THz Radiation: Opportunity with ERL Prototype (Part II)

Contents:

• What are T-rays?
• How to make them?
• Spectroscopic techniques for THz range
• Applications
• ERL prototype as a source of T-rays
What are T-rays?

THz range is roughly defined as frequency \(0.1 - 10\) THz

wavelength \(0.03 - 3\) mm

energy \(0.4 - 40\) meV

e.g. \(300\,^\circ\text{K} = 25\) meV

Recent review paper:
Ferguson and Zhang in Nature 2002
“Materials for THz science and technology”
THz-TDS: “Coherent” Detection

THz Detector

- 5-10 μm
- 30 μm
- 5 μm
THz-TDS: Signal Processing
THz-TDS: Signal Processing

Sample Out (Reference)

Sample In

Numerical Fast Fourier Transform
Water Vapor Spectrum

\[\frac{E_s(\omega)}{E_r(\omega)} = e^{-k''(\omega)z} e^{i[k'(\omega) + k_o(\omega)]z} \]

Amplitude \hspace{1cm} Phase

\[k(\omega) = k' + ik'' \quad k_o = \frac{2\pi}{\lambda} \]

absorption and index
Applications

- Imaging
- Chemical analysis
- Communication
- Biomedical applications
- THz Hall effect
- Study of high-T_c superconductors
THz Imaging using electro-optic detection

Cons: poorer SNR 100:1 as opposed 10000:1 for ‘traditional’ THz-TDS
Pros: speed

T-ray tomography examples
acquisition time ~ several hours
$n(\omega)$ info in 3D

(a) turkey bone
(b) vial and plastic tube
Spatiotemporal imaging

dipole radiator 1D spatiotemporal image →
(available at video rate)
Can you see a gun?
Can you see a gun? What about knife?
Chemical Analysis

- Rotational, skeletal vibrations
- Many large molecules have unique spectrum in this range (fingerprint region)
- Flame spectroscopy
- Gas sensor (auto). Not sensitive to the presence of particulates (soot)
- Likely to use heterodyne detection to improve frequency resolution
- Good for detection of simple molecules (H$_2$O, CO, O$_2$, etc. – traditional application in astronomy and space)
THz Communication

There is a window in H₂O absorption around 400 GHz

Transmission range is comparable with 60 GHz radiation due to increased gain of antenna (∝ λ²) of the same area

Has to be relatively short distance (point-to-point)

E.g. for 6 dBm (4 mW) source and receiver's sensitivity of -90 dBm, transmission length is 2.0 km. Increasing trans. power by 10³ increases the range by only 1 km!

More resistant to fog, smoke than IR

Channel capacity is estimated to be 380 Gbps (for comparison ISDN is 600 Mbps)

Challenges in THz circuitry manufacturing (state of the art ∼ 100 GHz)
Absorption Spectrum for Atmosphere
Biomedical applications

Pros:
• Non-ionizing
• Far less Rayleigh scattering \((\propto \lambda^{-4}) \)

Cons:
• Water (although can be an advantage, e.g. monitoring water-content in burns). THz penetration length is \(\sim 1 \text{ mm} \)
• Resolution limited in con-focal microscopy to \(\lambda/\sqrt{2} \)

\[
\begin{align*}
\frac{E_t(\nu)}{E_0(\nu)} &\approx t_{01}(\nu)t_{02}(\nu)e^{i\phi(\nu)kd} \\
&= t, \text{ transmission}
\end{align*}
\]

\begin{align*}
\phi(\nu) &= \text{complex refr. index} \\
kd &= \text{Fresnel coefficients}
\end{align*}
Biomedical Applications: Exposure Limits

• Specified in terms of maximum permissible exposure (MPE)

$$MPE_{PW} = \frac{A \times MPE_{CW}}{F \times t}, \quad MPE_{CW} = 100 \frac{mW}{cm^2}$$

• Sources now typically have $\sim 1 \mu W$ at best
• Generally speaking 1 mW CW is at the threshold for medical applications
• THz-bridge project

http://www.frascati.enea.it/THz-BRIDGE/
Biomedical Application Example

Lasch et al., “Imaging of human colon carcinoma thin sections by FTR-IR microspectrometry”

Basic idea:

Use computer-based pattern recognition techniques to assign various regions to a particular bio-tissue. Unlike classical spectroscopy, IR spectrum in finger-print regions displays very broad features, thus, computer-based recognition techniques are essential (c.f. speech recognition).

1) some parameterization algorithm that converts entire waveform to a vector of dimension, N.

2) ascribe this vector to other known materials in the database.
Recognizing patterns

1: Lamina muscularis mucosae
2: Lamina propria mucosae
3: crypts
4: unknown pattern
5: connective tissue
6: adenocarcinoma

spectral similarity
low
high
Biomaterial Applications

- DNA structures have helix, base twisting, and librational modes in the 20 – 100 cm\(^{-1}\) range
- Sample has to be very dry otherwise humidity becomes a factor (H\(_2\)O absorption at 1 THz is 235 cm\(^{-1}\))
- There is a clear difference in refractive index in THz range for hybridized and denatured DNA
- Detection of DNA mutation of a single base pair with femtomole sensitivity has been demonstrated
- There is an effort to develop “label-free” T-ray biosensor (as opposed to biochips)

T-ray biosensors?

Ferguson and Zhang in Nature 2002
“Materials for THz science and technology”

Differential THz-TDS: SNR up to 10^8

0.3 ng cm$^{-1}$ of avidin
High-T_c Superconductor Studies Using THz-TDS

Kaindl et al., in Phys. Rev. Let. 2002
“Far-Infrared Optical Conductivity Gap in Superconducting MgB$_2$ Films”

- Measurement of superconducting energy gap (5 meV for MgB$_2$, for $T_c \sim 39K$)
- Magnetic penetration depth

FIG. 1. (a) Electric field transients transmitted through the 100 nm MgB$_2$ film at $T = 6$ K (solid line) and 40 K (dashed line). Inset: resistance of the 200 nm (dots) and 100 nm (open squares) film corresponding to $\rho(40$ K) ≈ 10 and 100 $\mu\Omega$ cm, respectively. (b) Transmission T normalized to $T(40$ K) as obtained from the transients for the 100-nm-thick film at $T = 6$ K (dots), 20 K (open circles), 27 K (solid diamonds), 30 K (open diamonds), and 33 K (solid squares). (c) Results for the 200-nm-thick film at $T = 6$ K (dots), 20 K (open circles), 25 K (solid diamonds), 30 K (open diamonds), and 36 K (solid squares).
THz Hall Effect Study of Semiconductors

- Hall effect is the method of choice for measuring DC properties of thin doped epitaxial layers of semiconductors
- Uses the so-called “4-point probe” method (cf. complex conductivity tensor measurements)
- Contact resistance is an issue

- Instead, T-rays serve as applied E-field. Sample reradiates (Hall-field) in different polarization. Measure the two polarizations.
- Use Drude model to infer carrier density N and mobility μ with 250 μm spatial resolution (~ order of magnitude smaller than is achievable with best 4-point probe method).
THz Hall Effect Study of Semiconductors

Mittleman et al. in IEEE Quantum Elect. 1996
“T-ray imaging”

Fig. 13. Schematic of the setup used for terahertz Hall effect measurements, showing permanent 1.3-T magnet, free-standing wire grid polarizing beam splitter, and two receivers operating in parallel for simultaneous detection of two orthogonal polarizations.

Fig. 15. Terahertz images of the sample from Fig. 14, generated as described in the text. Variations in the doping density are shown in (a), while (b) shows inhomogeneities in the carrier mobility. In each case, the legends show the relation between the color scale and the calculated parameter values.
ERL as THz source

- High CW power levels available (hundreds of W)
- Works for various ways of light production as long as spectrum from a single electron covers ~ bunch length wavelength part:
 - bending magnet
 - diffraction radiation
 - transition radiation
 - (dedicated) undulator (can be FEL)
- Dedicated THz source
Radiation from a Bend Magnet

\[\frac{d^2 I}{d\omega d\Omega} = [N + N(N - 1)f(\omega)] \frac{d^2 I_0}{d\omega d\Omega}, \quad f(\omega) = \left| \int \exp \left(\frac{i\omega z}{c} \right) S(z) dz \right|^2, \text{ for } N \to \infty \]

Form factor

Gaussian

\[f(\omega) = \exp \left(-4\pi^2 \frac{\sigma^2}{\lambda^2} \right) \]

Uniform

\[f(\omega) = \frac{\text{sinc}^2 \left(\frac{2\pi l}{\lambda} \right)}{\text{rms}} \]

\[\text{half length} \]

\[\text{Incoherent} \quad \text{Gaussian Dist.} \]

\[\text{Incoherent} \quad \text{Uniform Dist.} \quad \text{Envelope} \]
Power levels

- Assuming Gaussian profile (the worst case)

\[
p_{\text{coh}}^{(N)} = \frac{1}{4\pi \varepsilon_0} \frac{N^2 e^2 c}{\rho^2} \left(\frac{\sqrt{3}}{\sigma_\alpha} \right)^{N^3} \times \frac{1}{2\pi \sqrt{3}} \left[\Gamma \left(\frac{2}{3} \right) \right]^2
\]

\[
U_d [\text{eV}] = 198 \frac{q[\text{pC}]}{\sigma_z[\text{mm}]^{4/3}} \rho[\text{m}]^{1/3} \frac{\theta_d[\text{deg}]}{360^\circ}
\]
Dedicated THz Source
Dedicated THz Source

• Don’t need high energy (injector part is enough)
Dedicated THz Source

• Don’t need high energy (injector part is enough)
• Generate abrupt longitudinal profile
to reach higher THz frequency
Dedicated THz Source

- Don’t need high energy (injector part is enough)
- Generate abrupt longitudinal profile to reach higher THz frequency
- Wiggler / undulator can be used to reach higher THz frequency range more efficiently in OK FEL configuration
Dedicated THz Source

• Don’t need high energy (injector part is enough)
• Generate abrupt longitudinal profile to reach higher THz frequency
• Wiggler / undulator can be used to reach higher THz frequency range more efficiently in OK FEL configuration
• Synchronization with < 1 ps is essential for TDS coherent detection
Dedicated THz Source

- Don’t need high energy (injector part is enough)
- Generate abrupt longitudinal profile to reach higher THz frequency
- Wiggler / undulator can be used to reach higher THz frequency range more efficiently in OK FEL configuration
- Synchronization with < 1 ps is essential for TDS coherent detection

Conclusion: THz light production is easy!