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Talk outline

• Motivation
• Boundary conditions (ebeam optics)
• Diagnostics
• Initial conditions (laser & cathode)
• Simulations: Parmela3D and GPT
• Data analysis & comparison
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Motivation for the study

• ERL X-ray source is electron-source limited, needs 
ε⊥n ≤ µm at high avg. current (0.1A)

• Optimizations using space charge codes show ~0.3 
µm should be achievable

• Code vs. measurement benchmarking data that 
withstand serious scrutiny are sparse

• Important physics missing in mainstream codes? 
E.g. wakes, space charge force too grainy/smooth

• How credible are these predictions?
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Timeline

Feb, 2006 the NSF funds the ERL prototype
Jan, 2007 DC gun is built with diagnostics line
Mar, 2008 the DC gun beamline operation stops
Apr, 2008 100 mA SRF module installed; the DC gun

is moved and rebuilt for the 3rd time
Jun, 2008 first beam (~5 MeV)
Jul, 2008 ~15 MeV
Aug, 2008 the full injector beam experiments begin

100 mA, 5-15 MeV injector (95% complete)
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Simple beamline

EMSEMS

SOL1SOL1

VC1VC1

• 1.244 m from the photocathode to 
Emittance Measurement System

• DC gun followed by a solenoid
• Diagnostics!
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HV DC gun

• Highest voltage during HV processing 
~400 kV

• Plagued by field emission (traced to 
dust from ceramic coating “peeling off”
during HV processing)

• Thus, Vgun = 250 kV in these studies
cathode 
entry

laser

ebeam
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Solenoid

• Cathode to solenoid center distance is 0.335 m
• Solenoid center to the viewscreen/EMS is 0.909 m
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Emittance Meas. System 

• 20 µm precision double slits
• No moving parts; fast DAQ
• ~1 kW beam power handling

incident ebeam

armor slit (200 µµµµm)

precision slit (20 µµµµm)

actual distance 
between the slits

< 10% error 
due to s.c.
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EMS (2)

• roll compensation by 
small solenoid (~1°max)

• pitch/yaw compensation 
by correctors

• ⇒ relaxed tolerances

• scanner coils cancel to ≤ 1%
• sextupole-component free
• max scan rate ~200 Hz

scanner uniformity

viewscreen 
viewport

1st slit
2st slit

alignment 
solenoid

scanner coils

alignment 
correctors

e–
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RF deflecting cavity

• Essential diagnostics tool 
for temporal profile 
measurements; cathode 
response time

• ~1 ps rms resolution (100 
fs with collimation)



11Space charge meas. & sim May 2008, DESY ivan.bazarov@cornell.edu

Laser

• Frequency-doubled Yb-fiber soliton laser
• 2.5 ps pulses at 50 MHz, avg. power ~1W in green
• Shaped temporally using birefringent crystals
• Transversely spot is blown up and clipped with 2.6 

mm diameter aperture; then 1:1 imaged onto the 
photocathode (Newport shaper was tried as well)

Newport shaperbirefringent stacking
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Experimental procedure

• Setup 1:1 imaging on laser CCD camera
• Record laser transverse profile for each data set
• Run << pC charge/bunch, obtain temporal profile
• Obtain viewscreen images of ebeam transverse 

profile vs. solenoid current
• Obtain phase space scans vs. solenoid current
• Repeat for 80pC, 20pC and 0.5pC Spiricon CCD
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Some surprises

80 pC viewscreen XY data

SOL1=3.3A    3.4A          3.5A            3.6A           3.7A  3.8A           3.9A
“structure”

1mm

“structure”

80 pC EMS YY’ data

SOL1=3.7A                 3.8A

2mm

10mrad

nasty “tails”
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Laser stability

• Pointing stability of the laser 
spot 50-80 µm rms (needs 
much improvement)

• Laser intensity stability 2% rms
(OK)

laser profile on the cathode

77 ± ± ± ± 1.7 pC
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Beam based alignment

• Use ebeam based alignment of solenoid / gun to 
reduce potential causes of phase space asymmetry

• Solenoid (physically adjusted) / gun aligned to few 
10 µm; solenoid / beam axes parallel to few 10 µrad

beam centroid
solenoid scan

beam centroid (SOL1 = 0) 
grid pattern from the gun



16Space charge meas. & sim May 2008, DESY ivan.bazarov@cornell.edu

Initial temporal profile

• 3 stacking crystals were used
• Deflecting cavity data was fitted with 8 Gaussians to 

account for finite resolution of the setup
• Each Gaussian

assigned σ = 1 ps                                                              
(as measured by                                                 
optical auto-
correlation)

deflecting cavity measurement

actual profile
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Data
viescreen viescreen data (data ( xyxy ))

EMS data (EMS data ( yyyy ’’ ))

0 100%

80 80 pCpC

20 20 pCpC

80 80 pCpC

20 20 pCpC

0.5 0.5 pCpC

3.3A3.3A 3.9A3.9A

3.2A3.2A 4.2A4.2ASOL1SOL1

SOL1SOL1

SOL1SOL1

SOL1SOL1

3.8A3.8A3.4A3.4A

3.4A3.4A 3.9A3.9A

3.7A3.7A

1mm

1mm

4mm

10mrad

4mm

4mrad

3mm

8mrad
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Simulations

• Use measured laser transverse and temporal 
profiles to create 3D particle distributions

• Thermal emittance for GaAs at 520 nm is known 
from previous measurements to be 0.48 mm-mrad
per 1 mm rms spot

• Adequate convergence in GPT with 100k macro-
particles and 50x50x50 non-equidistant mesh

• Parmela3D runs had 100k with 64x64x64 mesh
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Parmela3D/GPT σσσσy
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Parmela3D/GPT εεεεny
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GPT boundary cond.

about 15% variation 
in εεεεny; unnoticeable 
difference in σσσσy
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Data vs. sim (80 pC, scr.)

datadata

Parmela3DParmela3D

GPTGPT

0 100%

SOL1SOL13.3A3.3A 3.9A3.9A

z = 1.244m
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Data vs. sim (20 pC, scr.)

datadata

Parmela3DParmela3D

GPTGPT

SOL1SOL1

z = 1.244m

3.3A3.3A 4.3A4.3A

0 100%
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Data vs. sim (80 pC, ems)

0 100%

z = 1.244m
datadata

Parmela3DParmela3D

GPTGPT

SOL1SOL13.4A3.4A 3.8A3.8A
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Data vs. sim (20 pC, ems)

SOL1SOL13.4A3.4A 3.9A3.9A

datadata

Parmela3DParmela3D

GPTGPT

z = 1.244m

0 100%
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Data vs. sim (0.5 pC, ems)

z = 1.244m
datadata Parmela3DParmela3D GPTGPT

SOL1 = 3.7 ASOL1 = 3.7 A

0 100%
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Data processing

• Extraction of second moments from profiles requires 
noise subtraction

• General approach:
– a contour delineates data region from noise region
– average intensity In outside the contour represents noise
– subtract noise In from data, assign 0 to the outside region
– “grow” the contour; the parameter of interest should be 

“stable” vs. included area when all data is accounted for

• Circular contours used for viewscreen profiles
• Boundary detection employed for phase-space 

scans
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Data processing (2)

• Boundary detection: based on observation that 
thresholded data region forms a continuous island, 
whereas noise – many individual islands

• a) blur (convolve) image with n×n square; b) find 
smallest threshold that generates a single island; c) 
grow n and repeat – stop when the island starts 
including chunks of noise (clearly visible)

4.4% cutoff0.6% cutoff
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Verify subtraction

11

22
11 22

• Error budget:
– rms emittance  ±12%
– rms spot size from viewscreen  ±5%
– rms spot size from slits  ±4%

• Verify noise subtract. by growing/shrinking contour

> half  of the available area must > half  of the available area must 
be used in noise estimationbe used in noise estimation
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Data vs. sim (0.5 pC, ems)

z = 1.244m
datadata Parmela3DParmela3D GPTGPT

SOL1 = 3.7 ASOL1 = 3.7 A

εny = 0.31±0.04 µm 0.29 µm 0.28 µm
σy = 1.15±0.05 mm 1.14 mm 1.14 mm
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Data vs. sim (20 pC, scr.)
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Data vs. sim (80 pC, scr.)
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Data vs. sim (20 pC, ems)



34Space charge meas. & sim May 2008, DESY ivan.bazarov@cornell.edu

Data vs. sim (80 pC, ems)
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Tail explained

z = 1.244m

z = 0m z = 0.35m
at cathode inside solenoid
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Emittance curve: 80pC

GPTGPTdatadata

εny (100%) = 1.8 mm-mrad
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Worst 10%

80 pC

GPT: z = 1.244 m

GPT: z = 0 m
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Emittance curve: 20pC

εny (100%) = 0.43 mm-mrad

datadata
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Beam brightness (80 pC)

equivalent Gaussian beam does a 
poor job of describing the beam: 
the core is much brighter
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Beam brightness
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Things to do…

• Substantially lower                                                           
εn⊥ (100%) after the                                                      
DC gun possible:
– higher gun voltage
– improved laser trans.                                                    

profile
– longer laser pulse (optimum 50% longer than what’s used)

• It is a matter of time (& money) before this 
performance is reached

DC gun followed by solenoid
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Summary

• Overall, good agreement (quantitative and 
qualitative) has been experimentally established 
between simulations and space charge 
measurements from a DC gun

• 100% rms emittance substantially underestimates 
max beam brightness for 80 pC case

• Despite a modest gun voltage, good beam 
brightness for the beam core has been shown

• We understand which parameters & direction to 
push for better performance
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