Considering an ERL x-ray source based on double acceleration

Considering an ERL x-ray source

- Outline

- Power crisis for ERL
- Optimizing for flux, brightness, brilliance
- Injector performance
- Layout of ERL x-ray source

POWER BILL 20 MW

Estimates of ERL power-

	Total:	19 MW
Magnet power supplies		< 1 MW
Injector rf power	• • • • • • • • •	2 MW
Main linac rf power	••••	7.5 MW
Refrigeration	• • • • • • • • •	8.6 MW

Estimates of ERL power 16 MW 8.6 MW Refrigeration 7.5 MW Main linac rf power Injector rf power 2 MW Magnet power supplies < 1 MWTotal: 19 MW Ivan Bazarov, Considering an ERL x-ray source, CHESS Journal Club, 8 August 2003 4 CHESS / LEPP

CHESS / LEPP

- Need half the linac
 - \checkmark linac cost
 - ✓ power (~ 9 MW)

- Need half the linac
 - \checkmark linac cost
 - ✓ power (~ 9 MW)
- BBU is currently limited to $\sim 20 \text{ mA}$

- Need half the linac
 - ✓ linac cost
 - ✓ power (~ 9 MW)
- BBU is currently limited to $\sim 20 \text{ mA}$
- Beam current in linac would be 400 mA (difficult even for storage rings), e.g. beam induced losses would go up by a factor of 4

– Multipass configuration

200 µA only. Each energy has its own arc.

– Multipass configuration

200 µA only. Each energy has its own arc.

With 400 mA in linac, such machine is more vulnerable to **BBU**

Multipass beam breakup

9

Suggestion: drop the average current (~ 30 mA) and do two-recirculations

Suggestion: drop the average current (~ 30 mA) and do two-recirculations

Pros: real savings (both construction & operation)

Suggestion: drop the average current (~ 30 mA) and do two-recirculations

Pros: real savings (both construction & operation) higher injection energy (~ 20 MeV)

Suggestion: drop the average current (~ 30 mA) and do two-recirculations

Pros: real savings (both construction & operation) higher injection energy (~ 20 MeV) lower space charge (improved brilliance)

Suggestion: drop the average current (~ 30 mA) and do two-recirculations

Pros: real savings (both construction & operation) higher injection energy (~ 20 MeV) lower space charge (improved brilliance) more room for undulators

- Trapped in ~ 20 MW ERL?

Suggestion: drop the average current (~ 30 mA) and do two-recirculations

Pros: real savings (both construction & operation) higher injection energy (~ 20 MeV) lower space charge (improved brilliance) more room for undulators

Cons: lower flux per meter of insertion device

CHESS / LEPP

- Flux: how many bulbs does it take?

- Flux: how many bulbs does it take?

FLUX

BRILLIANCE

Ivan Bazarov, Considering an ERL x-ray source, CHESS Journal Club, 8 August 2003

- <u>Naïve</u> scaling for <u>ERL</u> x-ray source

If source is completely dominated by e⁻-beam

Flux	ph/s/0.1%bw	$\propto I$
Brightness	ph/s/mrad ² /0.1%bw	$\propto I/\epsilon$
Brilliance	ph/s/mm²/mrad²/0.1%bw	$\propto I/\epsilon^2$

assuming $\in \propto q$

 $F \propto I$ $dF/d\Omega \propto \text{const}$ $B \propto 1/I$

If near the diffraction limit, it's current that matters

optimizing brilliance

Ivan Bazarov, Considering an ERL x-ray source, CHESS Journal Club, 8 August 2003

$$\frac{dF_n}{d\Omega} = \frac{F_n}{2\pi\sqrt{\sigma'_{cen}^2 + \sigma_{x'}^2}\sqrt{\sigma'_{cen}^2 + \sigma_{y'}^2}}$$

$$\frac{dF_n}{d\Omega} = \frac{F_n}{2\pi\sqrt{\sigma'_{cen}^2 + \sigma_{x'}^2}\sqrt{\sigma'_{cen}^2 + \sigma_{y'}^2}}$$

$$\frac{dF_n}{d\Omega} = \frac{F_n}{2\pi\sqrt{\sigma'_{cen}^2 + \sigma_{x'}^2}\sqrt{\sigma'_{cen}^2 + \sigma_{y'}^2}}$$

$$\frac{dF_n}{d\Omega} = \frac{F_n}{2\pi\sqrt{\sigma'_{cen}^2 + \sigma_{x'}^2}\sqrt{\sigma'_{cen}^2 + \sigma_{y'}^2}}$$

$$\frac{dF_n}{d\Omega} = \frac{F_n}{2\pi\sqrt{\sigma'_{cen}^2 + \sigma_{x'}^2}\sqrt{\sigma'_{cen}^2 + \sigma_{y'}^2}}$$

CHESS / LEPP

optimizing brightness

Ivan Bazarov, Considering an ERL x-ray source, CHESS Journal Club, 8 August 2003

- Intuitive picture of undulator radiation

– Flux (central cone) through aperture

For aperture σ_a at distance *D*, $\sigma'_a = \sigma_a / D$

electron beam energy spread

- Brightness through aperture

For aperture σ_a at distance *D*, $\sigma'_a = \sigma_a / D$

Optimum β depends on the pinhole, usually large

Optimized brilliance

$$\frac{F_n}{(\lambda/2)^2} \frac{1}{\left(1 + \frac{\epsilon}{\lambda/4\pi}\right)^2} \frac{1}{\sqrt{1 + \left(\frac{N}{N_\delta}\right)^2 \frac{\sigma_{cen}^2}{\sigma_{x-ray}^2}}}$$
For optimum $\beta \approx \frac{L}{2\pi}$

Ivan Bazarov, Considering an ERL x-ray source, CHESS Journal Club, 8 August 2003

CHESS / I EPP

CHESS / LEPP

CHESS / LEPP

- Brightness scaling

— Need small energy spread

- Need small energy spread

• compress the bunch length (either in the injector or early on in the main linac)

- Need small energy spread

- compress the bunch length (either in the injector or early on in the main linac)
- compress energy spread

-Need small energy spread

- compress the bunch length (either in the injector or early on in the main linac)
- compress energy spread

- Need small energy spread

- compress the bunch length (either in the injector or early on in the main linac)
- compress energy spread

Figure 3. Energy spread compression using split linac configuration. On the left: longitudinal phasespace after the first section (solid line) and after properly chosen T_{566} (dashed line). On the right: the phase-space after linear and quadratic correlations have been removed after the second linac section. Phase-space distribution for on-crest operation is shown for comparison (dotted line).

— Laying out ERL x-ray source

We're starting from the wrong end!

Should layout x-ray laboritories, beamlines, undulators first.

Accelerator folks will produce the rest of it.

— Observation -

- Observation -

- Observation -

Ivan Bazarov, Considering an ERL x-ray source, CHESS Journal Club, 8 August 2003

— To do list

X-ray folks

 (re)calculate photon budget & design beamlines' frontend (30 – 70 m) with specific applications / science case in mind, layout lab-space, undulators (≥ 12, i.e. should <u>not</u> be less than CHESS beamlines)

Accelerator folks

• continue to resolve outstanding issues, proceed with detailed proposal for accelerator after the input from CHESS

