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Cornell’s photoinjector: world’s brightest electron source 
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Outline 

• Uses of high brightness electron beams 

• Physics of brightness 

• High brightness high current photoinjectors 

• Cornell photoinjector for Energy Recovery Linac 
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Need for high brightness beams 

• Powerful probes of matter 
– Colliders, fixed target experiments 
                                                              

                            
                                                                      

                       
                         
 

CEBAF 12 GeV 

ILC 
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Need for high brightness beams 

• Powerful probes of matter 
– Colliders, fixed target experiments 
– Small lab scale probes (e.g. ultrafast electron diffraction) 

                            
                                                                      

                       
                         
 

600 fs snapshots of Al melting, Dwayne Miller, U Toronto 
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Need for high brightness beams 

• Powerful probes of matter 
– Colliders, fixed target experiments 
– Small lab scale probes (e.g. ultrafast electron diffraction) 

• Sources of secondary beams 
– Synchrotron radiation sources: storage rings, free electron lasers, 

energy recovery linacs 
                         
 Spring-8 
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Need for high brightness beams 

• Powerful probes of matter 
– Colliders, fixed target experiments 
– Small lab scale probes (e.g. ultrafast electron diffraction) 

• Sources of secondary beams 
– Synchrotron radiation sources: storage rings, free electron lasers, 

energy recovery linacs 
                         
 Spring-8 LCLS 
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Need for high brightness beams 

• Powerful probes of matter 
– Colliders, fixed target experiments 
– Small lab scale probes (e.g. ultrafast electron diffraction) 

• Sources of secondary beams 
– Synchrotron radiation sources: storage rings, free electron lasers, 

energy recovery linacs 
                         
 Spring-8 LCLS Cornell ERL 
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Need for high brightness beams 

• Powerful probes of matter 
– Colliders, fixed target experiments 
– Small lab scale probes (e.g. ultrafast electron diffraction) 

• Sources of secondary beams 
– Synchrotron radiation sources: storage rings, free electron lasers, 

energy recovery linacs 
• Cooling of hadron beams 
 

coherent electron cooling being tested at BNL 
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Outline 

• Uses of high brightness electron beams 

• Physics of brightness 

• High brightness high current photoinjectors 

• Cornell photoinjector for Energy Recovery Linac 
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What is brightness? 

• 6D phase space 
– {x, px, y, py, E, t} 
 
 

•   
 
 

• Connection to: 
– Liouville theorem, beam temperature, entropy, coherence 

x 

y -z 
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Example: linear optics beamline 
of non-interacting particles 

transverse position 
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http://youtu.be/fM4GYnMgGcQ�
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Some definitions 

• Micro-brightness: 
 

– Flux: 
 

• Normalized emittance (phase space area): 
 
 

– e.g. quantum limit for e–:  

– geometric emittance: 

• Alternative definition of phase space area (volume) 

– “Liouville’s emittance”: 
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Linear and non-linear motion 
(continuous focusing channel)  

position position 

m
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• Liouville’s emittance: const in both cases 

http://youtu.be/ch0sOqiyUl0�
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Space charge in a continuous 
focusing channel 

transverse position 
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http://youtu.be/FGDyvrpQXCI�
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Space charge in a continuous 
focusing channel 

• But Liouville’s emittance stays const 
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Tricky space charge 

• Beam as non-neutral plasma: 3 characteristic lengths 
      beam diameter;      inter-particle distance;           Debye length 

YES single 
particle 

dynamics 

NO 

collective forces matter 

YES “smooth force”             
6D phase space volume 

conserved 

NO 
“grainy forces” 

must deal with 6N-D 
phase space 
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Information loss in phase space 

position 
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http://youtu.be/fumqIGdF3nw�
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Accelerator topologies 

           Linac   Ring           Recirculators/ERL 
 

RF beam dump 

source source 
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• Some approaches to light production 
 
 
 
 
 
 
 

 
 
• Desired electron beam parameters 

– Transverse phase space area (emittance)  ~ wavelength 
– Energy spread ~ 1/#periods 
– Short pulses (~ picosecond and less) 

20 

Synchrotron radiation sources 

undulators (spontaneous emission)             Free-electron-laser (oscillator) 
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Storage rings for hard x-rays 

PETRAIII: circumference 2.3 km, emittance 1 nm 

ESRF: circumference 0.84 km, emittance 4 nm 

Spring-8: circumference 1.4 km, emittance 3 nm 

APS: circumference 1.1 km, emittance 3 nm 
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Storage rings for hard x-rays 

PETRAIII: circumference 2.3 km, emittance 1 nm 

ESRF: circumference 0.84 km, emittance 4 nm 

Spring-8: circumference 1.4 km, emittance 3 nm 

APS: circumference 1.1 km, emittance 3 nm 

For transverse coherence at 1Å 
require  
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Outline 

• Uses of high brightness electron beams 

• Physics of brightness 

• High brightness high current photoinjectors 

• Cornell photoinjector for Energy Recovery Linac 



APS’13 Denver,  CO, Apr 14, 2013 

CLASSE 

Cornell University 
24 

Photoinjectors = marriage of 
physics and technology 

 
 
 
 
 
 

                    plus variants… 
 

 
• CW operation: max cathode fields:                                                         

(DC ≤10 MV/m), NCRF (≤ 20 MV/m),                                                         
best promise for SRF (≤ 30 MV/m) 
 
 

LANL RF gun 

normal conducting RF gun 

Cornell gun 

DC gun 

ELBE SRF gun 

Cathode 
stock Choke filter 

RF / HOM ports Tuner ½ cell 

3 full cells 

SRF gun 

operating principle 
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Physics 101: basic limit to beam 
brightness from photoinjectors 

• Each electron bunch assumes a ‘pan-cake’ shape near the 
photocathode for short ( ≤ 10ps) laser pulses 
 

• Maximum charge density determined by the electric field: 
   dq/dA = ε0 Ecath 

 
• Angular spread set by mean transverse energy (MTE) of 

photoelectrons 
   ∆p⊥ ~  (m×MTE)1/2 

Bn 

f 
= 

ε0mc2 

2π 

Ecath 

MTE max 

= 
3 

10πε0mc2 Ecath 

MTE ∈n⊥ q 

v 

Phys. Rev. Lett. 102 (2009) 104801 
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Outline 

• Uses of high brightness electron beams 

• Physics of brightness 

• High brightness high current photoinjectors 

• Cornell photoinjector for Energy Recovery Linac 
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• NSF-supported accelerator R&D test-bed, fully beam-operational 
starting 2010 
– Main goals: <1 µm normalized rms emittance (to best                        

   storage rings) 
    average current 33mA @ 15MeV & 100mA @ 5MeV 
    (demonstrate photocathode longevity) 
    2-3 ps bunch length 

27 

Cornell photoinjector 

photocathode 
DC gun buncher  cryomodule  

beam dump 
diagnostics 
beam lines 

5 m 
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• NSF-supported accelerator R&D test-bed, fully beam-operational 
starting 2010 
– Main goals: <1 µm normalized rms emittance (to best                        

   storage rings) 
    average current 33mA @ 15MeV & 100mA @ 5MeV 
    (demonstrate photocathode longevity) 
    2-3 ps bunch length 
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Cornell photoinjector 

photocathode 
DC gun buncher  cryomodule  

beam dump 
diagnostics 
beam lines 

5 m 

HV DC gun 
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• NSF-supported accelerator R&D test-bed, fully beam-operational 
starting 2010 
– Main goals: <1 µm normalized rms emittance (to best                        

   storage rings) 
    average current 33mA @ 15MeV & 100mA @ 5MeV 
    (demonstrate photocathode longevity) 
    2-3 ps bunch length 

29 

Cornell photoinjector 

photocathode 
DC gun buncher  cryomodule  

beam dump 
diagnostics 
beam lines 

5 m 

HV DC gun 

laser system 
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• NSF-supported accelerator R&D test-bed, fully beam-operational 
starting 2010 
– Main goals: <1 µm normalized rms emittance (to best                        

   storage rings) 
    average current 33mA @ 15MeV & 100mA @ 5MeV 
    (demonstrate photocathode longevity) 
    2-3 ps bunch length 
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Cornell photoinjector 

photocathode 
DC gun buncher  cryomodule  

beam dump 
diagnostics 
beam lines 

5 m 

HV DC gun 

laser system 

SRF cryomodule 
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• NSF-supported accelerator R&D test-bed, fully beam-operational 
starting 2010 
– Main goals: <1 µm normalized rms emittance (to best                        

   storage rings) 
    average current 33mA @ 15MeV & 100mA @ 5MeV 
    (demonstrate photocathode longevity) 
    2-3 ps bunch length 
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Cornell photoinjector 

photocathode 
DC gun buncher  cryomodule  

beam dump 
diagnostics 
beam lines 

5 m 

HV DC gun 

laser system 

SRF cryomodule 

coldbox 
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• NSF-supported accelerator R&D test-bed, fully beam-operational 
starting 2010 
– Main goals: <1 µm normalized rms emittance (to best                        

   storage rings) 
    average current 33mA @ 15MeV & 100mA @ 5MeV 
    (demonstrate photocathode longevity) 
    2-3 ps bunch length 
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Cornell photoinjector 

photocathode 
DC gun buncher  cryomodule  

beam dump 
diagnostics 
beam lines 

5 m 

HV DC gun 

laser system 

SRF cryomodule 

coldbox 

6xRF 135 kW klystrons 
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• NSF-supported accelerator R&D test-bed, fully beam-operational 
starting 2010 
– Main goals: <1 µm normalized rms emittance (to best                        

   storage rings) 
    average current 33mA @ 15MeV & 100mA @ 5MeV 
    (demonstrate photocathode longevity) 
    2-3 ps bunch length 

33 

Cornell photoinjector 

photocathode 
DC gun buncher  cryomodule  

beam dump 
diagnostics 
beam lines 

5 m 

HV DC gun 

laser system 

SRF cryomodule 

coldbox 

6xRF 135 kW klystrons 

world‘s brightest photoinjector! 
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Beam dynamics inside the 
photoinjector (80 pC/bunch) 

http://youtu.be/_DKFJ-MmfSg�
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• Must couple ~MW RF power into the beam without disturbing the 
low emittance 

 

• Ion back-bombardment: a sure killer of sensitive photocathodes 
 
 
 
 
 
 

 
 
• Best prior achievements 

− Boeing FEL RF gun 32 mA avg (25% d.f.) 
− JLAB FEL DC gun 9.1 mA avg (100% d.f.) 

Getting high average current 
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Highest current at Cornell 
photoinjector with CsK2Sb 

Nov 2, 2012 

• 60 mA with > 30 hour 1/e lifetime 
(run the beam offset!) 
 

• went as high as 65 mA (limited by 
RF processing in input couplers) 
 

Active area is 
offset from the 
center 

Ion damage 
limited to the 
central area 

photocathode after  use 

• Exceeded the 1993 Boeing 
results by x2! 
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• 6D phase space diagnostics! 
 

• ‘Virtual accelerator’: 3D space charge, 3D RF 
cavity field models, quads, dipoles, etc. 
 

• Beam-based alignment via beam response 
matrices from fieldmaps 
 

• Improved 3D laser shaping 
 

• And many others… 

RF ‘quad’ due to 
input couplers 

t 

y 

py 

slice emittance with  0.1ps 
l ti  

beam alignment check 

Phys. Rev. ST-AB 15, 024002 (2012) 
Phys. Rev. ST-AB 14, 032002 (2011) 
Phys. Rev. ST-AB 14, 112802 (2011) 
Nucl. Instr. Meth. A 614, 179 (2010) 
… 

Ultralow emittance: many ‘tricks’ 
needed to get there 
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Emittance results after ‘merger’ 
  20 pC/bunch     80 pC/bunch 

   0.22/0.15 mm-mrad            0.49/0.29 mm-mrad 
Normalized rms emittance (horizontal/vertical) 90% beam, E ~ 8 MeV, 2-3 ps rms 

Normalized rms core* emittance (horizontal/vertical) @ core fraction (%) 
   0.14/0.09 mm-mrad @ 68%                  0.24/0.18 mm-mrad @ 61% 

20x the brightness at 5 GeV of the best storage ring (1nm-rad hor. emittance 100 mA)! 
Similar to the best NCRF guns emittance but with > 106 repetition rate (duty factor = 1) 

vertical phase space vertical phase space 

 arXiv:1304.2708 (2013) 
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Measured time-resolved phase 
space distribution 

         20 pC/bunch          80 pC/bunch 

             2.1±0.1 ps         3.0±0.2 ps 
 Energy spread: 0.1-0.2% 
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• If built today, would be the world’s brightest source of continuous     
x-rays (x20 better than Petra-III); another x10 improvement in 
photoinjector brightness anticipated over the next couple of years 
 

• Superconducting RF cavity tests demonstrated better than spec’ed 
Q0 inside the cryomodule (lower LHe refrigeration power) 
 

• An entirely different concept of a new and better x-ray source using 
ERL configuration has been proven feasible! 

Energy Recovery Linac 

Q0 of SRF cavities exceeds the spec by 50% 

Cornell ERL X-ray facility design 
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