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Contents

e Definitions
e Space charge limit
» Additional considerations (briefly)
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Definitions

» Microbrightness p, = density in 6D phase space
(Invariant in Hamiltonian systems)

» Decoupled motion in transverse, longitudinal planes
—> consider transverse projection p,

 Also, consider average (ERL forte), normalized

I
— e v .
B, av I (mc) [p4cfttfxcf11 dpy, g. B v (47rff,.w)(4?rfnu,)’
» Or normalized brightness/bunch for 4D Gaussian
l “Bn.av _ q
(o)’ fpjr dxdydp,dp,, = renn)@ren)’

Phys. Fluids B 4, 167
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Beam fraction

» \Ways to represent phase space information

1) 100% (or 95%, or xx%) rms
emittance, beam moments

3) o e 2) FMS emittance vs. beam
(I e
fraction: g, (&,) }-—— P—

- /
/
7
/
/
/
| /
/
/
2 I
7
/
/
- 7
/
/
/

ny
jeune and J. Aubert, Adv. Electron. Phys. Suppl. 13, 15
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R

e If round beam with ¢, (&), one can write

ang) e (4wffj(<szj)2 |

o Strictly speaking true only for Gaussian or uniform
elliptical distributions

* Nevertheless, the factor 4n(e,,) Is same within 5%
for water-bag, rectangular, etc.

hl, 2009 1.V. Bazarov, Maximum Brightness, ERL09 ‘
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» Brightness so defined is invariant for linear forces
uniform along the bunch slices

e Core brightness should remain the same even If the
forces vary along the bunch slices (e.g. space
charge) provided no slice sheering occurs

<\ y
<\

bunch slices bunch slices
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Brightness limit

» For short laser pulse (i.e. pancake beam after
emission), max charge density ~ g,E ., 1.€.
sets the min beam area at the photocathode

» The solid angle Is set by transverse momentum
spread of photoelectrons characterized by cathode
effective temperature: Ap, ~ (mKT )2

» Combining the two, one finds (assuming maxwellian
distribution in momentum):

2
Bn STLLLLE Ecath

| - 2T kT,
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Beam measurements

» Benchmarking space charge codes
» Photocathode characterization

» Laser shaping and temporal
characterization

|<_ region of study for

: space charge: 1.244 m
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Charge extraction

ncreasing the laser intensity: linear charge
traction followed by saturation in charge/bunch

laser rms spot 0.29 mm
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Laser distributions &
charge extraction curve

= data
- =--8 Gaussian fit
—reconstructed

0
time (ps)

=2.74MV/m
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Tying loose ends...

» Laser pulse shortness A = o, ,m/0?E e,
A >> 1 for pancake approximation
— for our operating parameters A ~ 17

e Photoelectron transverse momenta distribution

GaAs (no space charge)

T 2

T:’ ; Close to Gaussian distribution
5 @ 520 nm

1 4

r

-1 0 1 2
offset (mm)
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Measurement results

beam fraction &,
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Brightness comparison to theory

— 20pC data
= = =20pC limit
80pC data
80pC limit
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Another limit

» 20 and 80pC data represents space-charge
dominated beams by roughly same amounts
(R =lo,2/(l,Bye,2), (R) ~ 43 and 56 respectively)
—> deviation from the theoretical value in 80pC case
cannot be due to the space charge after the gun

e How about the space charge at the photocathode?

 Virtual cathode: quenching of the accelerating
gradient (and photocurrent) at the tail of the bunch
— bunch deforms and breaks apart

i 11, 2009 1.V. Bazarov, Maximum Brightness, ERL09
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Virtual cathode
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Pack a bunch smartly: putting as many electrons |
2ach bunch as possible does not work...

charge extraction curve temporal profile 2mm from cathode
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Virtual cathode
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Pack a bunch smartly: putting as many electrons |
2ach bunch as possible does not work...

charge extraction curve temporal profile 2mm from cathode
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Virtual cathode
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Pack a bunch smartly: putting as many electrons |
ach bunch as possible does not work...

charge extraction curve temporal profile 2mm from cathode
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Virtual cathode
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Pack a bunch smartly: putting as many electrons |
ach bunch as possible does not work...

charge extraction curve temporal profile 2mm from cathode
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ELSA measurements

Dlspersmn + streak camera measurements

I
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Space charge considerations

» Stay away from the limit (g/q,. <% — %)

» Make the pulse length as long as tolerably possible
(e.g. 1.3 GHz DC gun injector: 12 ps rms for the
laser, then compressed down to 3 ps)

» Well-designed injector will have

. 1 . kT,
= g,mc? Ec.th

kne 11, 2009 1.V. Bazarov, Maximum Brightness, ERL09
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Laser shaping

» Desired 3D distribution In free space Is a uniformly
filled ellipsoid — linear space charge forces

» Actual ideal laser shape is altered by
— The boundary condition of the cathode
— Nonrelativistic energy / bunch compression

desired laser shape after the gun

intensity (a.u.)

intensity (a.u.)
l[7

peak current (A)
O =2 N W A O O~

-1 0 1
transverse position (mm)
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Beam dynamics with RF

e =— () p2) ~(xp,)

mC

2
p,(x,2)= pX(O,O)Jr%quapx z+a Py XZ+...
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RF focusing

» |f space charge Is kept in check,

1 |67 p e

. . . 4
RF induced emittance dominates ¢« me ozl

» RF cavities focus or defocus the beam depending on
phase, Kinetic energy and gradient

Before 1st cavity

20

€y = 0.37 um

rf emittance
growth “bow-
tie” pattern

After 1st cavity

20

Ap, (keWic)

1.V. Bazarov, TU2GRI01
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RF emittance cancelation

RF induced emittance growth can be cancelled

K.E. =0.5 MeV K.E. =3 MeV

initial K.E. = 0.50Me"; 32p {3 Ahme | um!mmzfdeg)

initial k. E. = 3.00MeY; 82p Fnaddiime umfmmzfdeg
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Summary

» Brightness limit as set by the accelerating gradient
and the transverse thermal energy of photoelectrons
was discussed

 The basic figure of merit: E_, /KT ,, should apply to
both DC and (S)RF guns

» The injector beams distributions are non-Gaussian,
have higher local beam brightness than Gaussian
beams

« Need more than a single number to describe the
beam quality

kll, 2009 1.V. Bazarov, Maximum Brightness, ERL09
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