– RF emittance growth in the injector

- Cryomodule is integral part of the injector
- Must support small emittance
- Scale here is set by ≤ 0.1 mm-mrad
- RF emittance growth is due to time dependant transverse fields over nonzero bunch length (RF focusing, coupler kicks, tilted cavity)

Some comments

$$\varepsilon_n^2 = \varepsilon_0^2 + \varepsilon_{kick}^2 + \varepsilon_{focus}^2$$

- Kick effect on emittance is energy independent and can be cancelled downstream
- RF focusing effect scales $\propto \frac{1}{\gamma}$ and generally is not cancelled

$$\varepsilon_{kick} = \frac{1}{mc} \left| \frac{\partial p_x}{\partial z} \right| \sigma_x \sigma_z$$
$$\varepsilon_{focus} = \frac{1}{mc} \left| \frac{\partial^2 p_x}{\partial z \partial x} \right| \sigma_x^2 \sigma_z$$

elsewhere!) from tolerances' point of view

Typical injector settings in sims Image: Image:

	=	
Gun	10	n/a
Buncher	3.0	-90
Cavity 1	12.3	-3
Cavity 2-5	25.3	-1.5

	Peak B_z field (kG)
Solenoid 1	0.58
Solenoid 2	0.42

Charge / bunch (pC)	80
Distribution (x, t)	uniform
$\sigma_x (mm)$	0.6
σ_t (ps)	12

Ivan Bazarov, RF emittance growth in the injector, Cryomodule mtg, 14 March 2004 6

– Summary

- Tilt tolerance is phase dependant. Assuming 15 RF deg maximum off-crest angle, tolerance of ~ mrad is required. Several mrad might be fine if the beam is not run off-crest.
- RF focusing in the 1st cavity is a noticeable contributor to the emittance. It is good enough to make displacement of the 1st cavity to be half of the rms beam size, thus, **0.5 mm** for the 1st cavity position alignment should do the job. Other cavities can be worse than that.

