Overview of Photoinjectors for Future Light Sources

Ivan Bazarov
Cornell University

GaAs QE(%) map after 50 mA run

Main dump T-map during 35 mA high current running

damaged optics after 10's W of laser power

world's highest avg brightness & current photoinjector at Cornell
Today’s talk

• Needs for linac-based light sources
• Different approaches, same goals
• Recent progress (incomplete survey)
• Moving beyond the state-of-the-art
DC, RF, SRF guns

- **Pulsed machines (FELs):** NCRF a success story
 - can always improve emittance → lower machine energy
- **CW operation:** cathode fields reduced (DC ≤ 10 MV/m), NCRF (≤ 20 MV/m), best promise for SRF (≤ 30 MV/m)
 - Main push is for increased avg current (ERLs), emittance desired several 0.1 um rms normalized range for ~100 pC

plus variants…

NCRF
- LANL RF gun
- Cornell gun

SRF
- ELBE SRF gun
- ½ cell
- Tuner
- RF / HOM ports
- Cathode stock
- Choke filter 3 full cells
Physics of high brightness photoguns made simple

- Given a laser, photocathode cathode, and accelerating gradient → max brightness is set

- Each electron bunch assumes a “pan-cake” shape near the photocathode for short (~10ps) laser pulses, max charge density determined by the electric field

\[
dq/dA = \varepsilon_0 E_{\text{cath}}
\]

- Angular spread or transverse momentum footprint is set by intrinsic momentum spread of photoelectrons leaving the photocathode (MTE = mean transverse energy), \(\Delta p_\perp \sim (m \times \text{MTE})^{1/2} \)

- Combining these two yields the maximum (normalized) beam brightness achievable from a photoinjector – defined by only two key parameters: cathode field \(E_{\text{cath}} \) and MTE of photoelectrons

achievable brightness:

\[
\frac{B_n}{f} \bigg|_{\text{max}} = \frac{\varepsilon_0 mc^2}{2\pi} \frac{E_{\text{cath}}}{\text{MTE}}
\]
RF guns

- No ceramic to worry about, no cryoplant
- BUT huge losses for CW operation, questionable vacuum
 - BOEING RF gun & renewed LANL effort: it can be made to work!
- VHF gun (LBNL): reduce operating frequency, increase cooling area, introduce plenty of pumping slots
 - nice solution when << GHz rep rate is acceptable

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>187 MHz</td>
</tr>
<tr>
<td>Operation mode</td>
<td>CW</td>
</tr>
<tr>
<td>Gap voltage</td>
<td>750 kV</td>
</tr>
<tr>
<td>Field at the cathode</td>
<td>19.47 MV/m</td>
</tr>
<tr>
<td>Q_0 (ideal copper)</td>
<td>30887</td>
</tr>
<tr>
<td>Shunt impedance</td>
<td>6.5 MΩ</td>
</tr>
<tr>
<td>RF Power</td>
<td>87.5 kW</td>
</tr>
<tr>
<td>Stored energy</td>
<td>2.3 J</td>
</tr>
<tr>
<td>Peak surface field</td>
<td>24.1 MV/m</td>
</tr>
<tr>
<td>Peak wall power density</td>
<td>25.0 W/cm²</td>
</tr>
<tr>
<td>Accelerating gap</td>
<td>4 cm</td>
</tr>
<tr>
<td>Diameter/Length</td>
<td>69.4/35.0 cm</td>
</tr>
<tr>
<td>Operating pressure</td>
<td>$\sim 10^{-11}$ Torr</td>
</tr>
</tbody>
</table>
DC guns

- Highest average current (50mA) operation today of the 3 choices
- Very high voltages ($\geq 500\text{kV}$) are still difficult, despite DC guns being around for a while
- New generation of guns to resolve ceramic puncture problems
SRF guns

- A lot of R&D in the community
 - Great promise, lots of issues
- Elliptical cavities and quarter wave resonator (QWR) structures
 - Elliptical cavities ≥ 700 MHz
 - QWR ≤ 500 MHz (operates as a quasi-DC gap, similar to VHF NC gun)
- Best result so far: ELBE ~ 18MV/m pk with 1% Ce$_2$Te for > 1000h
Example of one detailed comparison: DC vs SRF

- GOAL: using multiobjective genetic algorithms compare two technologies
- Use Cornell injector beamline as a basis
- Realistically constrained DC gun voltages, SRF gun fields
- Vary gun geometries, laser, beam optics

IVB et al., PRST-AB 14 (2011) 072001
DC gun geometry & field constraints

- Use empirical data for voltage breakdown
 - Breakdown voltage vs gap
 - \(V(kV) = 58 \times s(mm)^{0.58} \)
 - \(V(kV) = 123 \times s(mm)^{0.34} \)
 - Keep surface fields \(\leq 10 \text{ MV/m} \)

- Vary gun geometry while constraining the voltage
 - 3 geometry parameters: gap, cathode angle & recess

\[\text{Angle Effect} \]
\[\text{Gap Effect} \]
SRF gun geometry & field constraints

- 1.3 GHz 0.5-cell elliptical cavity
- Constrained surface fields according to TESLA spec
 - $E_{\text{acc}} \leq 25 \text{ MV/m}$
 - $E_{\text{pk}}/E_{\text{acc}} \leq 2$
 - $H_{\text{pk}}/E_{\text{acc}} \leq 4.26 \text{ mT/(MV/m)}$

- Vary beam current 0-200 mA
- Final bunch length $\leq 3 \text{ ps rms}$

- Equator radius used for frequency tuning
 - 4 parameters: gap, cathode angle & recess, pipe dia

Most solutions $E_{\text{pk}} \leq 50 \text{ MV/m}$
• The SRF beamline is simplified:
 – NC buncher cavity is ineffective at high beam energy
 – Only one solenoid included
A closer look at 80pC case

X2-3 larger peak emittance!
but final is very close
• The two technologies did not show much difference in the final 100% rms emittance in these simulations despite > x3 larger field at the cathode for SRF case (the beam core must be brighter for SRF)

• DC gun case requires more cancellations to get to small emittances at the end – how well can it be done in real life?

• *Space charge energy chirp after the gun:*
 – leaves a nasty chromatic aberration through the solenoids!
 – Far more *prominent in DC case*. Must anti-chirp with buncher!

• Perhaps cathodes *(MTE)* are more important than the field (beyond a certain point)!

• Recent alignment & emittance run @ Cornell ERL injector:
 – Measured: 1.3-1.4 x model (so far)
Photoemission source development @ Cornell

- Two accelerator facilities @Cornell to push photoinjector state-of-the-art: NSF supported 100mA 5-15 MeV photoinjector;
- New 500kV photoemission gun & diagnostics beamline (under construction): shoot to have HV by this summer
Cornell ERL photoinjector highlights

- Over the last year:
 - Maximum average current of 52 mA from a photoinjector demonstrated
 - Demonstrated feasibility of high current operation (~ kiloCoulomb extracted with no noticeable QE at the laser spot)
 - Original emittance spec achieved: now getting x1.8 the thermal emittance values, close to simulations (Sept 2011)
*it happens…

- spring’11: opened leak in the beam dump at 25mA
- ‘Dramatic accelerator physics’ – drilled a hole in the dump (1” Al) with electron beam!
- Raster/quad system wired/set incorrectly
- Designed for 600 kW average power
- Now 80 thermocouples monitor the repaired dump temperature over its entire surface
• New current record is 52 mA (Feb 9, 2012) at Cornell using GaAs!!
 – beats Dave Dowell’s 32 mA record of 20 years!
Pushing for high current

- Key developments:
 - Expertise in several different photocathodes (both NEA and antimonides)
 - Improvements to the laser (higher power)
 - Feedback system on the laser
 - Minimization of RF trips (mainly couplers)
 - Minimizing radiation losses

Feb 9, 2012
first 50mA!!

Laser intensity feedback system (developed by F. Loehl)
High current operation
(offset CsKSB gives excellent lifetime)

~600 Coulombs delivered (same spot)

QE before

QE after

L. Cultrera, et al., PRST-AB 14 (2011) 120101

6AM: sleepy operator
Real-life accelerator testing for photocathodes: high average current

- Main message: moving off-axis gives many kiloCoulombs 1/e lifetime from K2CsSb or Cs3Sb (same spot)
- Now understand that pits in EC are the result of machine trips

Cathode after 20mA 8hour run

SEM close-up

Crater Light gray
~1.5 mm diameter

Brown colored area
~4 mm diameter

X-ray topography showing rings of ion back-bombardment damage

17.4560 degree 17.4880 degree 17.4960 degree 17.5000 degree
Good news: running 5 mm off-center on the photocathode gives the same emittance (20pC/bunch) due to intrinsically low geometric aberrations in the DC gun.

This is very important, as we know that we cannot run with the laser at the center of the cathode due to cathode damage issues.
6D beam diagnostics: key to low emittance

Slice emittance with resolution of few 0.1ps

So far the smallest emittance 0.7 mm-mrad at 80 pC/bunch (rms, 100%)

Projected emittance

Longitudinal phase space

Transverse phase space (animation)
Sept 2011: initial emittance spec achieved!

- Keys to the result
 - Beam-based alignment (took us a couple of months)
 - Working diagnostics
 - Fight jitters in the injector

\[\varepsilon_{ny}^{(100\%)} = 0.4 \text{ um} @ 20\text{pC/bunch} \]

\[\varepsilon_{ny}^{(100\%)} = 0.8 \text{ um} @ 80\text{pC/bunch} \]

- x1.8-2.0 thermal emittance! x1.4 simulated emittance
- correct scaling with bunch charge
Some proselytizing: which emittance is right to quote

- **Single RMS emittance definition is inadequate for linacs**
 - Beams are not Gaussian
 - Various groups report 95% emittance or 90% emittance (or don’t specify what exactly they report)

- **The right approach**
 - Measure the **entire phase space**, then obtain emittance of the beam vs. fraction (0 to 100%)
Single rms emittance is inadequate for comparisons

- Better to quote 3 numbers
 - 100% rms emittance (or 95% or 90%)
 - core emittance (essentially peak brightness)
 - core fraction

FIG. 8. Radial phase-space distributions (left) and corresponding emittance vs. fraction curves (right). All distributions are scaled to have $\epsilon = 1$. Core fraction and emittance for different distribution types are shown as well.
Emittance vs. fraction for light
Wigner distribution = phase space density

• There are fewer Gaussians around than one might think
• More about it in my afternoon talk in joined SR&ERL WG

IVB, arXiv 1112.4047 (2011)
Measured beam brightness so far...

- Effective brightness (for comparison)

\[B_0 \propto I \frac{f_{x,\text{core}} f_{y,\text{core}}}{\epsilon_{x,\text{core}} \epsilon_{y,\text{core}}} \]

- E.g. demonstrated at 20mA ERL injector beam, if accelerated to 5GeV, is as bright as 100mA 50 × 50 pm-rad Gaussian beam!

- The result can only improve!
Lasers & cathodes

• Laser/gun/cathode is really one package
• New guns = load lock chamber (a must for high current operation, debugging)

• Great interest in cathodes & developing new materials
 – Mirror success of polarized photocathodes: started with <50% polarization from strained GaAs, now >90% polarization is routine
 – Need more material science experts
 – Fertile research area = better cathodes immediately translate into better photoinjectors
 – Several proposals for ultracold photoelectrons
Lasers

- Plenty of laser power when coupled with good cathodes

- Next steps:
 - better 3D shaping
 - engineering and integration into the machine via stabilization loops (all degrees of freedom)

- Practical shaping techniques
 - Temporal stacking (uniform)
 - Transverse clipping (truncated Gaussian)
 - Blowout regime if E_{cath} is high enough

better than “beer-can”; only $\leq 20\%$ emittance increase compared to highly optimized shapes

1.3GHz laser at 65W
Building collaboration on photocathodes for accelerators

- Collaboration with
 - ANL, BNL, JLAB
 - Cornell, SLAC
 - Berkeley, more…
- Excitement and momentum in the community;
- Cathode workshops at BNL in 2010; in Europe 2011; coming up at Cornell in 2012

http://www.bnl.gov/pppworkshop/
http://photocathodes2011.eurofel.eu
http://www.lepp.cornell.edu/Events/Photocathode2012
Conclusions

- Accelerator community investing into photoinjector R&D
- Dividends *will follow* (already happening)
- Much remains to be done with *conventional approaches* (no emittance exchange tricks, field emission tips to enhance field, etc.), but there is always room for brand new ideas
- Practical (turn-key) photoinjectors with greatly improved parameters becoming a reality
Acknowledgements
(for the Cornell team)

• Photoinjector team:

• Main support NSF DMR-0807731 for ERL R&D
 - also DOE DE-SC0003965 CAREER grant
END
Optimal Gun Geometry:

- **DC Gun:**
 - $\alpha \approx 0 \ , \ g = 9 \text{ cm} \ , \ V=470 \text{ kV}$
 - Pushed for **max field** over focusing.
 - Cathode recess unimportant.

- **SRF gun:**
 - $\alpha = 2.3 \ , \ g = 4.4 \text{ cm}$
 - $r_{pipe} = 0.9 \text{ cm} \ , \ r_{cath} = 0.4 \text{ cm}$
 - r_{pipe} and cathode recess seemed unimportant.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>dc gun</th>
<th>SRF gun</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charge</td>
<td>80 pC</td>
<td>80 pC</td>
</tr>
<tr>
<td>Laser spot size (rms)</td>
<td>0.35 mm</td>
<td>0.21 mm</td>
</tr>
<tr>
<td>Laser pulse (rms)</td>
<td>10 ps</td>
<td>9 ps</td>
</tr>
<tr>
<td>Thermal emittance (rms)</td>
<td>0.17 μm</td>
<td>0.10 μm</td>
</tr>
<tr>
<td>Cathode field ((t = 0))</td>
<td>5.1 MV/m</td>
<td>16.6 MV/m</td>
</tr>
<tr>
<td>Kinetic energy after the gun</td>
<td>0.47 MeV</td>
<td>1.91 MeV</td>
</tr>
<tr>
<td>Buncher peak field</td>
<td>1.2 MV/m</td>
<td>⋮</td>
</tr>
<tr>
<td>SRF cavities1,2 peak (E_x)</td>
<td>20, 22 MV/m</td>
<td>11, 6 MV/m</td>
</tr>
<tr>
<td>SRF cavities1,2 phase</td>
<td>−25, −37°</td>
<td>−60, −40°</td>
</tr>
<tr>
<td>Solenoid1 peak field</td>
<td>0.038 T</td>
<td>0.094 T</td>
</tr>
<tr>
<td>Solenoid2 peak field</td>
<td>0.023 T</td>
<td>⋮</td>
</tr>
<tr>
<td>Transverse emittance (rms)</td>
<td>0.21 μm</td>
<td>0.15 μm</td>
</tr>
<tr>
<td>Bunch length (rms)</td>
<td>0.89 mm</td>
<td>0.86 mm</td>
</tr>
<tr>
<td>Longitudinal emittance (rms)</td>
<td>8.2 mm keV</td>
<td>9.2 mm keV</td>
</tr>
<tr>
<td>Kinetic energy</td>
<td>12.4 MeV</td>
<td>10.3 MeV</td>
</tr>
</tbody>
</table>
3D laser shaping for space charge control

- Optimal 3D laser shape: practical solutions identified

 temporal – *birefringent crystal pulse stacking*

 ![Temporal Laser Profile]

 transverse – *truncated Gaussian*

 ![Transverse Profile]

 - >50% of light gets through, emittance (sims) ~20% higher than the optimal

 PRSTAB 11 (2008) 040702
 Appl. Opt. 46 (2011) 8488