
PHYS 3317 Fall 2012

Homework 2 Time Evolution and Tunneling

Additional references: propagation matrix approach to computing tunneling proba-
bilities is covered in Chapter 11 of Miller and Chapter 4 of Levi. Other topics covered
are a part of the standard QM formalism review (see previous homework for chapters
in books), in particular Chapter 8 of Tannor.

1. Fun with functions of operators and commutators

If Â and B̂ do not commute, then B̂ does not commute with an arbitrary function of
Â. The most important example of this is the product of exponential operators:

eÂeB̂ 6= eÂ+B̂ when [Â, B̂] 6= 0.

Instead, we should use:

eÂeB̂ = eÂ+B̂e[Â,B̂]/2.

Prove this formula.

2. Continuity equation

Prove the continuity equation for the expectation values of 1D charge and current
densities:

∂

∂t
〈ρ〉 = − ∂

∂x
〈jx〉 .

(Hint: ψ satisfies the time-dependent Schrödinger equation (TDSE). The proof amounts
to taking TDSE and its complex conjugate, multiplying each by ψ∗ or ψ then sub-
tracting the two. After that you need to recognize the density and the current).

Few remarks: this is nothing other than the conservation of charge (or probability).
There is a neat theorem in theoretical physics due to Noether that gives a one-to-
one correspondence between each conserved quantity in physics and some continuous
(differentiable) symmetry. Emmy Noether, who came up with these theorems in the
early 20th century, has been described by many at the time (including Einstein)
as “the most important woman in the history of mathematics”. You are probably
familiar with the fact that, say, conservation of momentum is a consequence of shift
symmetry in space (or space homogeneity), i.e. x′ 7→ x + a does not change the
laws of motion. Similarly, homogeneity of time and rotation leads to conservation of
energy and angular momentum. Well, it turns out that the conservation of charge
(probability) is a consequence of phase shift invariance of the wavefunction: that is
an extra phase factor ψ′ 7→ ψeiθ does not affect observables. Good stuff!

1



3. Time evolution movie of quantum tunneling

As they say, “a picture is worth a thousand words”, and using this logic — a movie,
being a sequence of many pictures, should be worth on the order of million words or
so. In this exercise, you will create an animation of time evolution for quantum state
of an electron tunneling through a barrier. To avoid minus signs here and there due
to negative charge of the electron, assume electron’s charge to be positive (and the
field’s direction reversed). The initial state is given by a Gaussian wave packet (not
an eigenstate, and therefore a superposition of stationary states).
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Figure 1: Potential V (x) and initial Gaussian wave packet |ψ(x, t = 0)|2 of an electron.

Your results should include: (i) a printout of the final computer program you used
(no need to attach schrod.m program as it has not changed); (ii) three computer-
generated plots as requested below (with appropriately labeled axes) along with any
answers to the questions below.

(a) Code in the potential as shown in the Figure 1 by modifying your MATLAB
code from the previous homework assignment. Set the width of the box to
L = 45 nm with ∆x = 0.1 nm by specifying len = 45; npoints = 450; in the
program. Prepare the initial state ψ0 that corresponds to a Gaussian packet
with the position expectation x0 = 15 nm, variance (∆x0)

2 = 0.5 nm2, and the
velocity expectation v0 = 0.3 nm/fs. Normalize the state and check that it
returns correct x0, (∆x0)

2, and v0. Note: if you copy physical constants hbar,
echarge, and emass from schrod.m, then sticking to units of nm (= 10−9 m)
for position, fs (= 10−15 s) for time, and electron-volt (eV) for energy will work
everywhere without extra powers of 10.

(b) Next, you need to decompose the function into the eigenbasis of stationary states
|φn(x)〉. Decompose |ψ0〉 =

∑
n cn |φn〉 by finding cn = 〈φn|ψ0〉. Numerically,

we have to truncate the sum at some nmax. We can identify the criterion for
choosing nmax if we note that

∑∞
n=1 |cn|2 = 1, so if we choose nmax sufficiently

large, we expect ε = 1 −
∑nmax

n=1 |cn|2 � 1. Choose the number of eigenstates
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nmax to be sufficiently large so that the error due to the sum truncation is small
(say less than ∼ 10−6). Produce a graph of the spectrum for ψ0, that is |cn|2
vs. the eigenenergy En on a log-log scale. Label the axes. Indicate what nmax

you chose and what your residual error ε is. Side note #1: in principle, you can
simply find all eigenvectors (a complete set) and always decompose any ψ0 this
way. MATLAB operates efficiently on vectors and matrices so if your code is
written in terms of vector/matrix operations it will often execute with nearly
the same speed regardless of how many modes you chose for decomposition. But
when you program in C++ for example, it will not be the case. Side note #2: in
real life you ought to always “mistrust” simulations and expect some numerical
“artifacts”. E.g. a good check here whether your simulations “hold water” is to
double the number of sample points npoints and check whether any physical
quantities you compute have changed (for example, the energy of the electron).
If the change is small enough, the mesh size is adequate, otherwise you need to
keep increasing the number of mesh points.
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Figure 2: A snapshot of |ψ(x)|2 and local current jx(x) evolving in time.

(c) You are now ready to evolve the ψ(x, t) since you know how the stationary
states evolve in time in which basis you have just represented ψ0. Put a for

loop that increments time from 0 to 80 fs with 1 fs steps (incidently, if you wait
longer the wave packet will eventually start bouncing off the impenetrable walls
at x = 0 and x = L, something we are not interested in this problem). Inside
the loop, plot the probability density function of finding the electron |ψ(x, t)|2
vs. x. Use MATLAB’s title command to supply additional information about
each frame such as time t, the expectation values for the position 〈x(t)〉, ve-
locity 〈v(t)〉, total energy 〈E(t)〉, and the kinetic energy 〈KE(t)〉. Other useful
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commands for labeling your plots are xlabel, ylabel, and legend. To force
MATLAB to display updated plots use drawnow. Additionally you can add
pause() statement to the body of the loop, which will cause the program to
wait until you push a key before incrementing the time and updating the plot.

(d) Let’s add another Gaussian wave packet for a better comparison: one that
is identical to ψ0 at t = 0 but is drifting freely without any barrier. Plot
|ψfree(x, t)|2 with dashed line so you can see the difference between tunneling
and free space propagation. Add V (x) to the same plot to underscore the spatial
boundaries of the barrier. Use MATLAB’s hold on/off commands for adding
new curves to the same figure.

(e) In practical semiconductor devices, we would be typically way more interested
in current (density) than in the expectation value of the electron’s position.
Produce the current density plot jx(x, t) ∝ i(ψ dψ∗/dx − ψ∗dψ/dx) vs. x for
each time step in a subplot below |ψ(x, t)|2 (use MATLAB’s subplot(...)

function). Whew! Now you can enjoy the movie. Your final “movie frame”
should look similar to Figure 2. Print it out for submission. The local current
vanishes at some moments and some positions, jx(x, t) = 0. Explain why.

(f) In class we said that another way to evolve a state is through the time evolution

operator Û = e−iĤt/~. Obtain ψ(x, t = 80 fs) this way using MATLAB’s expm()
function to build the time evolution operator directly from the Hamiltonian.
Plot |ψ(x, t = 80 fs)|2 vs. x from both methods (by decomposition and the time
evolution operator) on the same plot, e.g. one solid curve and the other one
with dots. Cautionary note #1: Hamiltonian matrix is of different size than
the wavefunction because ψ(x = 0) = ψ(x = L) = 0 are assumed. Cautionary
note #2: expm() is computationally ‘expensive’ and will be quite a bit slower
for the large number of sample points while the decomposition method can still
be plenty fast.

(g) Let’s reflect on some of the cool physics going on here. Observe the transmitted
portion of the wave packet to the right of the barrier. Which of the two pulses,
the free propagating one or the one that saw the barrier, arrives first as judged
by the location of the peak of the (transmitted) wave packet? If in doubt, ei-
ther zoom in/out or look at the plot of jx(x). For most combinations of the
barrier height, width, and the initial electron energy the tunneled-through elec-
tron arrives later than its free propagating counterpart as we would intuitively
expect (after all, the whole “idea” of the barrier is to provide some resistance to
the particle and, therefore, slow it down). But, for a properly chosen combina-
tion of parameters, the tunneled particle can arrive ahead of the free traveling
one even though both started out with the same initial velocity! This takes
on a really bizarre form when the particle happens to be a photon traveling
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at the speed of light and a tunneled-through photon can be measured ahead
of the free one (faster than the speed of light)! Does it mean that Einstein’s
special relativity is violated? The short answer is no, it does not. A longer
answer could be a potentially very interesting seminar about superluminal ve-
locities: when it can happen and when it can’t. See A.M. Steinberg et al.,
“Measurement of the single-photon tunneling time” , Physical Review Letters,
71 (1993) 708 for more details.

That’s it. Of course, you can investigate any combinations of the barrier width
and height, the initial wave packet’s velocity/energy, width, etc. Such movies are a
great way to build up your intuition for the quantum mechanical behavior. And this
behavior can be truly weird.

4. Resonant tunneling diode

This will be our first real application of QM in this course. The specific device you
will simulate is called resonant tunneling diode (RTD). These diodes have an inter-
esting current-voltage characteristic with regions of negative (differential) resistance.
In other words, the current increases when the voltage decreases. This property is
useful for building devices such as oscillators, amplifiers, frequency mixers, and so on.
Additionally, RTD’s are one of the fastest electronic components available responding
to changing signals with the frequency of up to THz (meaning that they can be used
in RF circuitry). Terahertz here means that the response time of the device is in
sub-picoseconds.

RTD’s are all about quantum tunneling. Resonant part of ‘RTD’ refers to the
fact that the tunneling barrier is actually made of two barriers with a well trapped
in the middle. As a result, there are quasi-bound (resonant) states in the well with
corresponding peaks in transmission (resonant tunneling). For example, Figure 3
shows one such geometry: two thin barriers are made of AlGaAs (1.5 nm thick) while
the well is GaAs (5 nm thick). Each barrier is about 0.3 eV high. By applying an
external voltage between the cathode and the anode region (30 nm thick), the barrier
potential region gets skewed (see the right figure for VD = 0.5 volts). Refer to the
animation at nanohub.org web-site to see RTD in action.

We can model an RTD ourselves using the same tunneling theory we covered in
class.

(a) Download tunnel.m from the Blackboard (under Simulations). This program is
based on the lecture notes and uses propagation matrices to compute tunneling
probabilities. Take a look at the program to see how it is implemented. Code
in the potential as seen in Figure 3. Build a function that takes voltage as
its input argument and “applies” the voltage to the potential as shown in the
figure. IMPORTANT: use the effective mass m∗ = 0.07×m0 throughout, with
m0 being electron’s mass in vacuum (electrons in GaAs and AlGaAs respond
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Figure 3: Potential of a resonant tunneling diode: (left) no voltage applied; (right)
with 0.5 V applied.

to fields as if they were very ‘light’). Produce two plots with the energy E of
the incoming electron (varying E between 0 and 1 eV) on the y-axis and the
transmission coefficient T (E) on the x-axis for VD = 0 and 0.5 volts. What is
the energy of the quasi-bound state at VD = 0 V? Can you estimate the lifetime
in femtoseconds of an electron “stuck” in this quasi-bound state (Hint: use the
uncertainty principle).

(b) To compute the total current going through the diode we need to take into
account the fact that inside a semiconductor there are many carriers and states
participating, not just a single electron. This part is getting a bit ahead of our-
selves in this course, so we will simply use the result below deferring more de-
tailed explanations to a later point when we shall talk about solid state physics.
The result is that the current can be computed by the following integral (known
as Tsu-Esaki formula):

J ∝
∫ ∞
0

T (E)N(E)dE,

where T (E) is the transmission coefficient that tunnel.m computes. (You will
probably want to “wrap” tunnel.m into a function that returns the quantities
we are interested in as output arguments). The function N(E) is known as a
supply function, – which effectively tells us how many carriers are available to
participate in the current transfer. We will use the following result:

N(E) = ln

{
1 + exp[(EF − E)/kBT ]

1 + exp[(EF − E − VD)/kBT ]

}
,
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where EF is the Fermi energy (highest occupied electron level at absolute zero
T = 0 K), VD is the voltage applied across the diode and kB is Boltzmann
constant. We will have much to say about Fermi energy later in this course.
Compute the current J(VD) for the diode voltage 0 ≤ VD ≤ 0.5 V assuming for
the sake of this exercise that the Fermi energy is EF = 0.1 eV (that is relative to
the conduction band, which, technically speaking, would categorize this material
as a degenerate semiconductor. More about it later!). Use the room temperature
kBT = 0.025 eV (this number is worth memorizing!). Recall that an integral
is simply a glorified sum, so use sum() times the energy increment to find its
value. To evaluate the integral you will also need to truncate its upper limit
somewhere (cannot integrate all the way to infinity). Luckily to us, N(E) is
significant only up to about 0.3 or 0.4 eV. Make a plot of J(VD) vs. VD. The
negative resistance region that you are supposed to obtain is due to the resonant
quantum tunneling.
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