
PHYS 3317 Fall 2012

Homework 1 Quantum States and Operators

It is important to have a good handle on states and operators. Use lecture notes or
your favorite QM textbook to brush up on basics of the Dirac notation. I’ll try to
mention additional reading material each week for those interested in more details.

For the first week’s overview of QM formalism refer to Chapter 3 of Griffiths.
Chapter 4 of Miller’s “Quantum Mechanics for Scientists and Engineers” (hereafter
simply referred to as Miller) has a review dealing with states and operators using
powerful linear algebra formalism (nothing other than Dirac notation but with the
emphasis on space representation). In particular, brush up on the notions of Hermi-
tian and unitary matrices and operators. Also, note the definition of outer product,
which, as opposed to inner product, generates a matrix (= operator) from ket and
bra vectors in some representation:

|g〉〈f | =


g1
g2
g3
...

 [ f ∗1 f ∗2 f ∗3 · · · ] =


g1f

∗
1 g1f

∗
2 g1f

∗
3 · · ·

g2f
∗
1 g2f

∗
2 g2f

∗
3 · · ·

g3f
∗
1 g3f

∗
2 g3f

∗
3 · · ·

...
...

...
. . .


Another succinct and to the point review can be found in Tannor’s “Introduction to
Quantum Mechanics: A Time-Dependent Perspective” Chapter 8 (hereafter dubbed
Tannor).

We begin using MATLAB (or Octave, its open source counterpart – though it is
better to avoid it when doing large projects) starting from this homework. If you
are new to MATLAB, a short intro can be found under Simulations on the course
web-site. There will also be a several hour tutorial session detailing MATLAB for
quantum mechanics during the second week of classes. For more details on solving
1D Schrödinger equation in MATLAB refer to Chapter 3 of Levi’s “Applied Quan-
tum Mechanics” (referred to as Levi in future) or Chapter 2 of Datta’s “Quantum
Transport: Atom to Transistor” (simply Datta in future).

1. Matrix representation of operator

The ability to represent linear operator as a matrix is the foundation for most nu-
merical work in this course. Note that an abstract operator is not one and the same
as its particular matrix representation, so this result is significant. The relationship
here is similar to that of vector coordinates to the vector itself, e.g. one operator can
have many different representations in different bases.

Prove the formula from lecture (also known as a bilinear expansion of the operator)

Aij = 〈ψi|Â|ψj〉 .
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Here |ψi〉 represent an orthonormal basis (which don’t have to be eigenstates for
Â). In other words, the operator Â turning state |f〉 into |g〉, |g〉 = Â |f〉, can be
identically represented in any complete orthonormal basis as a matrix A relating two
vectors in the same basis:

g1
g2
g3
...

 =


A11 A12 A13 · · ·
A21 A22 A23 · · ·
A31 A32 A33 · · ·

...
...

...
. . .



f1
f2
f3
...

 ,
where gi = 〈ψi|g〉 and fi = 〈ψi|f〉 are themselves representations of states |g〉 and |f〉
in the basis |ψi〉. You will find the following form of the identity operator useful Î =∑

i |ψi〉〈ψi| (to see that this is true simply write |f〉 =
∑

i 〈ψi|f〉 |ψi〉 =
∑

i |ψi〉〈ψi|f〉,
from which it follows that

∑
i |ψi〉〈ψi| must be the identity operator). This rather

obvious expression is so important in quantum mechanics that it enjoys a special
name: a closure relationship.

2. Dirac notation and probability amplitude

In quantum mechanics we deal with probability amplitudes. These are essentially
complex numbers and as such are not directly observable. The probability (or its
density) is given by modulus squared of the probability amplitude. In statistics we
add or multiply probabilities. In quantum mechanics we add and multiply probabil-
ity amplitudes, then compute modulus squared to find the probability of an event.
Complex probability amplitudes allow for interference of probabilities similar to su-
perposition of waves. That’s pretty much the whole idea behind quantum mechanics.

Probability amplitude in Dirac notation is written as bra-kets or inner products.
For example, consider a probability amplitude 〈ψ|φ〉. We read Dirac brackets from
right to left. In this case we would say: “the probability amplitude for a particle
in state φ to end up in state ψ”. (Note: it is “probability amplitude”, not just
probability). Of course, we can put a more descriptive language inside Dirac brackets
(anything goes here), e.g. 〈v = 10 m/s|x = 5 m〉 or 〈n = 2|n = 3〉, which we would
read: “the probability amplitude for a particle with x-position of 5 m to have velocity
of 10 m/s” or “the probability amplitude of the system with quantum number n = 3
to go to n = 2”. Just like in statistics, we add probability amplitudes of mutually
exclusive events when either of them leads to the desired outcome (A or B) and
multiply probability amplitudes of independent events when happening together (A
and B). For example, the famous double-slit experiment can be written in Dirac
notation as following

〈x|S〉 = 〈x|1〉〈1|S〉+ 〈x|2〉〈2|S〉 .

S represents the source, x represents the position in the detector plane, 1 and 2 are the
two slits. Thus, 〈x|S〉 is the probability amplitude of an electron (for example) emitted
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from the source to be detected with position x. 〈x|1〉〈1|S〉 says “the probability
amplitude of an electron from the source S to end up at slit 1 times the probability
amplitude of the electron to go from slit 1 to the detector position x”. As one moves
along x-coordinate in the detector plane, the probability amplitudes 〈x|1〉 and 〈x|2〉
acquire complex phase factors leading to interference pattern in the detector plane
described by |〈x|S〉|2.

To form the inner product we require a bra and a ket. For a given state ψ these
are related to each other as conjugate transpose. In a given basis, the convention
for |ψ〉 is to be a column vector and for 〈ψ| to be a row vector will all elements
being complex conjugate. (Incidentally, in MATLAB the inner product 〈ψ|φ〉 for two
states represented by column vectors (or kets) psi and phi can be neatly written
as psi’*phi, where operator ’ performs conjugate transpose. If you want a simple
transpose without complex conjugate, you have to use .’ instead (dot apostrophe).
Invoking psi’*phi will return a scalar, a single generally complex number, – the
probability amplitude). The inner product does not depend on the representation
basis much the same way as a scalar product of two vectors does not depend on the
choice of the coordinate system. This, among other things, means that we are free to
choose the most convenient basis to represent states and operators and don’t have to
worry about computed probabilities depending on our choice.

Turning a ket into a bra or vice versa (|ψ〉 → 〈ψ| or 〈ψ| → |ψ〉) is easy if you
follow the following simple rules:

a) c→ c∗ (c is a complex number)

b) Â→ Â†

c) reverse order of operators.

The same rules apply for finding adjoint of operators.

(a) Using these rules, find the bra that corresponds to the ket

c∗〈f |ÂB̂|g〉 ĈD̂ |p〉 .

(b) Find the adjoint of the operator

c 〈f |Â|g〉 |p〉〈q| .

3. Position and momentum representation

When learning quantum mechanics, one is usually first introduced to the wavefunction
ψ(x). It’s easy to recognize that we are dealing with the probability amplitude: ψ(x)
is generally complex and not directly observable whereas |ψ(x)|2 is the probability
density. Following the discussion of the previous problem we conclude that ψ(x) is
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“the probability (density) amplitude of a particle in the state ψ to have coordinate
x”, or in the Dirac notation

ψ(x) ≡ 〈x|ψ〉 .

ψ(x) can be viewed as an element of |ψ〉 in the position representation. This is not the
only possible representation. As a matter of fact, we can have an arbitrary number of
representations of both states and operators (all we need is a complete orthonormal
basis then essentially follow the recipes discussed in Problem 2).

There are two particular bases, however, that provide most physical meaning when
it comes to representing a quantum state ψ. These are given by eigenstates of the
position and the momentum operators: x̂ or p̂. Just like in classical mechanics where
position and momentum play a central role for describing motion (mainly due to
the beautiful symmetry of motion as it is viewed in position-momentum space, also
known as phase space), a quantum system with all its peculiarities is also best viewed
in position-momentum or phase space. (I will mention in passing here that such rep-
resentation of states and operators is known as Wigner or Wigner-Weyl formulation,
and its importance extends beyond quantum mechanics to optics, signal processing,
and statistical mechanics). Short of describing quantum mechanics in phase space
we proceed below stating several important facts about momentum representation,
which can be viewed as complementing (and fully equivalent) view to the position
representation. For example: whereas well-localized states are best represented by po-
sition space wavefunction, other scenarios with well-defined momentum can be more
naturally described by momentum space wavefunction. This is often the preferred
representation in solid state physics among others (usually using k-space, k = p/~,
to reduce clutter from ~’s).

The probability (density) amplitude of a particle in the state ψ to have momentum
p is an element of |ψ〉 in the momentum representation

ψ̃(p) ≡ 〈p|ψ〉 .

(We use a tilde to underline the fact that the functional dependence ψ̃(p) can be
completely different from ψ(x) even though both represent the same state ψ). To
better understand the relationship between momentum and position representations,
we need to invoke some basic properties of operators x̂ and p̂ and their eigenkets |x〉
and |p〉:

x̂ |x〉 = x |x〉 , p̂ |p〉 = p |p〉 ,

or, equivalently for eigenbras:

〈x| x̂ = x 〈x| , 〈p| p̂ = p 〈p| .

Very generally, since x̂ and p̂ are Hermitian operators, their eigenstates form complete
orthonormal sets:

〈x′|x〉 = δ(x− x′), 〈p′|p〉 = δ(p− p′).
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Here Dirac’s delta function is essentially Kronecker’s delta in the limit of infinite basis
size: it is nonzero for x = x′ and zero outside, and its sum (integral) across x elements
is 1. The physical meaning of these expressions is rather obvious (by reading the
Dirac notation out loud): a particle with (perfectly) defined position (and separately
momentum) is guaranteed to be found at exactly that position (momentum) and
not be found anywhere else. Another obvious but very useful fact is the closure
relationship (the only difference from the previously introduced expression in Problem
1 is that the sum is now replaced with an integral):

+∞∫
−∞

|x〉〈x| dx = Î ,

+∞∫
−∞

|p〉〈p| dp = Î .

(a) Show that ψ̃(p) is the Fourier transform of ψ(x). Obviously the reciprocal
statement must hold: the wavefunction in position space is the inverse Fourier
transform of the wavefunction in momentum space. Hint: start by writing
ψ̃(p) = 〈p|ψ〉 and acting with the identity operator (closure relationship) on
|ψ〉. Afterwards, you will need 〈p|x〉 = 〈x|p〉∗. Because the inner product
does not depend on the choice of basis, you can use position representation
of the eigenfunction φp(x) ≡ 〈x|p〉 of p̂ = −i~(d/dx): p̂φp(x) = pφp(x). Of
course, eigenstates with perfectly defined momentum correspond to a plane
wave. Additionally, you should perform normalization of φp(x) to Dirac’s delta
function:

+∞∫
−∞

φ∗p′(x)φp(x)dx = δ(p− p′).

To do so you can use the following definition of the Dirac delta function:

δ(a) =
1

2π

+∞∫
−∞

eiabdb.

(b) Show that the momentum operator in momentum representation is simply p̂ =
p. Hint: to see that simply explore the wavefunction in momentum space after
acting with p̂ on some arbitrary ψ: 〈p|p̂|ψ〉.

(c) Show that the position operator in the momentum representation is x̂ = i~(d/dp).
Hint: to do that express 〈p|x̂|ψ〉 in terms of ψ̃(p). You will need to use the clo-
sure relationship once,

∫ +∞
−∞ |x〉〈x| dx = Î, then recognize the Fourier transform

which will give you ψ̃(p). There comes a point when a factor of x will prevent
you from treating the integral as the Fourier transform. It can be replaced,
however, by i~(d/dp) which, acting on the exponent just pulls down x. As the
differential operator doesn’t itself contain x, it can be taken outside the integral.
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Note the suggestive symmetry for operators x̂ and p̂ in position vs. momentum rep-
resentations.

PPPPPPPPP
position space momentum space

wavefunction ψ(x) ψ̃(p)
x̂ x i~(d/dp)
p̂ −i~(d/dx) p

4. Numerical solution of 1D Schrödinger equation

(In this problem you don’t need to submit the printouts of your code. You do, how-
ever, need to provide printouts of plots as indicated. Remember to label all the axes
and include legends in all the plots.)

We have talked in lecture about representing 1D Schrödinger equation in matrix
form for an arbitrary potential V (x) defined on interval 0 < x < L with boundary
conditions V (x) → +∞ for x < 0 and x > L (so that the wavefunctions vanish at
those points). Consider wavefunction ψ(x), which is sampled on a grid of xj = h0
with j = 0, 1 . . . N and step h0 in the interval x0 = 0 to xN = Nh0 = L. We can then
construct a matrix for the Hamiltonian if we find a way to represent (an approximate)
second derivative for p̂2 ∝ d2/dx2. In technical terms, we chose (finite) position basis
to represent all our states and operators. Note that the actual problem requires an
infinite basis, therefore we expect that there will be some artifacts arising from our
treatment of the problem. Still, with a proper linear algebra simulation package we
can investigate quantum behavior in an arbitrary potential. The goal of this exercise
is both to “feel” the power of numerical approach to solving QM problems as well as
to recognize limitations arising from the necessary approximations.

(a) To construct matrix for Hamiltonian, we need a way to represent (an approxi-
mate) second derivative for p̂2 ∝ d2/dx2 acting on a wavefunction ψ(xj). One
approach is to construct the matrix p̂ ∝ d/dx then multiply it by itself to obtain
the second derivative. E.g. dψ(xj)/dx ≈ (ψ(xj+1) − ψ(xj−1))/2h0. This differ-
ential operator can be written as a square matrix acting on a column vector:

dψ(x1)/dx
dψ(x2)/dx
dψ(x3)/dx

...
dψ(xN−2)/dx
dψ(xN−1)/dx


=

1

2h0



0 1 0 · · · 0 0
−1 0 1 · · · 0 0
0 −1 0 · · · 0 0
...

...
...

. . .
...

...
0 0 · · · −1 0 1
0 0 · · · 0 −1 0





ψ(x1)
ψ(x2)
ψ(x3)

...
ψ(xN−2)
ψ(xN−1)


.

Forming higher derivatives by recursively applying this formula (or, equivalently
by raising to power the derivative matrix) is not most optimal. This is because
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