The Energy Recovery Linac (ERL) as a Driver for X-ray Producing Insertion Devices

I. Bazarov*, S. Belomestnykh*, D. Bilderback*, K. Finkelstein*,
E. Fontes*, S. Gray*, S. Gruner*, R. Helmke*, G. Krafft[†], L. Merminga[†],
H. Padamsee*, Q. Shen*, C. Sinclair[†], R. Talman*, M. Tigner*

Supported by NSF Coop. Agrmts PHY 9809799, DMR-9713424

Supported by US DOE No. DE-AC05-4ER40150

Critical electron beam parameters

6D Phase Space Area:

- Horizontal Emittance {x, x'}
- Vertical Emittance {y, y'}
- Energy Spread & Bunch length {ΔE, t}

Number of Electrons / Bunch, Bunch Rep Rate: I_{peak}, I_{average}

What exactly is emittance?

$$\varepsilon_{x} = \sqrt{\left\langle x^{2} \right\rangle \left\langle \theta_{x}^{2} \right\rangle - \left\langle x \theta_{x} \right\rangle^{2}}$$

emittance [mm mrad] ~ source size · divergence

Liouville's Theorem: phase space volume is "incompressible fluid" ³

Adiabatic Damping

 $\boldsymbol{\epsilon}_n$ is invariant since

{x; $p_x = mc^2 \beta \gamma \cdot \theta_x$ } form canonically conjugate variables 4

Why electron emittance matters?

electron phase space

x-rays phase space

 $[\]varepsilon_{ph} = \lambda / 4\pi$ Diffraction Limit (Heisenberg uncertainty principle)

Storage Ring Case

Equilibrium

Emittance (hor.), Energy Spread, Bunch Length

Storage Ring Case (cont.) **Touschek Effect e1** p₁ in X p₁ out p2 out 7 p₂ in e2

Beam Lifetime vs. Space Charge Density

SR 2001 ERL X-ray SR Source Topology

Single linac scenario

Pros: only one loop Cons: energy ratio of $\sim 10^2 - 10^3$

Split linac scenario

Pros: energy ratio of ~10–10²; more flexibility for longitudinal phase space manipulations Cons: two loops

Multipass scenario

Pros: srf structure is only half (or 1/N) the size Cons: higher current (×N) in the linac; unstable @ ~10s mA

Parameter	Value	Unit
Beam Energy	5-7	GeV
Average Current	100 / 10	mA
Fundamental frequency	1.3	GHz
Charge per bunch	77 / 8	рС
Injection Energy	10	MeV
Normalized emittance	<mark>2 / 0.2</mark> *	μ m
Energy spread	0.02-0.3*	%
Bunch length in IDs	0.1-2*	ps
Total radiated power	400	kW

* rms values

Quick Run Through the Main ERL Components ...

- Electron Source
- Superconducting Linac
- Transport Loop
- Undulators
- Used Beam Dump

Electron Source

Advanced

Space Charge Emittance Compensation in the Injector

electron bunch

Goal: To approach thermal emittance of the Gun

Superconducting Linac

o an 2 mobilin davity

RF Control

Transport loop is similar to that of a storage ring flexibility to perform longitudinal gymnastics ...

... and very loooong undulators

SR 2001 ERL X-ray Source Average Flux and Brilliance

SRI 2001 ERL Peak Brilliance and Ultra-Short Pulses

Sub-ps bunches: how to make those in ERL?

Gun Main Linac Undulators **17 ps** \rightarrow **2 ps** \rightarrow **0.1 ps**

ESRF 6 GeV @ 200 mA

$$\label{eq:sigma_x} \begin{split} \epsilon_{x} &= 4 \text{ nm mrad} \\ \epsilon_{y} &= 0.01 \text{ nm mrad} \\ B &= 5 \times 10^{20} \text{ ph/s/mm}^{2}/\text{mrad}^{2}/0.1\%\text{BW} \\ L_{\text{ID}} &= 5 \text{ m} \end{split}$$

ERL 5 GeV @ 100 / 10 mA

$$\begin{split} \epsilon_{x} &= \epsilon_{y} = 0.2 \ / \ 0.02 \ nm \ mrad \\ B &= 10^{22} \ ph/s/mm^{2}/mrad^{2}/0.1\%BW \\ B &= 3 \times 10^{22} \ ph/s/mm^{2}/mrad^{2}/0.1\%BW \\ L_{\text{ID}} &= 25 \ m \end{split}$$

Challenges to be resolved

- Low emittance production & preservation
 - Achieving thermal emittance from gun (emittance compensation)
 - CSR, wakes (77 pC, not 1 nC!)
- Photocathode longevity at high average current (vacuum)
- Longitudinal phase space preservation in bunching (curvature correction)
- ➢ BBU in the main linac (HOMs damping)
- > Beam loss ~ μ A (halo)
- Highest Q_L possible (microphonics)
- ➢ Diagnostics …

^{SR 2001} Cornell involvement in ERL work

- 1965 Original ERL concept for HEP purposes proposed by Maury Tigner
- 1999 LNS director-to-be (Tigner) and CHESS director (Gruner) discuss ERL X-ray Source.
 Presented to CHESS Advisory Board in early 2000.
- August, 2000 ERL Machine Workshop at Cornell with JLAB contribution
- December, 2000 ERL Science Workshop at Cornell
- July, 2001 Proposal submitted to the NSF for a prototype ERL, based on studies by Cornell and JLAB scientists

Goals of Cornell ERL Project

- Initial R&D of ERLs
- Build and Test a Phase I machine (100 mA, 100 MeV) to resolve machine issues
- Design and Build a high energy ERL (5-7 GeV) X-ray facility
- Perform R&D on utilization of ERLs and their X-ray and electron beams

Beam Energy Injection Energy Beam current

100 MeV 5-8 MeV 100 mA * rms values