collisioiilws plasma is given by 

j, = nefiL + c(C X tOI), , (3ti i 

where R, is the drift \-rlocit,y at. thp point, where j, is required and is given by 
]C(l. ( 1’7 1, II, is the density of guiding centers, and W = -?ndlel is t,he magnetic 
mornellt per unit volume of particles having guiding centers at) the required 
point. Equation ( SC) applies only to a single calass of part’icle, that. is, t,o particles 
1vhic.h all have the same magnetic moment8 ill and parallel velo&y at, the point 
lvherc j, ix to be wlculatcd. This is bccawe k I at’ a given point, is a function of 
31 and 21, If several c~lassts of particles arc present, t’hcir currents can hc super- 
posed t,o give 3 total ctirrent 

JL = Nek f c(Y X $332), , (3'7) 

where R, and % are the average drift’ vclocit#y and magnetic moment8 per unit 
volume. It, is t#herefore Oldy nccwsnry to prove Ti:q. (k%). 

It, may he argued that Eq. (:3(i) requires no proof since the first term is the 
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current due to the motion of t’hc gIGding wl~tcrs, allcl t#hc ac~~md tc>rm is the 
nslwl cnrrcllt, due to the nxqqetization of a mrdiun~i.e., due to the motion 
aboutj t#hc guiding center ( WC Lollgmire ( 12 1, for csnmplc, for :L proof 1. How- 
ever, it seems desirable to demonstrate formally t,he validity of 15~1. ( :3t; 1, cspc- 
cially for the gcnerxl case where there is a zero-order drift, due to the electric 
fiicld, and a nonstcady st,:Lt,e. 

The stjarting point, in t,hc proof is the Bolt~zmnnn cqunt~ion, from which c’au he 
derived (Ref. 13, p. 94) the macroscopic equation of motion 

mm clVjdt = - V. P + ‘rw (V X B,/c ) + rwE, (38) 

where V = t is the nverngc particle velocity and P is the pressure tensor, give11 
by P = ,rlw((v - V) (v - V)),, . In Ref. IJ it is shown that, for st,rong mag- 
netic fields (i.e., for adiabatic part,iclr mot~ion) that, P is diagonal with two of 
the diagonal component~s equal. 

P = rl,elel + P, (eze2 + eaea), ( 39) 

where I-’ ,I = nm(( 11 ll - V , ‘I’).~~ and P, = ( RTTI /‘a) (Pi’) = ?tiGB and V~ is the 
ptrpcndirular lrelocity in the frame moving at’ V. The divergence of P is given 
in ltef. 15 as 

V.p = el 
[ 

apI (f>,, - I’,) dB - - 
ds B ds 1 [ + (P,! - I’,) 2 + V,f’, 1 , (40) 

where C, = es(e2. C) + ea(ea.V). Since only a single class of particles is to 1~ 
considered here, P,! = 0 and rL = (n,n/:!) ~1~’ = nMB. 

JJVcst, solve Eq. (,38) for V by crossing it with el : 

v = v,, + 
ccl X V.P cE X el 

neB +7 

Since the last term has E in the coefficient, an iteratjivr procedure can he used 
and cN/dt replaced by its value for t = 0. When E = 0, t,he particle has zero 
radius of gyration, and the average vrlority V is simply thr zrro-order guiding 
center motion V = elr , + ug . With this exprrssion for V and with Eq. (40) for 
r.P with PII = 0, Eq. (41) becomes 

V = V,! +$el X -1’L2+ C,P, 
( ) 

(42) 
+Ep + $$ el x i Cc el + ud. 

The expanded esprcssion for [C~(LI 1, el + u,)] ‘dt given in Eq. ( Ifi‘) is not needful 
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here. The last t)wo t’erms of 11:q. (42) contain all guiding center drifts except, the 
one dut to VB, which is contained along with (V X 91331) I in tht second km: 

G X 912 = - V X (Jlnel) = - 31~1 B X el + el X IT (dfn) 

= - (,Z’,;‘R)T X el + el X T(P,;!R) = -(P,,/R)C X el + el X (L/B) 

{VP, - ( PJR) OS\ 

= -(P,;‘f?)[el X (del,‘ds) + ez X (e2.T)el + e3 X (ea.F:)el] 

+ el X {(l,IR)CP, - (P,iB’?)T’H]. (43) 

Thr sword and third t,crm iu the square lxxkct:: arc parallel t,o el , as can 
be WC~I by t8:king t)heir cross products wit,h el 2nd ohscrving that el. (es. r)e, 
ultl el. ( ea. Y ) e1 both are zero. Therefore from I<kl. (43:) 

(ceJf1) X [- Z’,(de,‘ds) + T,P,] = c(C X %I), + (cP,/Hjel X VB 

whic*h is the wnc a~ Eq. (36). This rcsldt has also lxcn drrivcd in Eq. ( 121) of 
IZcf. 11 for the spwi:d cast of static fields. 

It. is nlso trw that j = uc\~,,e, + c( ‘i X 911) , . The proof is not, so simple 
as for the perpendicular current density. It is necessary to work with the Boltz- 
nun11 clqu:Ltion itself, mthcr than from one of its moments such as Ey. (38). 
Siuw the rigorous proof is quite lengthy, it will not he giwn in the prcscnt, 
paper. ‘1’1~ proof actually gives: 

J = Nc((k + elq )).Iy $- c(r X @), (45 1 

which cwutnins both the purallcl and the pcrpcndicular components, hut it, is 
a \-cry m\wh more difbult dcmonstratioll nf the pcrpcndicular compollent8 t,han 
prwclltrtl hcrc. A47 is the tcJt,:Ll glliding writer density. 

I:rom 15(1. (4.5 \ it, (YW 1~ scc11 that the ctwrel~t~ densit’y cumot lx determined 
from :I lawn-lcdgc of thr guiding ccllt,er motion alonr. Tlowever, the r:rt,c of 
charge :Ic.c,lln~lll:ltioll dlw to thr divcrgcnw of tht current density can be folmtl 
from the guiding cwitcr motion aloiic, since 

a(Ncj/at = - ‘7.J = -r.[Nc((l& + el?~;,)),,]. 

Tht fact that V. J cnn he dctcrmined from the gnidilrg center drifts alone is ~wcd 
ill the nest) csnm&. 
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14’. THE PARTICLE DRIFT EXPLASATIOK OF HELMHOLTZ IKSTABILITT OF A PLASMA 

It is instructive to explain ill terms of part#icle mot,ion why a given plasma 
ill&ability occurs. This has been done for Rayleigh-Taylor (i.e., gravitational) 
plasma inst#abilit’y (16) by R,oscnbluth and Longmire (5). They hare shown 
how the guiding center drifts result’ in a regenrrntive incxrease in amplitude of 
a small sinusoidal perturbat’ion of t#he plasma-vacuum interface. The Helmholtz 
in&ability of such an inkrface has been studied by the author (17) via tht 
hydromagetic equations, without a detailed analysis of t,he particle motions. 
The particle drift explanation will now be given for a somewhat simpler case t’han 
in Ref. 17, where one “fluid” was a vacuum magnetic field and t,he other a 
plasma wit)h a pressure. A simpler example of Helmholtz ikability orcurs when 
t,wo identical pressureless plasmas wit8h t#he opposite velocities v. and -vo are 
separat,ed by a sharp boundary (Fig. 5). There must be an electric field Eo = 
(ao/c)BO which produces the flow. There is a mliform surface charge on the 
interface. 

Suppose that, t#he interface is perturbed sinusoidally with an amplit,ude A, a 
wave number I, and with t,he surface charge density unchanged. The electric 
field is then also pert,urbed in such a way that, the flow remains parallel t!o the 
boundary. It, can be verified that the solution of V.E = 0 for the perturbed 
electric field E is (in the upper plasma) 

E, = - li:oAle-l’ cos 1.c + o(A”), 

E, = Eo(l + Ale-” sin Ix) + o(A2). 
(46 1 

This is the field due to a miiform charge on a surface bent sinusoidally. The 
terms of o(A”) are not needed. From Eq. (46) it, follows that the drift uE = 
cE X el/B is parallel to the pert’urbed boundary. ?;ow for this simple geometry, 
t#he guiding center drift, Eq. (17) reduces to 

ltl = uE + 2 el X ( uE. Vu, + duE/af) . (47) 

PERTURBED 
-Lo 

UNPERTURBED 

FIG. 5. Helmholtz instability of a plasma 
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There is no DB drift since with zero pressure ,$I = 0. In the case of t,he Rayleigh 
instability t)htre was a drift, due to g X B which was opposit,e in direckion for 
ions and electrons and therefore resulted in surface charge accumulation princi- 
pally at, the nodes of the perturbed surface. This caharge accumulation resulted 
in an electric field whicsh whrn crossed with B, gave a drift that increased .4. 
The increasad amplit#ude in turn increased t’hc rate of cshargc accumulation, 
henw the rate of illcreax of ;I, etc. For the present> problem of Helmholt,z 
iwkahility, it is clear that the first’ term uE in I<q. (47) cannot prodwe an accumu- 
lation of phargc at the int,erfacc, since u E = cE X cl/B is the same for ions and 
elwtrons. The mwhanism of the inst#ability must, t,hrrefore be found in the 
swond t,erm where the direction of drift is opposite for ions and electrons. With 
the E given in 15~1. (46) t#hc drift at, !/ = 0 due to t,he uE.OuE term is 

vnc A 1’1P 
2 el X !uIC.O)uE = p Bg (x sin Is + y COR IX) + 0(A2j, (48) 

where x and y are unit8 vectors along the axes. Thr rat,e of free surface charge 
accumrk~t,ion due to ions and electrons tBcn is the component of guiding center 
cwrrcnt normal t)o the interface. 

&/dt = - 2n / e j N.(m, + vn,)(cL4Z2E”/1 e / R3)(x sin lx + y cos 1.r) 

= - 3n(mi + m,)(c~,;Lt~B) il ~0s IS + o(il’), 
(49) 

where N is a unit vector normal to t#he interface, VL is the ion or elect,ron density,, 
and mi and me arc ion and rlec%ron masses. The symmeky is such that, the 
uE.OuE drifts above and below t,he inkrface are addit#ive in their effectIs on the 
surfaw charge, and t,his is t#he reason for t,he factor of 2. Since t,he drift, which is 
producing t#he charge accumulation is first order in 8, the normal vector N is 
needed only to zero order in A---i.e., N = y is sufficient. The sit’uat’ion with Ray- 
leigh iust,ahility is just, the reverse: the drift, which produces the charge accumu- 
lat,ioll is the g X B drift, which exists with the surface unperturbed and thus is 
of ztro order in -4. Consequently in t’hc Rayleigh problem it, is found that N 
must, bc used corrwt to first, order in -4. 

It is now nwessarg to find the rate of increase of E’, t,he field due to t,hc surfare 
caharge awumulation. The dielwtrir cwnstant8 

K = 1 + [47rn (m, + m.)c”~B’] E? -Lan (,mi + m,)c2/13’ 

must be used, and also the fact that the displacement D has a continuous normal 
component and E’ a continuous tangential component1 across the interface. The 
component,s of E’ ahow t’he interface are easily found to be (to lowest order in A ) 



The charge dcllsity from li;q. ( 19 ) is of t,hc form c = m0 cos lx, so that, fC,C’ does 
not diverge at, (ws 1.r = 0. Sinw tha field E gi\w motion parallel to t,hc l~oundary, 
it is only ug’ = cE’ X eJl? that, makes J increase. =Zt y = 0 and 1.~ = r ‘2 

di2/tlt = cE’ X e,,‘H = - cE,~‘/B 

or 

d2ii/&” = - (cjB)(dB,‘/dt) = - (Snc~BK)(da~~tlt) 

= (2d/B”~)2~njm, + m,)vo21’A = vo2?A, 
(51) 

Equation (51) is of t)hc form d’A/& = ~‘~4 where 

w = v*z. f.52) 

This is just the result that would tw expected from Ref. 17 and the hydrody- 
namic expression in Lamb (10 ) . 

The drift term containing 8uE/dt in Eq. (4’7) equals -c(eJB) X a(E + E’) ’ 
dt. Hew t’he term -c( cl/B) X dE/dt dots not give rise to a charge awumulation 
at t’he int~erfnw ; the surface charge density from t,his term dlw to plasma above 
the interface is proportional to sin lx, while that due to plasma twlow is propor- 
tional to ( --sin Ix). If the t.wo plasmas hnw t,he same densities II and opposit 1’ 
flow wlocitiw, the proportionality const.ant is t,he same for sin /.I, and ( -sin 1.r 1, 
with the result that thcrc is no net surface charge. If t’hc drnaities are uncq11a1, 
then a net surface charge develops which gives rise to motion of the wave, hence 
to a complex W. 

The drift due to the ot8her term -c( cl/K I X dE’:‘df has alrtady been accounted 
for by use of t#he dielect,ric const,allt, since this is the t,erm which gave t#hc dielw- 
t.ric cwnstant, in the first, example. Alternat.ively, K can he set, equal to unit.y in 
1’:q. ( 50) and t.hc drift due t.n aE’/at, rctnincd. Diffcrent,iation of Eq. (50) then 
gives ( at’ !/ = 0 ) 

aE’/& = (2a,/cos 1.r) (x sin 1.~. + y cos 1.r ) d~,laf. ( 3 ) 

If t,he aE’/at drift is now added t#o Eq. (49 ) for +/dt and ~?E’/dt climinatcd via 
Eq. (~:~ ), a11 equation is obtained for da/dt. The solution for &,;‘dt is then suh- 
st,it,ut,ed into Eq. (X3!, which t,hen gives the same ~,Y:,‘/cx as used in Eq. (51), 
hctwc the sanw w as in EC!. ( 53). 

G. As EXAMPLE; OF THE DRIFT DUE TO 8el/dt 

In the preceding examples every drift in Eq. (1’7) has appeared with the 
exception of v ,! (mc/eB)el X del/dt and (mc/eB)g X el . The lat’ter occurs in a 
grnvit,at,ional field and therefore is in priliciplc present in every laboratory 
experiment and \+wuld also he exhibited by charged pnrt8icles in the Van Allen 
radiation. In practice this grarit&onal drift is exceedingly small compared t,o 
the other drifts. 
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FACES 

FIG. 6. Rotating magnet gives :L ae,/dt drift 
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FIG. 7. C+eometric esplanation of the ae,/at drift 

different for each drift. The more familiar drifk uE and (Mc/eB)eI X VB have 
often been illustrated in the literature (2) and will not be discussed here. The 
reason that the curvature of the trajcrtory varies in the presence of deI/dt is that, 
the perpendicular velocit,y 1 v X eI 1 varies as eI changes direction. The drift 
velocit,y can be derived (except possibly for a numerical fact,or) by holding 
el fixed for half a gyration period and then changing its direction for the nest 
half period, etc. A view along the S axis of Fig. 6 at t = 0 will appear as ill 
Fig. 7. 

Let 6 be the angle between v and el , so that, 11~ is 2’ sin 6 and 11,~ is 1) cos 6. Xt 
the end of the first half period (y > 0) let el change by ae, in the y dirwt)ion. 
ITor the second half period (!I < 0) ~~~ will he changed by AT. = 11 cos 6A6 = 
u ,, A& The drift velocit,y equals the difference in the diamtt,ers of t)he two semi- 
circles divided by t.he gyration period, or w(pr - pIj,“T. Since p equals zli/w, 
Ap is AZJJW or qAS/u. And Ah = &r/w. Thus the drift, velocity equals zl~112/‘w, 
which in this case happens to bc correct even t)o numerical factors. 

Similar geometric derivations can be given of the other drifts containing 
z! 1 and uE in Eq. (17). 

The author is indebted to the many people whose work has heen referred to in this paper. 

Special thanks are due Dr. Clifford Gardner, Dr. Allan Kaufman, and Dr. Marvin Mittle- 
man for many helpful discussions and ideas. 

RECEIVED: January 2, 1961 

REFERENCES 

1. L. SPITZER, dxtrophys. J. 116, 299 (1952). 
9. H. ALFV~N, “Cosmical Electrodynamirs.” Clarendon Press, Oxford, 1950. See also 

G. Hellwiy, 2. Saturforsch. lOA, 508 (1955). 



THE GTTIDIh-G CENTER APPROXIMATION 101 

3. M. KRUSICAL, “The Gyration of a Charged Particle,” Princeton University, Project 

Matterhorn Report PM-S-33(NTO-7903) (March, 1958). 

4. .J. BERKOWITZ .4ND C. S. GARDKER, “On the Asymptot,ic Series Espansion of the Mo- 
tion of a Charged Particle in Slowly Varying Fields,” New York University Report 

SYO-7975 (December, 1957). 
5. iV1. R~SEXRL~TH ANI) C. LONGMIRE, .lnnnZs oj Physics 1, 120 (1957). 

6. T. XORTIIROP AND E. 'FELLER, Phys. Rev. 117, 215 (1980). 
7. X. ~~OGOLIUBOV .~ND D. Z:TR.~REV, (:k/xninn i\futh. J. 7, 5 (1955). (translated by B. D. 

Fried of Space Technology Laboratories) ; M. &u&al, “La Thborie des gaz neutres 
et ionists.” Hermann, Paris, 1960. 

8. C. LON~MIRE, D. n'acx,~, AND F. RIBE, Phgs. Rev. 114, 1187 (1959). 
9. J. M. WILCOX, Rwa. Jflorlew Phys. 31, 1045 (1959). 

10. H. 1,.4~13, “~~yd~odpnamics," 6th ed., p. 373. Dover, New York, 1945. 
11. s. CHASDRASEKfIlR, 9. IiAlTFMliN, AXD Ii. !JvATSoS, dW&S Of PhySiCS 5, 1 (1958), &Yl. 

1118). 
12. Los Alamos Report, LA-205~ r “8eries of Lectures on Physics of Ionized Gases,” 1955. 
13. L. QPITZER “Physics of Fully Ionized (iases.” Interscience, New York, 1950. 
14. (;. CHEW, if. GOI,DBER~ER, AXI) F. Low, PrOC. boy. Sot. A236, 112 (1956). 
15. 8. CHIINDRAHEKX4R, ,4. I<ATFMAN, AND li. ~~.4TSON,.-l?U~& Of Physics 2,135 (19%). 
16. bf. KRCSKAL AND M. SCAWARZSCIHILD, PTOC. Roy. Sot. A223, 348 (1954). 
17. T. NORTHROP, Phjys. REV. 103, 1150 (1956). 


