Cornell Laboratory for Accelerator-based ScienceS and Education (CLASSE) @

CLASSE

On Maximum Brightness
from X-ray Light Sources

lvan Bazarov

Cornell University

6 T T T T T T 2ih 6 T . .
5r 5r
4 4+
\ Woee \ W
3t < / 3t /
2L = - ‘\ 2l /
= N z
; N 0o E 1t \
: o 1

v (nm/ffs)
. . 0
N
=
Z)
N

(w1} ) -1r
fi ﬂ. 7 -2
! I '\,'

05 1 1.5 2 25 3 35 4 0.5 1 15 2 25 3 35 4
*® (nm) % (nm)

phase space of coherent (left) and incoherent (right) 2-state superposition
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Some of today’s talk points o
CLASSE

« Partially coherent radiation in phase space: revisiting what
brightness really is

« Few words about rms emittance: introduction of a more
appropriate metric (emittance vs. fraction)

« My view on SR vs ERL comparison
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Comparison metrics? (&7

CLASSE

o Cost (capital, operational)

 Upgradeability

« Time structure (pulse length, rep rate)

 Brightness (maximize useful flux)
— Efficient use of undulators (low beam spread, flexible matching)
— Optics heat load (minimize total flux)
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Comparison metrics? &

CLASSE

o Cost (capital, operational)
 Upgradeability
« Time structure (pulse length, rep rate)

 Brightness (maximize useful flux)
— Efficient use of undulators (low beam spread, flexible matching)
— Optics heat load (minimize total flux)

Do we understand physics of x-ray brightness?
Is diffraction limit same as full transverse coherence?
How to account for non-Gaussian beams (both e~ and y)?
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Brightness: geometric optics

e Rays moving in drifts and focusing elements
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* Brightness = particle density in phase space
(2D, 4D, or 6D)



Phase space in classical mechanics

Classical: particle state (z, p)

. . . . OH . _ OH
Evolves in time accordingto p = — 35, £ = 5~
E.g. drift: linear restoring force:

Y ¢ __p | kﬂ?
H= 2m H = 2m ' 2
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Liouville’s theorem: phase space density stays
const along particle trajectories



Phase space in quantum physics
Quantum state:

V() or o(p)

Position space <— F7 — momentum space

If either ¥)(z) or ¢(p) is known — can compute

anything. Can evolve state using time

evolution operator: exp(— )

4)(x)|*dx - probability to measure a particle
with (x, x + dx)
[&(p)|?dp - probability to measure a particle
with (p, p + dp)



Wigner distribution
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e Wiz, p)dzdp _ (quasi)probability of measuring
quantum particle with (z, = + dz) and (p, p + dp)
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Classical electron motion in potential &
CLASSE
Animation: click to play
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Same in phase space... D

Animation: click to play

CLASSE
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Going quantum in phase space... (8

Animation: click to play

CLASSE

Cornell University
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Some basic WDF properties

(z,p) € R (can be negative)

/ Wix,p)dzdp = 1

/ W (a2, p)dp = |4 ()P
[ Wi pde = o)

Time evolution of W(z.D) is classical in
absence of forces or with linear forces



Connection to light

Quantum — ()
Linearly polarized light (1D) — E'(x)
Measurable |1(z)|? — charge density

Measurable |E(x)|? — photon flux density
Quantum: momentum representation

¢(p)is FT of Y(x)

Light: far field (angle) representation
E(0) is FT of E(x)



Connection to classical picture

Quantum: i — 0, recover classical behavior
Light: A — 0, recover geometric optics

W(z,p) or W(2,0) — phase space density
(=brightness) of a quantum particle or light
Wigner of a quantum state / light propagates

classically in absence of forces or for linear
forces

Wigner density function = brightness



Extension of accelerator jargon to
x-ray (wave) phase space ¢

Wigner
distribution

,/,,/ I,I

1 = x-ray phase ¢ !
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e Twiss (equivalent ellipse) and emittance
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X-ray phase space can be measured &
using tomography SHASSE

« Same approach as phase space tomography in accelerators
 Except the phase space is now allowed to be locally negative

x-ray phase space

detector placed at different positions

negative

2um -25 X (um) 25
1.5 keV x-rays incident H H
on a double-slit
_10um C.Q. Tran et al., JOSA A 22 (2005) 1691
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Diffraction limit vs. coherence (&
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Diffraction limit (same as uncertainty principle)

0,0, > h/2 =h/4m (QM) o090, > N/4m (light)
€light

M2 _ g
AN Am

— aclassical counterpart exists (= e-beam emittance)

M? > 1 (ability to focus to a small spot)

Coherence (ability to form interference fringes)
— Related to visibility or spectral degree of coherence

(B W) Ew)
129 = 1E ) By w)

— guantum mechanical in nature — no classical counterpart exists

0<|ppl=1

Wigner distribution contains info about both!
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Example of combining sources r
(coherent vs incoherent) CLASSE

two laser Gaussian beams

X ’1[}_5 coherent X ’1[]'5 incoherent
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6_(rad)

Same picture in the phase space (SR
CLASSE
two laser Gaussian beams
x 107° coherent x107° incoherent
8 ‘ 8r
6r 1 2000 6r 2000
4 . 4+t
2 "2 ] 1000 )l A 1000
0 WC iissssg ) 0 E 0 0
| _ 1000 e e 1000
_ - )
_ W ! 1
4 1 uz —q 4 uz <1
6l ] ~2000 6l _ ~2000
M2 > 1 M2 > 1
-8+t , g - . .
-5 0 5 10 5 0 5 10
X (m) x 107 X (m) « 107
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Facts of life &

CLASSE

« Undulator radiation (single electron) is fully coherent (u? = 1)
2 _ 2 [ W2d?rd?0
= (T Wdrrd20)?

e Butis not diffraction limited M2 > 1

« X-ray phase space of undulator’s central cone is not Gaussian

 Old (Gaussian) metrics are not suitable for (almost) fully
coherent sources

« For more on the subject refer to

IVB, arXiV 1112.4047 (2011) (submitted to PRST-AB)
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But the undulator radiation In &
central cone is Gaussian... oris it? %

animation: scanning  Spectral flux (ph/s/0.1%BW/mm?) at 50m from undulator (5GeV, 100mA, i, = 2cm)
around 1st harm. ~6keV
(zero emittance)

click to play
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Light in phase space (%8

CLASSE

animation: scanning
around 1st harm. ~6keV
(zero emittance)

click to play

Cornell University

Phase space near middle of the undulator (5GeV, 100mA, A, = 2cm)
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Emittance vs. fraction for light &
CLASSE
<10 B (ph/s/0.1%BW/mm/mrad) % 10"
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« Change clipping ellipse area from o to O, record emittance vs.
beam fraction contained
 Smallest M? ~ 3 of x-ray undulator cone (single electron), core
much brighter
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Exampe of accounting for realistic &
spreads in the electron beam SHASSE
10 19 pC/bunch (25 mA)
1 T 100 %
| smtiem e, =4spm 1 <089 5 <a0m | N TABLE II. Parameters used in computing the radiation phase space.
06 E 80
oal ] 70 Number of periods, N,, = 1250
02} 60 .
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ol ] 40 Harmonic number, n = 1
-04t 30
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-06 20
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X (m) x 107 )
x10% 77 pC/bunch (100 mA) o Electron energy spread, o5, = 2 x 1074
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Accounting for energy spread (SR
(phase space of x-rays) SHASSE
107 B, (ph/s/0.1%BW/mm/mr) 10" < 107 B, (ph/s/0.1%BW/mm/mr) < 10"
1 T 1 .
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: 19 o : _ 19 o
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0. (rad)

And finite emittance...
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Back to the comparison 9
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« TODAY: Cornell ERL photoinjector project has already
achieved beam brightness that at 5 GeV would be equivalent to
100mA 0.5nm-rad x 0.005nm-rad storage ring Gaussian beam

« TOMORROW: both technologies (SR and ERL) can reach
diffraction limited emittances at 100mA

« SR can easily do several 100's mA (x-ray optics heat load??),
ERLs not likely (less appealing for several reason)

« ERL is better suited for very long undulators (small energy
spread) and Free-Electron-Laser upgrades (using its CW linac)
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Simultaneous short pulses and generic ‘&%
ERL running SHASSE

<0.5 MW
<100 pA source S B2 dump
- 7N\ T —
. N N 80 m lon
loopC@émgz S00 MeV Lo . > GeV | e 3"“1\harmonic undulato?’
100 mA source linearizer or ID farm

* Initial analysis to meet XFELO specs shows it’s doable using
non-energy recovered beamline

« Simultaneous operation of the two sources (100mA and 100pA
appears feasible)

28
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Conclusions NS

CLASSE

« Few people do correct brightness calculations (there are a lot
fewer Gaussians than one might be imagining); proper
procedure discussed (more in arXiV 1112.4047)

« Both technologies can deliver super-bright x-rays with a CW
SRF linac of ERL having an edge for FEL techniques

e Can a future source be made more affordable?? Cost of ~hillion
should be a hard cutoff in my opinion (including beamlines)
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