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e Intro to ERL as an x-ray light source
e Overall 1njector layout
e Injector optimizations (without the merger)

 DC gun & photocathode & laser 1ssues for
beam brightness

e Matching to the main linac & merger

 Beam physics experimental program
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e For a properly tuned undulator (non-SASE): x-ray .
phase space 1s a replica from electron bunch + \-\-.
convolution with the diffraction limit -

\

e ideally, one wants the phase space to be diffraction ....
limited (i.e. full transverse coherence), e.g. €,
= M/4m, or 0.1 A for 8 keV x-rays (Cu K,), or
€ ms = 0.1 um normalized at 5 GeV

Flux ph/s/0.1%bw
Brightness ph/s/mrad?/0.1%bw
Brilliance ph/s/mm?/mrad?/0.1%bw
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e extends linac opera-
tion to high average
currents

e reduces beam dump
energy
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Injctor Dump

ESRF 5GeV@100mA |—| ERL 5GeV@100mA ESRF 5GeV@100mA |~ ERL 5GeV@100mA

Diffraction limited @ 8keV
ERL emittance (0.015nm)

ESRF emittance
(4nm x 0.01nm)

Much smaller (x100) horizontal emittance Much shorter (xX100) pulses
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e Brightness figure of merit (FOM)

Light source | I(A) | g (nm-rad) | & (nm-rad) FOM (A/nm?/rad?)
ESRF 0.2 3.7 0.010 3.0
Petra-III 0.1 1.0 0.010 5.5
NSLS-II* 0.5 1.54 0.008 20.24
UHXS(ESRF) | 0.5 0.2 0.005 185.6

e 5 GeV ERL to achieve the same brightness per m of ID as Petra-II1
/ NSLS-1I / UHXS(ESRF) needs 1.3 /0.6 / 0.15 pum rms normalized
emittance for 77 pC bunch (100 mA average current at 1.3 GHz
bunch rep rate) assuming no emittance degradation downstream

* without use of damping wigglers
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« HV DC gun based photoinjector
e up to 100 mA average current, 5-15 MeV beam energy

e norm. rms emittance <1 um at 77 pC/bunch
e rms bunch length 0.6 mm, energy spread 0.1%

January 13, 2007 LV. Bazarov, ERL Injector Talk @ UMD, 01/09/07 10



Y\ Cornell University

5 Laboratory for Elementary-Particle Physics ERL inj eC tor C Omp Onents

= = &
iz | oA
e . T ot i, - O s =

et i@ At ig-oB “Bea ® IR L%

,ﬁ?‘" _ati“'@“‘f‘; e
et = B
X

&

DC gun
e Designed & built for 750 kV max voltage

e (Cathode preparation chamber with load-lock for
cathode transport into the gun

e Excellent vacuum in the low 10-? Torr range
(essential for good lifetime of NEA photocathodes)
by reduction of outgassing (H) via 400 C air-bake,
20000 I/s NEG pumping capacity and 400 I/s 1on

puimp
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Injector front end

 Two solenoids for emittance
compensation and matching
into the injector’s linac

e Copper buncher cavity with |..
max bunching voltage of 200
kV
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Injector cryomodule

e 5 SRF cavities with

symmetric input couplers
to avoid RF kick

e Broadband ferrite HOM absorbers
0.5 MW installed RF power, adjustable coupling

* Energy gain per cavity 1-3 MeV
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Matching section & merger

4-quad telescope

e 4-quad telescope for flexible
matching into merger & main linac

e 15° 3-bend acrhomat followed by diagnostics section designed
to take low beam power (~ 100 WA average current)
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diagnostics c

Diagnostics line & how power dump

e chicane and straight-ahead beamline which handles average
beam current of up to 100 mA

e Interceptive and non-interceptive diagnostics for
characterization of single bunch and intra-bunch effects
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Serafini PRE 55, 7565

I S/
K= et e 0= R
focusing  s.c. erAittansge

Needle beam: /—/Ig({)

linearize
Ig(¢) \"~% . .
Te(g(0)= ( 21 (By)°K ) equilibrium flow condition for slice
., Ig({) B
oo"({)+| K, + 21 (By Sﬂ'gqg(g) oo({)=0 or

oscillation frequency current independent

50"(0) 2K pa() =0,
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» Cut the number of decision variables to some reasonable
number (2-4) perhaps by using a simplified theoretical model
to guide you in this choice

» Large regions of parameter space remain unexplored

» Optimize the 1njector varying the remaining variables with the
help of a space-charge code to meet a fixed set of beam
parameters (e.g. emittance at a certain bunch charge and a
certain length)

* One ends up with a single-point design without
capitalizing on beneficial trade-offs that are present in
the system

Primary challenge in exploring the full parameter space is computational speed
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> work harder » processor speed
> work smarter - (- » algorithms
* get help » parallel processing

Solution: use parallel MOGA
MnultiObjective Genetic Algorithm

* throw 1n all your design variables

* map out whole Pareto front, 1.e. obtain
multiple designs all of which are optimal
» use realistic injector model with your
favorite space charge code

Master

Genetic operators:
selection, cross-over, efc.
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Slaves Ob]ectlves evaluatlon
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maximize  f,,(x1,29,....2,), m=1,2,...,M:)

subject to  g,(x1,x2,...,2,) >0, j=1,2...,J; }
L U :

aﬁg)gxi_gxg )3 1=1,2....,n.

Definition 1. A solution x, is said to dominate the
other solution a; if the solution x, s not worse than
x, 1 all objectives and ax, s strictly better than x; in at

least one objective. In other words, Ym € 1,2,.... M :
Fn(@a) > fn(@y) and Im’ € 1,2, M : fo(w,) >
fm"(ajb)'

Definition 2. Among a set of solutions P, the nondom-
inated subset of solutions P’ are those that are not dom-
inated by any member of the set P.

When the set P is the entire search space
resulting nondominated set is called the

(Pa'r'eto—op timal Set)

Vilfredo Pareto, 1848-1923
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Fields: Positions:
DC Gun Voltage (300-900 kV) 2 Solenoids
2 Solenoids Buncher
Buncher Cryomodule
SRF Cavities Gradient (5-13 MV/m)
SRF Cavities Phase
Bunch & Photocathode: Laser Distribution:
thermal SpOt size
Charge Pulse duration (10-30 ps rms)

{tail, dip, ellipticity } X 2

Total: 22-24 dimensional parameter space to explore
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Takes some 10° simulations Eqerm = 35 meV (aka GaAs @ 780 nm)
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FIG. 10: Transverse emittance vs. bunch length for various FIG. 11: Longitudinal emittance vs. bunch length for various
charges in the injector (nC). charges in the injector (nC).

-

minimize emittance
MOQO problem: < minimize bunch length
 maximize bunch charge
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]Oﬂ}/ (O-x + O-y )gj,x

emittance dominated beam if R << 1

R

Beam in optimized injector is space
charge dominated even at > 10 MeV

z(m)

FIG. 3: Beam evolution in the injector for 80 pC bunch
charge: transverse (a) and longitudinal (b} emittances
(dashed) and sizes (solid) vs. position in the injector.
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e Parallel multi-objective optimizations 1s a powertul
tool to explore limits of the system

 [s not meant to substitute but rather complement
analytical & intuitive picture of what’s going on

e Not a substitute for accurate model of the physics of
what’s going on (1.e. ‘garbage in, garbage out’)
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Thermal (cathode) |« » RF-induced

'\ /V

Space charge

e Low thermal energy | * Rapid acceleration | ¢ short bunch length

photocathodes e ‘adiabatic’ focusing | e tight focus

* Min laser spot size and bunching e reduced field

e Max gun voltage e Transverse laser gradient
shaping

e Temporal pulse
shaping (fast emission
photocathodes)

. helps here, neutral elsewhere . helps here, may harm elsewhere

January 13, 2007 LV. Bazarov, ERL Injector Talk @ UMD, 01/09/07 25
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£, = (N p2)—(xp,)
mc
dp, 9, 9°p
(x,2)=p 0,0)+—x+—2z+ 2 xz+...
P P ox  dz ooz
\ J \ J
k'Yk focz/\t(sin
kick “ § focusing
tp, tp,
tail head
> >
X X
1 |op, 1 |0°
gkick P O-xo-z gfocus — px O-x2o-z
mc | 0z mc | dz0x
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FIG. 12: Histogram showing (a) thermal emittance and esti-
mated RF correlated emittances due to (b) the buncher and
the first two SRF cavities (c,d) relative to the final trans-
verse emittance for optimized injector settings with the bunch
charge between 10 pC and 1nC.
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More often than not A >> 1 1n photoinjectors, 1.e. the bunch looks
like a pancake near the cathode (!).

From PHYS101 (note a factor of 2 due to image charge)

L. _0 L9 = 47 oEcar®
€o = 0.11XE_,[MV/m]o [mm]’ nC

Lower limit on emittance due to cathode and available field:

E, [eV]
E . [MV/m]

£ [mm - mrad] = 4 \/ q[nC]
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stk o _ D0
N —
E..n =120 MV/m E..n =43 MV/m E..n =8 MV/m
Tiaser = 2-/ PS rMSs Tiaser = 2-8 PS rms Tiaser = 13 PS rms
Olaser = 0.5 MM rms Ojaser = 0.85 mm rms Olaser = 2 MM rMSs
Tiaser — Z = 0.08 mm Tiaser — Z = 0.12 mm Tiaser — Z = 0.12
mm
2x18 MV/m . 2x6 MV/m . 2x1 MV/m
Ecath / Es.charge = Ecath / Es.charge = Ecath / Es.charge

same simulated emittance
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Gun technology choice

Emittance compensation can be achieved despite
reduced flexibility in solenoid positioning

Q [nC] Rms bunch Ex [mm- Cathode Band
Length mrad] material(&) | Peak field
(compressed)
RF 1/0.2 2.8ps/ 1.7 ps 0.72/0.3 (™) | Copper, S-Band
700 meV [120 MV/m]
DC 1/ 0.1 3ps / 3ps 0.8/0.14 (*) | GaAs [15 MV/m]
35 meV (Average)
SRF | 1/01(*) | 5.7 ps/ 2.7 ps 0.8/ 0.23 “‘metallic”® L-Band
(**) 184 meV [60MV/m]
(*) scaled
(**) limited by thermal emittance o a1~ 4 |incy_EuleV]
(&) Copper and GaAs use measured values, e E, . IMV/m]

but SRF gun uses generic metallic cathode
number for thermal emittance (0.3 mm-mrad per 1 mm full radius)

RF and DC guns computations are based on optimum emission pulse
“3D-ellipsoid”, whereas SRF gun computation uses “beer can”

January 13, 2007
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angle), brings emittance down by a factor of ~2

scanning laser spot on the cathode to increase re-Cs interval)

0.65 0.7

Focusing at the cathode 1s achieved through electrode shaping (25°

The drawback 1s increased aberrations from the gun (an i1ssue when

January 13, 2007
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Extremely high gun voltage?

Distance to 15t SRF cavity
1.25 m 273 m

0.258
% (a)
o2ty

=

o

£

IE 0.15 '\

= )

" “ v
0.1 ‘ .
O0%0 a0  s00 600 700 800 900

Vo (kV)

gun

FIG. 5: Emittance vs. voltage in the gun for (a) 80 pC and (b)
0.8 nC bunch charges. The average bunch length correspond-
ing to these calculations was (a) 0.8 mm and (b) 0.9 mm.

Adopted distance to the 15t SRF cavity 2 m
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FIG. 6: Initial distribution profiles corresponding to minimal
emittance at the end of the injector for (a) 80pC and (b)

0.8 nC cases.

e Large factor (~5) in emittance
. FIG. 7: 80 pC: emittance sensitivity (solid curve) to the lon-
1S eXpeCted from p I Oper gitudinal pfoﬁlee ]é}ialfé:;e(tii)] z?nldxtheoc-.]cc)rfe}:p‘;nclicr)lg 1piraci)iIlle
transverse and longitudinal =~ e Portom)

pulse shaping
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Refractive beam shaper from Newport for transverse
o=

e Birefringent crystal set pulse stacker for temporal

Time (ps)

Intensity (a. u.)

C1 C2 C3 Cc4
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PN
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Absorption edge of GaAs at room temperature.

1.7

NEA:GaAs response time

(1) photon excites electron to a
e higher-energy state;

(2) electron-phonon scattering
(~0.05 eV lost per collision);

(3) escape with kinetic energy in

excess to E
VACUUM vac

In GaAs the escape depth is sufficiently
long so that photo-excited electrons are
thermalized to the bottom of the conduction
band before they escape.

Response time ~ (104 cm)/(107 cm/s) = 10
ps (wavelength dependant) — may preclude
use of optimum pulse duration & temporal
shaping — will use longer pulse

January 13, 2007
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Tolerances for optimum

10% increase in
emittance (p-t-p)

BunPhase 3.5°
Cavl1Phase 3.0°

o L B s Ecavl 3.8%
Lphase 2.4°

Bl 0.37%

. B2 0.85%
Qbunch  3.7%
7777777777777777777777777777777777777 Trms 8.0%

L : Vgun 0.39%
XYrms 2.4%
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 Beam has to be matched into the main linac and
taken through the merger while being space-charge
dominated — work out procedures for space-charge
friendly optics tune-up procedures

* Final beam properties are very sensitive to about ten

different parameters that need to be ‘set right” —
controls and diagnostics must be up to the task to
provide the necessary guidance
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e Virtual injector allows absolute control of parameters, real system with a

dozen of sensitive parameters will not
100 random seeds (outliers removed)

ave(e,) = 1.04 um  ave(g,) = 0.95 um

Spot size rms 0.640 £ 0.057 mm 4t std(e,) =0.52 um  std(e,) = 0.62 um
Charge 80+ 5.8 pC ’

Solenoidl Bmax 0.491 £ 0.010 kG
Solenoid2 Bmax 0.532 %+ 0.010 kG
Cavity1 phase -41.6+ 1.7 deg
Cavity2 phase -31.9+ 2.0 deg
Cavity3-5 phase  -25.7 £2.0 deg :
Buncher Emax 1.73 £0.04 MV/m °
Cavityl Emax 154+0.3MV/m 4t
Cavity2 Emax 26.0 £ 0.5 MV/m
Cavity3-5 Emax 27.0£05MV/m &

Pulse durationrms 21.5 £ 1.4 ps °

E I
o" 2l W

Q1_grad -0.124 £0.002 T/m " 2

Q2_grad 0.184+0.002 T/m |

Q3_grad 0.023 £ 0.002 T/m —— e
Q4_grad -0.100 £ 0.002 T/m % 5 10 15 20
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e Asymmetric transport — X-y coupling term in beam
envelope equation

 Energy change in non-zero dispersion section (CSR
and space charge) — emittance growth
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Ag, , csp = 0.2 um

oo o 80 ¢ 50 cm -
A-D1 1 t
A-D1 - 15°87, e e gan
A-D2

three 15-deg dipole merger bunch length before the merger is 0.6 mm
0.25 1.2

) =)

g g 14 | —e—fixed bend radius

£ 0.2 1 ’ £ —e— fixed dipole length

% § 0.8

%' 0.15 1 ‘%‘

5 5 0.6 1

3 0.1 8

S S 0.4 -

qE, 0.05 - aE> 0.0

1 c 0.2 1

a 3

0 T T T T T T T 0 - T T T T
0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 5 10 15 20 25 30 35
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Merger: space charge

space charge estimate in the merger
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Figure 4: Emittance growth in the merger due to space
charge for different injection energies. Initial rms normal-
ized emittance is taken to be 1 mm-mrad.
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BNL’s “zigzag” merger

15-20 MeV
From the SC RF Gun from ERL

2.5 MeV

0.(8)=0,+5-g(;)= 4 "Achromat"conditions

Optimized j K, (") my,(s")ds'=0; IKD (575 my, (s)ds' = 0;

0 0

TKG(S’). mu(S’)dS’ =0, IKD(S’) 'S mlz(S’)ds’ =0

0 0

— Good: emittance growth due to linear correlated energy
spread from space charge 1s canceled to first order

— Bad: does not separate 2 beams (works for BNL because
recirculating energy 1s only 15-20 MeV)

— Bad: 1s longer than Cornell’s present 3-bend acrhomat,
comparison yielded similar emittance growth for the two
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 Eliminate quad telescope and move the merger as
close as possible to the cryomodule. Rely on RF
focusing for beam matching. Live with asymmetry.

= 1]
S l; ) -, = ’é | b p‘f‘:ﬁ ”.1,;
ettt oo erOr-Auiei-oB ~Be-geit v el el s o —
g i o 'f B
.:'-*“"T-’Z? = '_ﬁ;: 3 + ‘a L = &‘I = [:
; i al
L L Ll

R
. Pl m-ﬂ.;_.--:.pﬁ__ ; B F & i & & 8 g P
=i S — & m =l s
: B el oy - [P - Ay . B I ea
Bt e T e e e i s e
= i
[ L I -+ "

January 13, 2007 LV. Bazarov, ERL Injector Talk @ UMD, 01/09/07 45



¥\ Cornell University

5 Laboratory for Elementary-Particle Physics EXp erimental pro gram

e I. Imtial gun/cathode/laser
characterization

— without space charge

e Laser temporal profile characterization
(optical)

u devlopment lab
e Gun focusing & aberration study as a function of voltage
 Thermal emittance characterization of GaAs, GaAsP

e Photocathode temporal response measurements

© a)z=0m b)z=045m c)z=4m d)z=84m

3 a AN

[

5 r/ G\l m . [ electron shape along the
© f . . .

*| | osmm | | | 28mm | 07mm™ | | 021 mm injector corresponding to

small emittance

G G4 G 0

10.5 ps 14.9 ps 29ps 2.8 ps

temporal
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e II. Nominal charger per bunch, low rep rate

— Emittance compensation without bunch compression:
gun followed by the solenoid;

— Benchmarking of existing space charge codes;

— Solenoid and gun voltage
scans; gun aberration study
in the presence of the space
charge for scanned laser

Transverse emittance: 300 kV voltage

0.8
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2 { i)

04r

Emittance X 4 smaller
than in the gun

02

0 0.5 1 1.5 2
position {m)
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 III. Full injector layout: setting up of elements with
prescribed strength, system debugging

— Without space charge
e Beam based alignment in optical elements;

e Setting RF phases

— Central orbit fitting to ensure agreement with the model
that uses realistic E&M field maps of the elements.
Calibration of control signals with descriptors used 1n the
simulations (to be preceded by implementation of
computational model to EPICS interface)
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e IV. Straight line injector performance (before
merger)

— Nominal bunch charge, low rep rate

e Use prescribed by simulations element settings. Measure
projected emittance after the SRF cryomodule. Compare with
extensive simulations done for this case.

e Stab at online emittance optimization. Quads remain turned off.
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e V. Longitudinal 1ssues
— Nominal bunch charge, low rep rate, to 0.6 MW dump

e Measurement of slice emittance (slit pair & TM110 cavity), and
the bunch length for optimum point found in [IV];

e Energy spread measurements with a screen in the chicane &
energy spread minimization;

e OTR bunch length measurements, bunch length measurements
with RF zero-phase method
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e VI. Through the merger

— Nominal bunch charge, low rep rate

e Setting of beta-function for space charge dominated beam
(quad telescope 1s employed starting from that stage). Initially,
setup the beam with negligible bunch charge and
BPMs/betatron phase advance (1.e. quads & merger debugging).
Eventually, the nominal charge per bunch 1s characterized at the
location of viewscreens, comparing the spot size with the code's

predictions.

e Series of emittance measurements (both planes) before and
after the merger. Study of the emittance growth as a function of
Twiss parameters (quads breaking 2D symmetry), bunch
length, bunch charge, beam energy.
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e VII. High average current

— Nominal bunch charge, high rep rate

e Flying wire transverse profile measurements and comparisons
with the low rep rate case;

e Flying wire transverse profile measurements in the chicane for
energy spread information, comparison with the low rep rate
case;

e THz non-interceptive diagnostics of bunch length, comparison
with the low rep rate case
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