
PHYS 3317 Fall 2012

Homework 3 Quantum Motion in Phase Space and

Electrostatic Potential from Electron Cloud in Atom

Some additional references: Tannor Chapter 5 deals with the Wigner distribution
function. Atomic spectra basics are covered in many books and you should have seen
it before. One topic to pay attention to here is getting familiar with the spectroscopic
notation, e.g. n 2S+1LJ with n, S, L, and J being principal, spin, orbital, and total
angular momentum quantum numbers. L is replaced with letters SPDFGH. . . for
L = 0, 1, You can use some mnemonic to remember the sequence – Wikipedia
provides a funny one – “Sober Physicists Don’t Find Giraffes Hiding In Kitchens
Like Mine”.

1. Marginals of Wigner distribution and its time evolution

There are many texts dealing with Wigner Distribution Function (WDF) and its
use for signal processing, optics, or quantum mechanics (where it all began!). For a
succinct review of WDF and its properties in the most relevant to us context refer to
Phys. Rev. ST AB 15, 050703 (2012) , Section II. You should be able to follow most

of it except perhaps when it comes to mixed quantum states (subsection II.B). Prove
the following properties of the Wigner distribution.

(a) Property 2 in the paper about marginals, namely:

+∞∫
−∞

W (x, p)dp = |ψ(x)|2.

Follow the hint provided at the bottom of the page after this property. The
other expressions given in this property are proven in much the same way.

(b) Property 5 on time evolution of the WDF, W = W (x, p; t), or the following
expression:

∂W

∂t
+
p

m

∂W

∂x
+
i

~

[
V

(
x+

i~
2

∂

∂p

)
− V

(
x− i~

2

∂

∂p

)]
W = 0.

As stated in the paper, the proof is by using time-dependent Schrödinger equa-
tion as done in Ref. 16. Go to this reference, Sov. Phys. Usp. 26, 311 (1983) ,

Part 4(a) and follow the derivation steps he provides filling in explicitly all the
details. Your destination is formula (4.4a). This paper has more interesting
things to say about the Wigner distribution (not all of his subjective state-
ments one would necessarily have to agree with), and is worth reading if you
are interested in the subject.

1

http://prst-ab.aps.org/pdf/PRSTAB/v15/i5/e050703
http://dx.doi.org/10.1070/PU1983v026n04ABEH004345

2. Quantum tunneling movie in phase space

We can talk all we want about wonderful properties of the Wigner distribution (and
they are both many and wonderful !). But, as the saying goes “better to see once
than to hear 100 times”. In this exercise you will produce a movie of a Gaussian wave
packet tunneling through a potential barrier. In fact, you will use the exact same
state and the potential that you already “animated” in the previous homework.

I did the more difficult part and provided a MATLAB function that computes
the Wigner distribution from a wavefunction of position. Download this function
(wig2.m) from Blackboard→Simulations. It takes as input arguments a vector of
positions in nm and the wavefunction and returns as output arguments the WDF
and the corresponding momentum array (the units of ×10−31 kg nm/fs, so that if you
divide the momentum by emass as found in the original schrod.m you will obtain
velocity in nm/fs). Now bring the quantum motion to life by doing the following.

(a) Plot both the tunneling and free propagating versions of the initial wave packet.
Use subplot() command to create two subplots. When it comes to display-
ing the Wigner function, use imagesc() command, followed by axis xy; (the
first command plots color-scaled array, and the second one prevents MAT-
LAB from flipping y-axis in a manner common when displaying images; refer
to the documentation for specifics). Before plotting the Wigner distribution,
check that

∫∫
W (x, p)dxdp = 1, which in the case of finite sampling reduces

to sum(sum(W*dx*dp)), where dx and dp are step sizes in position and mo-
mentum respectively. (Hint: a useful trick when you need to sum multiple
dimensions of a higher dimensional array without invoking multiple sums is to
write sum(W(:)). W(:) squashes the array into one long vector so that only
one sum is required to add all the elements.)

(b) MATLAB has many color maps, which can be applied to an image (or a real
valued 2D array) using colormap() command. However, none of the color maps
provided are well suited for the dual-signed functions such as the WDF. Down-
load the function I provide at Blackboard→Simulations called bluewhitered.m

(which itself was provided by one of MATLAB users at Mathworks file exchange
server). This color map changes from blue-to-white-to-red for negative-to-zero-
to-positive function values. If you plot π~W (x, p), we expect this quantity to
be bound between −1 and 1. To specify color axis ranges and the specific color
map use the following commands somewhere after imagesc(): caxis([-1 1]);

colormap(bluewhitered(256));

(c) We know that marginals or projections of the Wigner distribution are very
useful being probability densities to find the particle with a given position or
momentum. Add

∫
W (x, p)dp = |ψ(x)|2 to the bottom and

∫
W (x, p)dx =

|ψ̃(p)|2 to the left of each subplot. If need be scale the projections by multiplying

2

them by some constant so that they are clearly visible on each plot (see Fig. 1).

distance (nm)

ve
lo

ci
ty

 (
nm

/fs
)

Tunneling: t = 80fs, <x> = 18.1nm, <v> =−0.09nm/fs, e=5.1hbar

0 10 20 30 40

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

−1

−0.5

0

0.5

1

Free prop.: t = 80fs, <x> = 29.8nm, <v> =0.3nm/fs, e=0.56hbar

distance (nm)

ve
lo

ci
ty

 (
nm

/fs
)

0 10 20 30 40

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

−1

−0.5

0

0.5

1

Figure 1: Final Wigner distribution, π~W , at t = 80 fs for tunneling (top) and free
propagating (bottom) wave packets along with its projections. The location of the
barrier is also shown.

(d) Now provide some additional information about the Wigner distribution plots
(using title() command) found inside your for loop as you are changing the
time from 0 to 80 fs. Using Wigner-Weyl representation of momentum and
position operators, compute 〈x〉 and 〈v〉 = 〈p〉 /me. Your Wigner-Weyl repre-
sentations of momentum and position operators must have the same size as the
Wigner distribution array. Use MATLAB’s command [pp,xx] = ndgrid(p,x);

which will return arrays pp and xx out of vectors p and x representing grids
of momentum and position respectively. These quantities pp and xx are the
Wigner-Weyl functions (arrays) that you need.

3

(e) One final quantity to compute and display on the plots is the generalized un-
certainty in position and momentum (known as emittance in beam physics):

ε =

√
〈x2〉 〈p2〉 − 〈xp〉2.

This quantity should remain invariant when the wave packet is free propagating
or subject to linear forces. Display this quantity in units of ~ (again, it cannot
be smaller than 0.5).

Your “fully dressed” movie frames should look something like Fig. 1.

There are several interesting things to note. First that the Gaussian wave packet
has WDF which is everywhere positive (and that’s the only wave packet which has this
property). Second, notice that the regions with negative WDF emerge when the wave
packet begins to interact with the barrier. These negative regions are responsible for
the “fringes” in the probability density (or the projections). Third, the phase space
picture and its projections clearly show e.g. that the transmitted wave packet has a
higher momentum due to the barrier acting as a filter while the reflected wave packet
contains the lower energy part of the initial electron.

You should also observe that the free propagating wave packet becomes “squeezed”
as it propagates with time while conserving the generalized uncertainty ε (a small
deviation that you will encounter at the end is due to the fact that the potential box
has impenetrable boundaries reflecting back small parts of the wave packet). If you
increase time well beyond 80 fs you will see a complicated phase space pattern due to
the infinite force from the boundary “breaking” or reflecting back the wave packet.
Give it a try!

3. Electrostatic potential of electron cloud

This problem is meant to explain a formula that you’ll be using in your next homework
assignment where we will compute energy levels of multi-electron atoms (a very real
and non-trivial application of quantum mechanics). An electron in atom “feels” not
only its positively charged nucleus but also the repulsive potential due to the “cloud”
from all the other electrons. If we adopt the approximation of the electron cloud being
spherically symmetrically distributed, we can efficiently evaluate the electrostatic
potential due to this distribution. And recall that in order to solve Schrödinger
equation we need to know the potential at all points along the radial coordinate.

The electrostatic potential due to a spherically symmetric charge distribution ρ(r)
is:

φ(r) =
1

4πε0

∫
d3r′

ρ(r′)

|r− r′|
.

This is a 3D integral, which is numerically quite expensive. Your job is to prove the

4

following expression, which reduces this 3D integral to the sum of two 1D integrals:

ε0 · φ(r) =
1

r

r∫
0

r′2ρ(r′)dr′ +

∞∫
r

r′ρ(r′)dr′.

(Hint: one approach is to compute the electric field at each r using Gauss’ law.
Writing E(r) = Q(r)/4πε0r

2, and expressing Q(r) in terms of ρ, the potential can be
obtained by writing down the integral

∫
E(r)dr and by integrating by parts.)

An additional remark: when it comes to evaluating integrals such as
∫ r

0
r′2ρ(r′)dr′

with the ‘running’ upper integration limit (and remember we will require the knowl-
edge of this integral at many values of r), MATLAB provides a useful function called
cumsum() or cumulative sum. E.g. cumsum([1 2 3 4 5]) returns 1 3 6 10 15 by
successively summing up the vector elements. This can be used to numerically com-
pute the integral above with the running upper integration limit and obtain the
integral’s multiple values in a single line of code. Furthermore, if we rewrite the
expression above as

ε0 · φ(r) =
1

r

r∫
0

r′2ρ(r′)dr′ −
r∫

0

r′ρ(r′)dr′ +

∞∫
0

r′ρ(r′)dr′,

we can use cumsum() for the first two terms, and the normal sum() for the 3rd term.
No for loops are needed, we can build the entire array of φ vs. r with a single line of
code.

5

